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Abstract

This paper presents a novel method for dense 3D recon-
struction of man-made environments. Such environments
suffer from textureless and non-Lambertian surfaces, where
conventional, feature-based 3D reconstruction pipelines
fail to obtain good feature matches. To compensate this
lack of feature matches, we exploit the semantic informa-
tion available in 2D images to estimate both a correspond-
ing 3D position and a 3D surface normal for each pixel.
A semantic classifier is therefore applied on a single seg-
mented image in order to get a likelihood for a segment
providing one of the surface normals within a discrete set
of them. To improve the accuracy of this labeling step, we
exploit multiple segmentation methods. The global best sur-
face normal configuration over all pixels of an image is then
obtained by using a Markov Random Field. In the last step,
the 3D model of a single 2D input image is reconstructed
by combining the semantic surface normal estimation with
the sparse point cloud coming from feature based match-
ing. It is shown experimentally, that our proposed method
clearly outperforms state-of-the-art dense 3D reconstruc-
tion pipelines and surface layout estimation approaches.

1. Introduction
Reconstructing a dense 3D model from a single moving

camera capturing a real world environment is usually done
by generating a sparse point cloud obtained by triangula-
tion [25] followed by a densification [10], where both steps
rely on discriminative feature matches. In case of man-
made environments, this approach is not feasible because
of wrong matches which can occur between corresponding
camera views due to similar features obtained from flat and
textureless surfaces (e.g. walls, floors). Nevertheless, these
conventional 3D reconstruction pipelines deliver correct but
sparse 3D point clouds where discriminative features can be
extracted (e.g. posters on the wall, texture on the ground and
on the ceiling). As can be seen in Figure 1a, it is hard to say
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Figure 1: (a) Using semantic meaningful patches (right)
increases the likelihood for estimating the 3D surface la-
bel correctly compared to using the 2D regions of feature
descriptors (e.g. SIFT, left). (b) Proposed semantic patch-
based 3D reconstruction results (left) compared to conven-
tional feature-based 3D reconstruction results (right) [10].

if the 2D region of a feature descriptor (e.g. SIFT, see left
extracted patch) should be labeled as ground plane / ceiling
or as a vertical structure. When analyzing semantic mean-
ingful patches (see right extracted patch) instead of patches
coming from feature points the likelihood for obtaining the
correct label can be increased.

This paper presents a method which combines a conven-
tional 3D reconstruction pipeline with a patch-based seman-
tic 3D surface normal labeling system in order to overcome
the problem of finding discriminative features in man-made
environments. As clearly visible in Figure 1b, incorporat-
ing patch-based semantic information in our pipeline gives
a more planar and complete model compared to exploiting
point-based feature matches only, as proposed in [10].

In the first step, we therefore generate a sparse point
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cloud from multiple input images and calculate the 3D cam-
era positions by using the method described in [10]. Ac-
cording to [10], the described method can also generate
dense 3D models, which is only true when finding discrim-
inative features. In case of man-made environments, the
outcome is also sparse, as can be seen in our experiments
section. For the following steps, we operate on a single in-
put image.

We segment the image into semantic meaningful parts
using superpixel methods. It is assumed that each segment
can be modeled by a planar patch. By using color, texture,
perspective features and a boosted decision tree, the 3D
plane normal for each segment is estimated by the method
of Hoiem et al. [17], which in the following is referred to as
semantic labeling.

In order to be able to perform classification, this normal
is chosen from a given set of discrete directions. Super-
pixel methods are designed to perform well under certain
environmental settings (e.g. indoor/outdoor setting, specific
lighting, defined color, object pose, or different geometric
relationships between objects). Since this specific setting
cannot cover all possible variations in an image, a super-
pixel segmentation method may also deliver wrong or miss-
ing segments. To compensate these errors, we exploit re-
dundant information and segment the image using multiple
superpixel methods [6, 19, 21, 1].

Each pixel is then assigned a possibility to belong to a
certain normal orientation class out of the given discrete set.
In order to find the global best configuration and therefore
the global best normal orientation for each pixel, a Markov
Random Field (MRF) is used. By combining the normal
estimation with the sparse 3D point cloud, planes are fitted
through the 3D points and the cloud is densified. The con-
tribution of this work is therefore two-fold: first, semantic
information is used to compensate missing and wrong fea-
ture matches at textureless and non-Lambertian surfaces in
man-made environments. Second, redundant information in
terms of multiple segmentation methods is used to exploit
the advantages of each single one to obtain a higher accu-
racy for both the surface labeling and the 3D reconstruction.

2. Related Work
For the last few years, transferring this human ability to

computers is one of the grand challenges in computer vi-
sion. Having the 3D geometry of a scene would help ap-
plications placed on top of this knowledge. Assuming a
given ground plane is for example necessary for initializ-
ing the tracking sequence, but it also helps in tasks such as
autonomous robot navigation and automatic object manip-
ulation. As our implementation is a combination of single
view reconstruction and 3D reconstruction using multiple
images, we present related work for both areas in the fol-
lowing.

2.1. Single View 3D Reconstruction

Reconstructing 3D models from a single 2D image is
an ill-posed problem. Nevertheless, the related work pre-
sented in the following segments an image into geometri-
cally meaningful classes in order to enable the 3D recon-
struction from a single image. Each pixel is then assigned
a geometric label. The method of [16] automatically con-
structs a rough 3D model from a single 2D image. This is
established by learning a statistical model of surface nor-
mal label classes. Extracting 3D information from a single
2D image showing a Manhattan world indoor environment
is described in [5]. They assume to have a calibrated cam-
era, extract edges, the ground plane and surface orientations
from the images and obtain a final labeling by solving an
MRF. Labeling the 3D layout of a scene was published in
[17]. By combining multiple 2D cues (color, texture and
perspective features of a patch) the classifier is trained on
multiple indoor and outdoor still images using boosted de-
cision trees. Each image is segmented using the approach
presented in [6]. For getting a higher accuracy, the method
merges segments to obtain different segments in terms of
size and shape. Gould et al. [12] obtained a holistic rep-
resentation of the scene by finding semantic and geomet-
ric meaningful and consistent regions in the image. Fol-
lowing [18], the layout of indoor Manhattan World scenes
can be estimated from a single image. By connecting and
sweeping line segments, the most likely box layout is found.
Hedau et al. [15] presented a novel approach on estimat-
ing the scene layout of cluttered rooms by fitting the most
likely 3D box. Another segmentation and depth estimation
framework using an MRF and semantic segmentation using
meanshift was presented in [20]. Gupta et al. [13] presented
an approach which allows estimating the 3D scene layout by
combining volumetric reasoning (e.g. occlusions, arrange-
ment of objects) with reasoning with mechanics (e.g. mate-
rial density and internal energy). Schwing et al. [24] pro-
posed to estimate the 3D surface layout of an indoor scene
by decomposing higher order potentials into pairwise po-
tentials by incorporating integral images to geometry. Bed-
room sampling on still images by incorporating the geo-
metric features of objects within a room is used to obtain
a rough layout of the room in [23].

2.2. Multiple View 3D Reconstruction

Having multiple images helps to generate a sparse 3D
point cloud by using Structure from Motion (SfM). A sparse
3D reconstruction framework was introduced in [25]. The
algorithm creates a sparse point cloud in combination with
corresponding camera positions from a given image set,
where the reconstruction is done incrementally. A dense
3D reconstruction pipeline was published in [10]. By us-
ing multiple features and multiple iterations of matching,
expanding and filtering these matches, a dense model is



obtained from multiple images. Dense reconstruction of
well-known touristic parts of cities is presented in [2] by
using a parallel distributed system. Dense reconstruction
processed on a single computer is presented by [9]. Images
from tourists are collected and matched by the method pub-
lished by [2] to obtain the 3D model. Automatic dense 3D
reconstruction from 2D images using planar patches to re-
cover both planar and non-planar structures was introduced
by [11]. Planes are detected using RANSAC and automat-
ically linked for multiple view reconstruction. Xiao and
Furukawa [27] presented an algorithm for reconstruction
and visualization of large scale indoor environments from
various museums. By exploiting volumetric primitives and
therefore doing a volumetric reconstruction instead of re-
covering a surface model, wall configurations are found and
textured. Häne et al. [14] presented a pipeline for piecewise
planar depth map fusion and 3D reconstruction using a first-
order primal dual optimization method instead of a higher
order one.

Similar to our approach, sparse 3D point clouds can also
be combined with information coming from single images.
Brostow et al. [4] published an approach for labeling 2D
video sequences from outdoor scenes using sparse 3D point
clouds. By using Delaunay Triangulation, a relief mesh is
set up from the 3D points. Based on the orientation and lo-
cation of the triangles, the traffic scene is segmented. For
this approach, the features are purely calculated on the ge-
ometric observations. A 3D reconstruction pipeline using
a single semantic segmentation and matching method was
presented in [22]. Flint et al. [7] presented a method which
incorporates stereo, monocular and 3D features to itera-
tively help in the segmentation process of indoor videos.
Bayesian filtering with motion cues of possible hypotheses
of box layouts of input videos showing indoor scenes is pre-
sented in [26]. An approach using videos of street scenes for
segmenting the scene was presented in [28]. Reconstructed
3D points are manually but not perfectly labeled to help in
the 2D segmentation process which is performed using an
MRF. Floros et al. [8] presented an approach which com-
bines spatial and temporal smoothness terms between cor-
responding pixels in a single higher-order CRF in order to
obtain an image segmentation formulation.

This paper deals with the problem of wrong or missing
feature matches between corresponding views by also in-
corporating semantic information. Different to existing ap-
proaches, the proposed approach tackles the specificity of a
single algorithm and increasing its robustness by exploiting
redundancy. Redundant information for getting correspond-
ing 3D points for each 2D pixel is achieved by combining
different segmentation methods when performing semantic
reasoning.

3. 3D Point Cloud Densification
The goal of our pipeline is to do both, classifying each

pixel according to the labels ground plane, ceiling and ver-
tical, defined by an angle α and vertical-β (where α = 90◦

corresponds to all possible vertical orientations β) and gath-
ering a 3D point for each 2D pixel by only considering a
single input image and a sparse point cloud of the scene
(see bottom image of Figure 2a). The angle α can take val-
ues of a discrete set L1 = {0◦, 90◦, 180◦} and describes the
orientation difference between the camera’s gravity vector
g and the plane normal n. The orientations α = 0◦ can
be seen as the ground plane of the scene, α = 90◦ can be
seen as any vertical structure, α = 180◦ corresponds to
the ceiling. The angle β can take values from a discrete
set L2 = {0◦, 45◦, 90◦, 135◦} and describes the orientation
difference between the camera’s right vector r and the plane
normal n.

The workflow of the proposed algorithm can be seen in
Figure 2. In the first step, a sparse 3D point cloud and cor-
responding camera positions are generated from multiple
input images by using the method described in [10]. As can
be seen in the top image of Figure 2a, the pixel in question
is shown as rectangle in the image for demonstration pur-
poses. All the pixels within the segment which also holds
the pixel in question are then projected on all the planes in
question having orientation α and β. The 3D center point of
the planes (denoted as black circle in the image) is obtained
by calculating the median 3D point from those points from
the 3D point cloud which are located within the segment’s
2D area when projected onto the image plane. This means
that multiple corresponding 3D points are available for each
2D pixel. Each normal direction within a discrete set of nor-
mals is assigned a certain likelihood coming from semantic
and 3D reasoning, as can be seen in Figure 2b. The globally
best result and therefore the best fitting corresponding 3D
point is obtained by pixelwise optimization using an MRF.
As the likelihoods from [17] cannot be compared with like-
lihoods from 3D reasoning, the optimization is done in two
steps to obtain the optimized results v, w and their combi-
nation x̂.

After generating the point cloud from an image se-
quence, the algorithm is operating on a single image, which
is splitted into semantically meaningful parts. We assume
that each segment in the image can be represented by a
planar patch. The main problem in this step is that seg-
mentation methods are designed for specific environmen-
tal settings (e.g. certain lighting conditions, specific objects
or scenes etc.), which means that they may provide wrong
or missing segments when these settings or conditions are
not met. To exploit the advantages from several segmen-
tation methods in order to increase the accuracy of the 3D
reconstruction pipeline, we segment each frame by using
multiple segmentation methods. The outcome of the su-
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Figure 2: (a) Top: Multiple segmentation methods generate multiple 3D points for each pixel. Bottom: Each pixel can be
labeled with one of the labels within the discrete set of orientations. (b) Workflow of the proposed optimization.

perpixel algorithms described in [6, 19, 21, 1] is shown in
Figure 3 from left to right. As can be seen, there is a vari-
ation between shape and size of the segments, which we
want to exploit for both labeling and 3D reconstruction. To

Figure 3: Multiple superpixel segmentation methods deliver
different results in terms of shape and size of the segments.
From left to right: [6], [19], [21], [1].

get a spatial consistent result for the whole image, the la-
bel for each pixel is determined independently of the seg-
ments of an image. The segmentation methods therefore
serve as soft priors to the final labeling problem. The solu-
tion to this problem corresponds to finding the configuration
of a Gibbs distribution with maximal probability, which is
equivalent to finding the maximum posterior (MAP) config-
uration of an MRF. Let G = (V, E) be a graph described by
vertices V , which in this case are represented by the pixels
of the image, and edges E . When having a set of random
variables X = {X1, X2, . . . XN} and a label configuration
x = {x1, x2, . . . xN} which can take values from the dis-
crete set of labels L1, the energy term E of the pairwise

MRF is defined by

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψi,j(xi, xj), (1)

where Ni is the neighborhood of node i, ψi is the unary
potential in the graph and ψi,j is the pairwise potential, or
smoothness term, between neighboring pixels. The follow-
ing part demonstrates how to find the unary and binary po-
tentials.

The method of Hoiem et al. [17] then delivers a likeli-
hood for each segment having an orientation α. The likeli-
hood u for a single pixel yi within the segment s at image
location i is given by

u(yi) = P (α|yi). (2)

As the original implementation differentiates between left
and right wall segment, we combine these two likelihoods
to obtain the likelihood for the label vertical (α = 90◦). We
improve the results obtained from [17] by also calculating
the horizon line from vanishing points, which are extracted
from the image. These points are obtained by detecting
lines and clustering them by using RANSAC. This prevents
from labeling pixels above the horizon line as ground plane
and pixels below the horizon line as ceiling. The unary po-
tentials and smoothness terms are set to

ψi(xi) = exp(−u(yi)) · λ · ds (3)

ψi,j(xi, xj) = 1 − exp

(
−
∣∣∣∣ (α(yi)− α(yj))180

∣∣∣∣) ,(4)



where u(yi) is obtained by using Hoiem’s method, ds is
the 3D Euclidean distance between the center point of seg-
ment s (which contains yi) and the camera center, λ is a
normalizing constant and α(yi) is the surface normal ori-
entation at pixel yi. Normalization is reached by dividing
through 180. The distance ds is used to increase the likeli-
hood for pixels which are closer to the camera center. Note
that both u(yi) and ds are obtained for each discrete sur-
face normal orientation and for each segmentation result.
When using 4 different segmentation methods, this leads to
4 · |L1| = 12 labels a pixel can obtain. The MAP configu-
ration v = {v1, v2, . . . vN} is then found by

v = argmin
x

E(x). (5)

In our implementation we choose an 8-connectivity so that
each pixel has eight neighboring pixels. The MRF is then
solved by using Iterated Conditional Modes (ICM) [3].

After having defined if the pixel is located on the ground,
the ceiling, or a wall segment, we want to find out the orien-
tation of the wall. This step is referred to as 3D reasoning.
Since unary potentials between Hoiem’s approach and 3D
reasoning cannot be directly compared, we solve a second
pairwise MRF between neighboring pixels to find this ori-
entation. For finding the unary potential, all projected 3D
points which are within the area of a segment are investi-
gated for each segment. If a certain number of points (5 in
our experiments) is found within the 2D area of a segment,
we fit a plane through all these 3D points by exploiting
RANSAC. The 3D center point of the segment is obtained
by gathering the median of all points marked as inlier in the
plane fitting step. In case there are not enough points, a seg-
ments normal is set as the median from its 3 neighboring
segments’ ones. We then calculate the angle φ(β) between
the normal n of the fitted plane and the normal n(β) of the
plane in question by

d(β) =
cos−1 (n · n(β))
‖n‖‖n(β)‖

φ(β) = min(d(β), π − d(β)). (6)

The label configuration x can take values from the discrete
set of labels L2. Unary and pairwise terms for the second
MRF are set to

ψi(xi) = 1 − exp

(
−φ(β)

180

)
(7)

ψi,j(xi, xj) = 1 − exp

(
−
∣∣∣∣ (β(yi)− β(yj))180

∣∣∣∣) ,(8)

where β(yi) is the surface normal orientation for pixel yi.
Once more, when using 4 different segmentation methods,
this leads to 4 · |L2| = 16 different labels a pixel can ob-
tain. The final configuration w = {w1, w2, . . . wN} is then
found similarly to solving Equation 5.

Hoiem[17] Proposed (SM) Proposed (MM)
ground plane 68.39 85.54 87.41

ceiling 43.19 75.44 79.61
vertical 22.11 36.39 39.94
global 60.17 82.64 85.19

average 44.56 65.97 68.99

Table 1: Percentage of correctly classified pixels per label
for the Airport dataset.

At this stage, we know which pixel needs to be classified
as either ground plane, ceiling, or vertical. We also know
which orientation is the globally best one when a pixel is
classified as vertical. In the last step, v and w are combined
to obtain the final labeling x̂ by

x̂ =

{
vi if α(yi) ∈ {0◦, 180◦}
wi else

(9)

For both classification steps, not only a 2D segmentation of
the scene is obtained but also corresponding 3D points for
each 2D pixel. As stated previously, the 3D center point
of each segment is obtained and a plane, where the orien-
tation corresponds to the 2D orientation label obtained in
the optimization step, is fitted through it. As the orienta-
tion is known at this stage, it is also known from which 2D
segmentation the best configuration comes from. For each
2D pixel, the 3D point corresponding to the globally best
segmentation result is therefore used.

4. Experiments
Experiments are conducted using an indoor dataset hold-

ing 270 images showing the indoor environment of an Air-
port having multiple height layers and complex geometric
structures. The images are taken by a person walking on
the ground plane with a Canon EOS 5D Mark II. A sparse
point cloud and the 3D camera positions are obtained by
using all the images in the dataset and the method of Fu-
rukawa, described in [10]. Segmentation is done by using
the algorithms described in [6, 19, 21, 1]. For visualiza-
tion purposes, all 3D points which are too far away from
the camera image plane are sorted out. Therefore, an em-
pirically found threshold of ten times the distance between
the current and the subsequent camera center is chosen.

4.1. Quantitative Experiments

To show the relevance of the MRF in this approach, the
2D labeling results of Hoiem’s method are compared to our
proposed method. This means that the label configuration
can only take values of α ∈ L1. We manually labeled 100
ground truth images where pixels which are left blank in
the ground truth image are not taken into account for the



comparison. Note that these pixels are marked in black in
Figure 4a. Having a ground truth labeled image G and a
resulting imageR, the accuracy pl for label l is determined
by

pl =
|Gl ∩Rl|
|Gl ∪Rl|

, (10)

where | · | refers to the number of pixels assigned to a certain
discrete angle α. The percentage of correctly classified pix-
els for each label can be seen in Table 1, Figure 4a shows
some sample results for the basic approach of Hoiem et al.,
the proposed MRF approach using a single segmentation
method (SM) [6] and the proposed MRF approach using
four segmentation methods (MM). The ground plane is la-
beled in green, the ceiling in blue and vertical segments in
red. As can be seen, using multiple segmentation methods
increases the accuracy of labeling the pixel correctly.

4.2. Qualitative Experiments

After having the labeled images, the reconstruction is es-
tablished by using the method described in Section 3. Fig-
ure 4b shows two sample 3D model results rendered from
novel viewpoints. As can be seen, planar patches are re-
constructed densely where segments closer to the camera
center are reconstructed denser than those patches farther
away. As demonstrated by the quantitative experiments,
using multiple segmentation methods improves the 2D la-
beling accuracy. Figure 5 shows a qualitative comparison
between 3D reconstruction results using a single superpixel
method (SM) [6] and multiple ones (MM) [6, 19, 21, 1].
As can be seen, using multiple segmentation methods im-
proves the results of both the 2D labeling as well as the 3D
reconstruction. It is also clearly visible in the 2D labeling
images that more errors occur at patches which are farther
away from the camera center. As the goal of this method
is to densify a sparse point cloud, Figure 6 shows several
sample results, where each row shows the reconstruction re-
sults for one image. Each column presents the input image,
the reconstructed model using the proposed method and the
resulting 3D point cloud obtained when using Furukawa’s
method [10]. Please see our supplementary material for two
sample 3D models obtained by using our method and the
method proposed by [10].

5. Conclusion
We presented a novel 3D reconstruction pipeline which

performs densification of sparse point clouds obtained from
man-made environments. Conventional feature-based 3D
reconstruction pipelines may deliver wrong and missing
matches due to specular and textureless surfaces in these
environments. This work tries to overcome this prob-
lem by combining features with semantic 2D information.
A sparse point cloud and corresponding 3D camera posi-
tions are therefore obtained from conventional methods us-

ing multiple input images. A single image is then seg-
mented and a likelihood for each segment having a cer-
tain 3D surface orientation is calculated. Multiple segmen-
tation methods are used to exploit the advantages of each
single one in order to obtain a higher accuracy for both
this labeling step and the subsequent reconstruction step,
which is performed in combination with the sparse point
cloud. As can be seen in the experiments section, the pro-
posed method achieves denser and more accurate results
compared to state-of-the-art labeling and 3D reconstruction
pipelines.
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