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Abstract
Due to the increasing flood of digital images and the overall increase of storage capacity, large scale
image databases are common these days. Managing such a vast number of digital images is not
trivial. This work deals with the problem of finding replicas in image databases containing more than
100 000 images. The bag of visual words method, in analogy to the bag of words method in text search
applications, is examined in detail. Every image can be seen as a set of visual words. Computation of
these visual words requires clustering of a huge amount of data in a fast yet accurate way. This is the
most time consuming part in such an application. A clustering algorithm is developed that has linear
runtime and can be carried out in parallel. We observe that with increasing size of the database, the
problem of decreasing discrimination between high frequency images arises. Features of images with
natural repetitive texture become similar to other images and show up in most of the search results.
This problem is addressed by developing an asymmetric Hamming distance measurement for bags of
visual words. It allows better discrimination power in large databases, while being robust to image
transformations such as rotation, crop, or change of resolution and size.

1. Introduction

This paper deals with the problem of detecting image replicas in large scale image databases. In this
work we denote a replica as a copy or reproduction of a work of art, especially one made by the
original artist, or a copy or reproduction, especially one on a scale smaller than the original. In terms
of computer vision the meaning of image replica is slightly different. Following [10] we refer not only
to a bit exact copy of a given original image as replica, but also to modified versions of the image
after certain manipulations, as long as these manipulations do not change the perceptual meaning of
the image content (compare Fig.1). In particular, replicas include all variants of the original. These
include image obtained after common image processing manipulations such as compression, filtering,
adjustments of contrast, or geometric manipulations.

The paper is organized as follows. The following section gives related work, Section 3. describes our
proposed method, Section 4. gives experimental validation of the method while Section 5. concludes.
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Figure 1. Results of finding scanned print advertisements with the proposed framework (10 000 images).

2. Related work

For description of visual context, feature extraction is carried out with either global or local features.
Global features lack invariance against occlusions and cropping but are a powerful tool in certain
applications including image retrieval (e.g. [16, 17]) and provide a fast and efficient way of image
representation. They render the task of deciding which parts of the image are used for further pro-
cessing and which parts are discarded right away unnecessary. Recently, dense sampling of local
features achieved good performance especially for the bags of words approach and robust learning
systems [11, 19]. Visual descriptors are categorized in three classes: The distribution of certain prop-
erties of the image (e.g. SIFT), spatial frequency (e.g. wavelets) or other differentials (e.g. local
jets) [12]. Clustering is mainly done for signature generation, feature generalization, vocabulary esti-
mation or assignment of descriptions to a subsets of categories. There are hierarchical and partitional
approaches to clustering. Due to the excessive memory and run-time requirements of hierarchical
clustering [5], partitional clustering, such as the kMeans, is the method of choice in creating feature
signatures.

Classification of images is the phase of finding correspondences and decisions based on the extracted
features. Image descriptors are compared with previously learnt and stored models. This is computed
by a similarity search or by building a model based on supervised or unsupervised learning techniques.
Classification approaches need feature selection to discard irrelevant and redundant information [4,
6, 14]. It is shown that a powerful matching stage can successfully discard irrelevant information
and better performance is gained with increased number of features [19]. However, training and
clustering are the most time consuming stages of state of the art recognition frameworks. Clustering
of a global dictionary takes several days for current benchmark image databases, becoming infeasible
for online databases resulting in several billion features [15]. Moreover, there is a upper limit for
the size of meaningful descriptions using global dictionaries: Words that appear often in descriptions
become meaningless and worsen the performance of the whole systems. Several approaches address
this problem (e.g. [2, 18]) examining the occurrences of words on global scope. We extend that idea
for the special properties of near duplicate detection. Two algorithms are developed in this paper:
The parallel kShifts algorithm for the estimation of the global vocabulary and an asymmetric distance
which focuses on the differences between similar images taking the global occurrence into account.
We introduce a similiarity measurement, which is robust to highly frequent visual words without the
knowledge of the whole dictionary in the following.



3. Method

To avoid the occurrence of ambiguous features in large image data-sets, we choose to improve the
approach of bags of visual features simply by the improving the distance measure between image
signatures. We develop a more specific decision criteria: Frankly, the problem of near duplicate
detection is solved by this approach already. Unfortunately, this does not hold for very large data-
sets, where images become more and more similar to each other. Moreover, certain images tend to
be similar to all the others as they contain almost every feature. We define this as the Kirschbaum
problem as images of small, non-repetitive texture (e.g. a close image of a cherry tree in full bloom,
but also water, grass or sand, compare Fig. 2) tend to show up in every image query when using bags
of words on large data-sets. We solve this problem by developing a dedicated classification technique
outperforming standard approaches.

Figure 2. The Kirschbaum problem: High frequency textures are problematic in conjunction with scale invariant
local features. They tend to lose their distinction to other images in large databases.

For the acquisition of local visual features SIFT with the best performing parameters and the imple-
mentation from [20] is used. One major challenge using bags of visual features is the generation of
a global codebook on large data-sets (e.g. [7], [13]). We manage to solve this task by iteratively
approximating the desired result in linear time. In the following, the proposed method is described in
more detail. The main steps and phases of the approach are explained.

3.1. Clustering

For the commonly used kMeans algorithm, many more efficient solutions exist (e.g. [8]). However,
as the most important constraints in this work were considered execution time, parallel execution
and linear run-time we propose a new algorithm, the fast clustering algorithm kShifts. It is basically
a random sampling algorithm that can be used in over- or under-sampling mode (compare Alg. 1).
From a set of given data samples S = (s1, s2, . . . , sn) a multiset P is generated that contains i random
permutations of S, where i is also the number of iterations (P = (p1, p2, . . . , pm) with m = i ∗ n).
This multiset is then processed in linear order (algorithm 1). The results are vectors in feature space
c ∈ C with a predefined cardinality |C| = k. The function nearestCenter assigns a sample to
it’s nearest cluster center based on a specified distance function (quadratic Euclidean distance in this
case). It is carried out in parallel. The weightSample and weightCenter functions are designed so
that the weight shifts gradually from the sample to the center. In other words: the influence of the
samples decreases over time, thus allowing the centers to settle. Figure 3(a) shows this for 2d random



Data: permutation P = (p1, p2, . . . , pm), number of cluster centers k with k <= m
Result: cluster centers C = (c1, c2, . . . , ck)
for i = 1, 2, . . . ,m do

p = P (i);
c = nearestCenter(C, p);
c = weightSample(i,m) ∗ p+ weightCenter(i,m) ∗ c;

end
Algorithm 1: The basic kShifts algorithm.

data and three cluster centers. In this work the weight functions for the i-th ofm samples were defined
as

weightCenter(i,m) =
f(i,m)− 1

f(i,m)

weightSample(i,m) =
1

f(i,m)

f(i,m) = 1 + a · i
m

with a = 42, as determined by empirical tests with relevant data. One drawback of this algorithm is
the same as with other density base clustering algorithms - sparse regions can be under-sampled and
thus discriminative data is neglected as seen in figure 3(c). Another claim is that the results depend
on the order in which the sample points are processed. In comparison to kMeans the results with
normal sampling are slightly worse but can be improved with oversampling. Figure 3(d) shows the
within-cluster sum of squares (WCSS). For this figure 100 000 SIFT vectors of 125 random images
were clustered. For the undersampling only 60% of the features were used. For oversampling 30
random permutations of the features were concatenated. The runtime of standard kMeans is the
same as for kShifts (θ(n) = n ∗ k ∗ i, n number of samples, k number of centers and i number of
iterations), however for fewer iterations and most important for one iteration, the results of kShifts
are significantly better, although the error measurement used is not directly transferable to the quality
of the resulting visual code book.

(a) Traces (b) Clusters (c) Density

0 5 10 15 20 25 30
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55
x 105

kShifts iterations

W
C

SS

 

 
kShifts (undersampling 60%)
kShifts iterative
kShifts
kMeans

(d) Sampling

Figure 3. Movement of cluster centers per iteration (a) and their final locations (b). Within-cluster sum of squares
(WCSS) on 100 000 SIFT features (d). Note the performance of m = 30 (kshift iterative) and m = 1 (kshift). (c):
Under-sampling of sparse regions.



3.2. Feature quantization

Assignment of the visual features of an image to their corresponding visual codebook element is time
consuming and can quickly become a bottleneck of a replica detection system. Given the high dimen-
sionality of the data nearest neighbor searches that were designed for 2d or 3d space are not efficient
enough [1]. In this work the codebook is relatively small and not frequently changed. Therefore a
search structure is created that cannot be altered, but recreated fast if needed. To speed up the search
process a simple tree structure was used were the data is clustered hierarchically into hyper-spheres.
Each sphere encloses all data points from it’s ancestors. A search is than initiated at a datapoint,
which should be assigned to a visual word, with a search sphere of specified size. The size of the
sphere is then iteratively increased clipping the other spheres and sub-spheres until the first data point
is enclosed by it. The distances to all data points that lie within clipped spheres are calculated and the
nearest point is selected. This leads to an exact result while keeping the number of distance calcu-
lations low. The complexity of this algorithms depends on the number of spheres clustered for each
level. In an ideal case (data points equally distributed between spheres) it would be θ(m ∗ logm(n)),
where n denotes the number of centers and m the number of spheres per level.

3.3. Classification

As the bag of visual words method from [3] is inspired by the bag of words representation for text
categorization, we use a text related distance method as well. In text search applications one typically
searches with a set of keywords. The frequency of these keywords in a document is then used to
generate a ranking. Typically a document that contains fewer other keywords than the query text is
ranked higher as it can be considered more specifically relevant for the search.

For image replica detection we altered this approach. An image is represented by a bag (a histogram)
of visual words. Given the allowed image transformations so that an image is seen as a replica and
under the assumption of a perfect feature detection and extraction, there are only two transformations
that can remove visual words from an image description: Cropping and forgery. Additionally only
forgery can add new visual words. As the intention of image forgery is only to change the semantic
meaning of an image and not the overall appearance it can be assumed that the amount of new visual
words in an image replica is not substantial. In contradiction to cropping where the number of lost
visual words can be higher than those remaining. To account for this we divided our distance mea-
surement in two parts and treated the query words and the database words differently, thus making it
an unsymmetric distance. Given two bags bquery = (q1, q2, . . . , qn) and bdatabase = (d1, d2, . . . , dn)
where q and d are normalized frequencies of words, the difference is calculated as

d = 1− bquery · bdatabase +
∑

qi∈bquery ,qi=0

diflostwi +
∑

di∈bdatabase,di=0

qifnewwi

with flost = 10 and fnew = flost · 10 empirically determined to account for cropping. To increase
the influence of less frequent words a weight based on overall database occurrence wi is added, ·
denotes the dot product. The first part of the distance becomes fully effective if two images have the
same visual words and discriminates them based on the word frequencies. When there are no visual
words in common, the last two parts have impact on the distance measure only. This distance helps
to overcome the “Kirschbaum Problem” on two levels: New visual words (query image only) are
punished. Database images with different visual words will not likely show up in the final tracking
result. Second, we remain robust to images with many lost visual words (visual words that show up
in the trained database only), focusing on the common visual words.



4. Experiments

In the following, the experiments for replica detection are presented. For the dataset, we used 103 452
press images provided by the IT department of the Austrian Press Agency1. The pictures are of
varying quality and context. Prior to feature acquisition they were resampled to a maximum size
of 800 × 800 pixels. The following image transformations were applied to the query images: blur,
noise, rotation and cropping, shrinking and cropping. Due to copyright restrictions no examples can
be shown.

First features were extracted from all images in the database (103 452) using SIFT [9]. Due to time
constraints only 60% of all images were randomly selected and their features used for clustering with
kShifts, resulting in 48 070 925 features in total. These features were than quantized as described
in 3.2. For testing, we chose 100 random pictures as input images. The images were changed with
increasing distortion to test the robustness of the application.
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Figure 4. Results of replica detection in 103 452 press images. Rank denotes the position of retrieved images in the
final classification, (a) - (e) give results for the applied transformations on the query images.
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Features were extracted and processed in the same way as for the database images. We define the rank
of an image by the position it shows up in the result page. Rank 1 is the first and most similar image,
rank 100 is the 100th similar image in the data-set. An image in the first 100 ranks is categorized
as found. The left diagrams of figure 4 show the mean rank over the experiment under increasing
distortion of the picture information. The diagrams in on the right give the worst performance of all
the 100 images (maximum rank). In diagram 4(e), the 100 input images are consecutively blurred
with a Gaussian kernel up to a variance of 0.6. It is shown, that blurring does not change the retrieval
performance of the application: Up to a variance of 0.4, a perfect retrieval result is provided, gathering
all duplicates on rank 1 in the dataset. Increasing the blur up to a variance of 0.6, we lose 2 pictures up
to rank 3. Diagram 4(d) shows the successive adding of Gaussian noise to the image. Wrong image
information is introduced to the image. Throughout the whole experiment, all the images stay in the
top 10 ranks. Interestingly, after a local maxima of the mean ranks, the performance becomes more
stable again and the mean rank decreases. Rotation and cropping leads has more impact on the final
retrieval result (see diagram 4(b)) as solely cropping the images (see diagram 4(a)). In diagram 4(c)
it is shown that the approach is robust to shrinking of the images. diminish the retrieval result slightly
for certain scale factors.

5. Conclusion

The application shows that it is possible to track a single image in large scale data sets. We can
distort and transform visual information in the form of cropping, blurring scaling just to mention a
few: We still are able to find the right images or very similar images in a reliable way. Runtime of
the application meets the requirements for an industrial use as it is possible to track 1000 images per
hour. One of the future improvements of the application could be the introduction of color description
to the feature space - which would lead to more discrimination power of the actual image description,
but will lead to drawbacks when aiming for the tracking of greyscale images.
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