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Abstract. In this paper we present a novel algorithm to estimate the
surface layout of an indoor scene, which can serve as a visual cue for
many different applications, e.g. 3D tracking, or localization in visual
odometry. The main contribution of this work lies in combining multiple
superpixel segmentation methods in order to obtain semantically mean-
ingful regions. For each segmentation method, we combine 3D reasoning
with semantic reasoning to generate multiple surface layout label hy-
potheses for each pixel. We then get the final label for each pixel within
a Markov Random Field (MRF) by combining all hypothesis and by
enforcing spatial consistency between neighboring pixels. Experimental
results on complex indoor scenes show that our proposed method out-
performs state-of-the-art methods.
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1 Introduction

When humans are looking on an image, they can immediately interpret the scene
since they are able to capture the semantic and geometric context. Consider the
image shown in Fig. 1. Even when looking at it the first time, a human brain
does not have any troubles to assume the 3D layout of the scene without having
any further information. Humans are able to roughly gather the position of the
viewpoint where the image was taken, to estimate the ground plane and ceiling
orientations, to find vertical wall segments and even to distinguish between inside
and outside the building although there is a reflexive door surface in the middle
of the image. As can be seen, obtaining the 3D layout, detecting occluded objects
and even gathering the 3D relationship between objects in the scene is something
which is obviously beyond the visible 2D scene.

If humans would look on a single pixel of an image without having any
other kind of information, they would not be able to do so. In computer vision,
images are often described by features, which are mostly pixelwise, meant to
be a low level description and which do not tell us anything about the semantic
context. Semantically, it would be the most meaningful representation to use the
occuring objects and their geometric relationships in the scene. To obtain such
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Fig. 1: Proposed scene layout estimation by combining multiple superpixel seg-
mentation methods and 3D reasoning.

a representation, one can use superpixels, which is a representation between low
level features and high level objects. Superpixels treat semantically connected
pixels as a single patch. The problem is that there are many interpretations about
what defines a semantic meaningful patch. As there is no superpixel generation
method which works for all kind of different scenarios and environments, it can
result in a wrong segmentation, which would mean that the application on top
of it would be based on a wrong initialization and cannot recover anymore.

In this paper, we therefore try to overcome this problem and propose a novel
method to estimate the 3D scene layout of a scene. As a prerequisite, we assume
that each superpixel segment in a 2D image can be represented by a planar
patch in its corresponding 3D environment. The contribution of this work is
two-fold. (i) Yet, to the best of our knowledge, we are the first to combine
the strengths of several superpixel segmentation methods to build a stronger
classifier for pixelwise labeling of an image in vertical plane, ground plane and
ceiling (see Fig. 1). (ii) We combine semantic reasoning with geometric reasoning
for improving the labeling accuracy. We are using the method described in [1]
for multiple segmentations, to which we refer to as semantic reasoning. We then
generate a sparse point cloud using Structure from Motion (SfM) in a first step
and calculate geometric features for each superpixel in a second step. We then
use the segmentations as a soft constraint and a Markov Random Field (MRF)
to do a pixelwise classification. The workflow can be seen in Fig. 2.

3D Reconstruction is usually done by generating a sparse point cloud ob-
tained by triangulation followed by a densification [2]. In case of challenging
environments, this is not possible anymore because there are wrong matches
between corresponding camera views due to similar features obtained from flat
and textureless surfaces (e.g. walls, floors). To overcome this problem, Hoiem
et al. [1] came up with a segmentation-based combination of 2D cues, which is
trained on multiple still images using boosted decision trees, which enables 3D
reasoning using segments instead of point features. A similar approach based on
segments was presented by Saxena et al. in [3]. Single image 3D labeling and 3D
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Fig. 2: Workflow of the proposed algorithm. For each segmentation method, se-
mantic and geometric features are calculated in order to obtain a likelihood for
each segment being labeled ground plane, ceiling, or vertical. The final label for
each pixel is then obtained by using a pixelwise MRF.

reconstruction from line representations instead of feature points was proposed
by [4–8]. Surface labeling is also obtained by using a point cloud, as proposed in
[9, 8, 10]. Different to all existing approaches, the 3D labeling result is gathered
by combining multiple cues coming from both (i) a variety of different shaped
segments, obtained from various segmentation methods and from (ii) combining
conventional feature based matches with semantic patch-based 2D information.

2 Proposed Approach

First, multiple images are taken to obtain a sparse point cloud and corresponding
3D camera positions using a conventional Structure from Motion (SfM) pipeline
[11]. Each image is then segmented into semantically meaningful parts using
multiple superpixel segmentation methods [12–15], where the outcome of the first
three methods can be seen in Fig. 3b. This variety is exploited to obtain more
accurate results by combining the strengths of different methods. By applying
Hoiem’s approach [1], the likelihood for each segment having an orientation label
l ∈ L = {ground plane, ceiling, vertical} is obtained. The likelihood u for a pixel
yi within this segment and at image location i, is given by u(yi) = P (l|yi).

2.1 3D Reasoning

Geometric features are then calculated for each segment using the sparse point
cloud. As the goal is to classify each pixel according to the label set L, it is
assumed that each segment in the image can be represented by a planar patch.
All geometric features are obtained relatively to the camera’s orientation. The
camera’s gravity vector g is therefore determined from the vertical vanishing
point. It is further known that the ground plane’s and ceiling’s surface normal
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Fig. 3: (a) Geometric features with respect to the camera’s gravity vector g
and a random perpendicular vector p used for 3D reasoning. (i) Planarity, (ii)
ground plane / ceiling orientation, (iii) ground plane position, (iv) vertical plane
orientation, (v) segments where footpoints of pedestrians are located are la-
beled as ground plane. (b) From left to right: Outcome of segmentation methods
[12],[13],[14] and [15].

are aligned with this gravity vector. Surface normals of vertical patches must be
perpendicular to the gravity vector. Only those segments, where four or more
reprojected 3D points are located, are labeled. Using RANSAC, a plane is fitted
to the 3D points. Fig. 3a shows the features used for labeling the segments after
fitting the plane. In the following, the surface normal of a patch is denoted as n.

– Planarity likelihood Pplan(Fig. 3a(i)): By calculating the Euclidean distances
d between the 3D points and the plane, the planarity likelihood Pplan is calcu-
lated by

Pplan =
Q(d)25 +Q(d)75

Q(d)50
, (1)

where Q(d) are the quantiles of d.
– Horizontality likelihood Phor (Fig. 3a(ii)): By determining the surface normal

difference between the normal of the plane in question n and the gravity vector
g, the likelihood for the plane being horizontal is obtained by

α = min(cos−1(g · n), π − cos−1(g · n))

Phor = exp(−|α| π/180). (2)

– Ground plane / ceiling likelihood Pgp/Pcei (Fig. 3a(iii)): This feature helps
determining if the patch in question is more likely to be located on the ground or
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on the ceiling. Given the center point of the plane in question a and the camera
center b, the likelihood for the segment being located on the ground plane is
then given by

Pgp =

{
1 if a below b

0.2 else
, (3)

Pcei is set up vice versa.
– Verticality likelihood Pver(Fig. 3a(iv)): The patch’s surface normal n is ro-

tated around the camera’s gravity vector g with a stepsize of r = 0◦ . . . 5◦ . . . 360◦

to obtain nr. By defining β = [β0 . . . β360], the verticality likelihood is then ob-
tained by

βr = min(cos−1(p · nr), π − cos−1(p · nr))

Pver = exp(−|β| π/180), (4)

where p is any random perpendicular vector to the camera’s gravity vector.
– Pedestrian Likelihood Pped(Fig. 3a(v)): This feature helps distinguishing be-

tween ground plane and ceiling. Pedestrians are detected using [16]. It is assumed
that the lower boundary of the bounding box is a person’s foot point f . To gain
robustness, an ellipse (height 5 pixels, width 10 pixels) is defined which also takes
neighboring segments into account. The likelihood that a pedestrian is located
on a given segment s is defined by

Pped =

{
λ if f ∈ s
λ/2 else

, (5)

where λ is a multiplier constant in order to increase the likelihood for the segment
to be located on the ground plane.

The final likelihoods for the labels are calculated by

v(yi) = P (l|yi) =


Pplan · Phor · Pgp · Pped if l = ground plane

Pplan · Phor · Pcei if l = ceiling

Pplan · Pver else

. (6)

2.2 Pixelwise Labeling

To get a spatial consistent result for the whole image, the label for each pixel is
determined independently of the segments of an image. The solution to this prob-
lem corresponds to finding the configuration of a Gibbs distribution with max-
imal probability, which is equivalent to finding the maximum posterior (MAP)
configuration of an MRF. Let G = (V, E) be a graph described by vertices V,
which in this case are represented by the N pixels of the image, and edges E .
When having a set of random variables X = {X1, X2, . . . XN} and a label con-
figuration x = {x1, x2, . . . xN} which can take values from the discrete set of
labels L, the energy term E of the pairwise MRF is defined by

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈N (i)

ψi,j(xi, xj), (7)
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Airport Dataset
Proposed Proposed Proposed Proposed Proposed Proposed

BASE BASE+MRF 4SP1N 4SP1Y 4SP2N 4SP2Y 4SP3N 4SP3Y
ground plane 63.57 76.77 80.58 80.40 82.83 82.40 82.83 82.92

ceiling 36.98 58.20 61.61 64.91 62.54 66.25 62.63 66.82
vertical 17.98 23.07 25.37 25.04 25.84 25.62 25.94 25.64
global 54.36 70.49 73.42 74.85 74.64 76.22 74.67 76.48
average 39.51 52.68 55.85 56.78 57.07 58.09 57.13 58.46

Rooms Dataset [5]
Proposed Proposed Proposed

BASE BASE+MRF 4SP1N 4SP2N 4SP3N
ground plane 63.54 71.60 73.06 74.07 74.91

ceiling 37.35 46.12 42.60 43.19 43.53
vertical 80.77 80.63 79.53 80.10 80.10
global 84.87 85.00 85.05 85.81 85.92
average 60.55 66.11 65.06 65.78 66.18

Table 1: Percentage of correctly classified pixels for Airport and Rooms [5]
dataset.

where N (i) is the neighborhood of node i, ψi is the unary potential in the graph
and ψi,j is the pairwise potential, or smoothness term, between neighboring
pixels. These terms are defined to be

ψi(xi) = 1 − max(u(yi), v(yi))

ψi,j(xi, xj) =

{
0.5 if xi = xj ,

1 if xi 6= xj
(8)

The MAP configuration x̂ is then found by x̂ = argminxE(x).

3 Experiments

We evaluate our algorithm on two datasets. The Airport dataset provides an
image sequence of 100 images having a resolution of 1001x1001 pixels, where
a screenshot of the reconstructed scene can be seen in Fig. 4b. We manually
segmented all the images in the dataset. Objects which cannot be classified by
the method are not considered in this evaluation (e.g. people, columns) and are
marked as a black region. The second dataset was taken from [5] to which we
refer to as the Rooms dataset. It provides 314 images with varying resolutions
showing cluttered indoor scenes. Since this dataset does only provide still images,
3D reasoning cannot be applied.

We use [12–15], where each of those methods is performed multiple times us-
ing different parameter sets to obtain varying segmentation results. We compare
the base method of Hoiem [1] (BASE), which is using [12] for segmentation to
the same method using a pixelwise MRF (BASE+MRF) and to our proposed
method using all superpixel methods (4SP) 1,2, or 3 parameter sets (P1/2/3)
and optionally 3D reasoning (Y/N). The labels for the MRF outcome of all
methods are ground plane, ceiling and vertical.

Quantitative Experiments: As our method is calculating a corresponding
label for each pixel, we compare the correctly classified pixels to the ground truth
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images. For both the Airport dataset and the dataset of [5], pixels which are left
blank in the ground truth image are not taken into account for the comparison.
Having a ground truth labeled image G and a resulting image R, the accuracy

for label l is determined by |Gl|∩|Rl|
|Gl|∪|Rl| , where |Gl| refers to the number of pixels of

label l in image G. The percentage of correctly classified pixels for each label can
be seen in Table 1. As can be seen, the proposed approach performs better on
horizontal patches than on vertical ones when applied on the Airport dataset.
This happens since 3D points recovered from 2D feature points obtained from
vertical structures are noisier than points belonging to horizontal patches. This
noise occurs due to the facts that (i) there are much more orientation variations
of vertical walls than on the ceiling or the ground plane and (ii) reflexive surfaces
(e.g. mirrors, glasses) tend to be attached to vertical structures.

Airport Dataset: As can be seen, there is an improvement of approximately
20% between using [1] and the same method using an MRF for pixel labeling.
It can also be seen that there is an improvement between using only the super-
pixel method proposed in [12] and using all described methods having multiple
parameter sets. The difference between incorporating geometric reasoning and
not incorporating is up to 4%, no matter if a segmentation algorithm is applied
once or multiple times. The improvement is obviously higher between using a
variety of superpixel methods than between a variety of different parameter sets
for each method, regardless of incorporating 3D reasoning or not.

Rooms Dataset: There is also an improvement between using a single super-
pixel segmentation method and multiple ones for this dataset. Since the scenes
shown in the images are not as complex as the ones shown in the images of the
Airport dataset, the BASE method delivers better results and the improvement
when processing the frame using 4SP1N, 4SP2N, or 4SP3N is not as obvious as
for complex scenes. Nevertheless, an average accuracy improvement of almost
6% can be obtained when using multiple segmentation methods. For the ground
plane label, an improvement of over 10% is reached.

Qualitative Experiments: Fig. 4a shows qualitative results of our method
using different parameter settings and a comparison to the state-of-the-art method
proposed in [1]. Each row shows a different image of the scene. The first image
of each row shows the manually labeled ground truth data, where black regions
indicate objects which are not taken into account in the evaluation. The follow-
ing columns show the results for BASE, BASE+MRF, 4SP1N, 4SP1Y, 4SP2N,
4SP2Y, 4SP3N, 4SP3Y. The labels ground plane, ceiling and vertical are indi-
cated by the colors green, blue, and red, respectively. As can be seen, there is
clearly an improvement between only considering a single segmentation method
and incorporating multiple ones. It is also visible that there is in improvement
in labeling the surfaces by incorporating 3D reasoning about the scene.

4 Conclusion

We presented a framework for estimating the 3D scene layout of a scene. A
semantic meaningful patch can be obtained by using different cues. Depending
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on these cues, the resulting patches of different segmentation methods vary in
shape and size. By combining the strengthnesses of several superpixel segmenta-
tion methods, we are able to obtain a stronger classifier for labeling each pixel’s
surface orientation. The labeling accuracy is improved by incorporating geomet-
ric features, obtained from 3D point clouds of the scene. The most likely label is
then obtained by exploiting an MRF. Experiments on novel and existing datasets
show superior results of our approach compared to state-of-the-art methods.
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Fig. 4: (a) Qualitative results. First image of each row shows ground truth (ex-
cluded objects are marked black), following columns show results for BASE,
BASE+MRF, 4SP1N, 4SP1Y, 4SP2N, 4SP2Y, 4SP3N, 4SP3Y. Green= ground
plane, blue=ceiling, red=vertical. (b) Screenshot of sparse 3D point cloud and
camera positions from Airport dataset.


