
On Segmentation Evaluation Metrics and Region Counts

Allan Hanbury and Julian Stöttinger
PRIP, Institute of Computer-Aided Automation, Vienna University of Technology

Favoritenstraße 9/1832, A-1040 Vienna, Austria
{hanbury,julian}@prip.tuwien.ac.at

Abstract

Five image segmentation algorithms are evaluated:
mean shift, normalised cuts, efficient graph-based seg-
mentation, hierarchical watershed, and waterfall. The
evaluation is done using three evaluation metrics: prob-
abilistic Rand index, global consistency error, and
boundary precision-recall. We examine region-based
metrics as a function of the number of regions produced
by an algorithm. This allows new insights into algo-
rithms and evaluation metrics to be gained.

1. Introduction

Image segmentation is an important component in
many image analysis and computer vision tasks. It is in
general used in two contexts. The first is the segmenta-
tion of images from a specialised area, such as medical
images, for which one can usually obtain ground truth
from experts in the field, allowing an objective evalu-
ation of segmentation algorithms. The second context
in which it is applied is in the understanding of general
images. An example is in [1], where an image is first
segmented and then tags are automatically assigned to
each region in order to describe the contents of the im-
age. For such an application, the segmentation algo-
rithm should produce regions which correspond well to
real-world objects in the image. The problem with such
a requirement is that there are many “correct” segmen-
tations of an image, depending on the scale at which one
interprets the image. A commonly accepted benchmark
for evaluating segmentation algorithms for the segmen-
tation of general images is the Berkeley Segmentation
Dataset [7], of which 300 images are usually used in
evaluations. During the collection of this dataset, hu-
man subjects were asked to manually segment each im-
age. The possible difference in interpretation of the im-
ages is taken into account by having at least five manual
segmentations by different people for each image. An

average evaluation metric is usually calculated over all
ground truth segmentations of an image.

One aspect of unsupervised segmentation that is usu-
ally not considered in the evaluation metrics is the num-
ber of regions produced. For the human segmentations
of the Berkeley dataset images, the mean number of re-
gions per image is 18. Unsupervised segmentation al-
gorithms often produce many more regions than this.
The main contribution of this paper is an investigation
of three evaluation metrics and their relation to the num-
ber of regions produced by segmentation algorithms.
Five unsupervised segmentation algorithms are evalu-
ated over a range of parameters: mean shift, normalised
cuts, efficient graph-based segmentation, hierarchical
watershed, and waterfall.

2. Segmentation Evaluation

Segmentation evaluation metrics can be divided into
boundary-based and region-based methods [4]. For
region-based evaluation, we investigate the widely used
Global Consistency Error (GCE) [7], as well as the re-
cently introduced Probabilistic Rand Index (PRI) [10].
The GCE measures the extent to which the regions in
one segmentation are subsets of the regions in a second
segmentation (i.e. the refinement). Because the GCE is
zero for the extreme cases where one image is a single
region or every pixel in an image is assigned a unique la-
bel, it only makes sense to compare the GCE of images
segmented into (almost) the same number of regions.
For this reason, we introduce a plot of the mean GCE
(over all test images) for a specific set of parameters of
an algorithm against the mean number of regions pro-
duced by these parameters. One can then easily com-
pare the performance of the algorithms for a given num-
ber of regions.

The PRI measures the consistency of labellings be-
tween a segmentation and its ground truth by the ratio of
pairs of pixels having the same labels. The mean over
all the human segmentations for an image takes their



differences into account. As above, we plot the mean
PRI (over all test images) against the number of regions
to accentuate the relation between these two metrics.
We choose to use the PRI instead of the Normalised PRI
[10], as the latter is simply a linear scaling of the former,
and does not change the ranking order of the algorithms.

For boundary-based evaluation, we use the bound-
ary precision-recall curves of [6]. A correspondence
is computed between machine boundary and human la-
belled boundary maps, after which the precision and re-
call of boundary pixels is calculated. These are plotted
on a precision-recall curve, where each point represents
the mean precision P and recall R (over all test images)
for a specific set of parameters of an algorithm. Each
point is also characterised by an F -measure, defined as
F = 2PR/(P + R), where a higher F -measure indi-
cates a better segmentation.

3. Algorithms Evaluated

We evaluate five unsupervised segmentation algo-
rithms, divided into two groups. The first group con-
tains algorithms for which the number of regions re-
quired in the output region labelling is an input parame-
ter: normalised cuts (ncut) [9] and the hierarchical wa-
tershed with volume extinction values (wsvol) [8]. In
the second group, the parameters of the algorithms are
less directly linked to the number of regions obtained:
mean shift (ms) [2], efficient graph-based (fz) [3] and
waterfall (wfall) [5] segmentation. For all algorithms,
we used implementations obtained either directly from
the authors (watershed algorithms) or from their web
pages. For the normalised cuts implementation, the
only parameter is the number of regions. However, due
to the time and memory-intensive nature of the algo-
rithm, the images were reduced to half their size before
applying the algorithm. The resulting region labelled
image was then doubled. Before applying the water-
shed and waterfall algorithms, a leveling filter was ap-
plied to simplify the image, as recommended in [8]. The
size of this leveling filter is one input parameter, along
with the number of regions (volume extinction water-
shed) or number of waterfall simplification iterations.
The mean shift implementation does clustering in a 5-
dimensional space, with two spatial and three colour di-
mensions. The parameters hs and hr are the spatial and
range (colour) kernel bandwidths. In addition, param-
eter m is the size in pixels of the smallest region that
can be produced. The efficient graph-based algorithm
has parameters σ, the size of a Gaussian pre-filtering;
k, a threshold on the region comparison predicate; and
m as for the mean shift algorithm. Table 1 summarises
the abbreviations for the algorithms and the groups to

Algorithm Gr Fixed Params Varied Params
ncut 1 num. reg. = 10,20,...,90
wsvol f3 1 leveling size=3 num. reg. = 10,20,...,90
wsvol f0 1 leveling size=0 num. reg. = 10,20,...,90
ms s12 rx m50 2 hs = 12, m = 50 hr = 4,6,...,20
fz s0.8 kx m50 2 σ = 0.8, m = 50 k = 50,150,...,1050
wfall f3 2 leveling size=3 iteration=1,2,3

Table 1. The evaluated segmentation algo-
rithms and their parameters. The second
column (Gr) gives the group of the algo-
rithm, as explained in the text.

which they belong. Group (Gr) 1 contains algorithms
that have the number of regions specified as a parame-
ter, while the algorithms in group 2 produce a varying
number of regions.

4. Results

We evaluated the algorithms over a range of param-
eters. For the algorithms where the number of regions
is specified (wsvol and ncut), this was varied from 10 to
90 in steps of 10, corresponding to the range in which
the number of regions produced manually falls. In ad-
dition, the effect of the leveling parameter on the wsvol
was tested, with no leveling (wsvol f0) and a level-
ing with an alternating sequential filter (ASF) of size 3
(wsvol f3) applied. For the efficient graph-based ap-
proach, a value of σ = 0.8 was chosen, as done in [3].
The k parameter was varied from 50 to 1050 in steps
of 100. For the mean shift, the spatial parameter was
chosen as hs = 12 based on the size of the images as
recommended in [2]. The range parameter was varied
from 4 to 20 in steps of 2. For both algorithms, the min-
imum region size m = 50 was used. Three iterations
of the waterfall simplification are examined. A leveling
with an ASF of size 3 was applied before the segmenta-
tion. These parameters are also summarised in Table 1.

Figures 1 and 2 show respectively the mean PRI and
mean GCE against the mean number of regions over all
300 images in the Berkeley Segmentation Dataset. Note
that the error bars in these figures represent one fifth
of the standard deviation of the evaluation metric (on
the y-axis) and number of regions (on the x-axis). The
reduction in the length has been done to improve the
ease of reading the graphs. Figure 3 shows the bound-
ary precision-recall graph. The position on each curve
with the highest F -measure (interpolated) is marked by
a large point, and the F -measure, coordinates and pa-
rameter value of these points are given in the legend. In
this plot, the parameters resulting in a higher number of
regions have points plotted with higher recall.
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Figure 1. PRI against Number of Regions. A larger PRI implies a better segmentation.
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Figure 2. GCE against Number of Regions. A smaller GCE implies a better segmentation.
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Figure 3. Boundary Precision and Recall.

5. Discussion

A striking feature of the PRI and GCE graphs is the
difference in the general shapes of the curves between
the two groups of algorithms. In the PRI graph, the al-
gorithms for which the number of regions are specified
as a parameter (Group 1) generally have a larger PRI
as fewer regions are specified, with the wsvol curves
above the ncut curve. On the other hand, the fz and ms
algorithms have a maximum PRI for segmentations into
close to 100 regions, and drop below the other curves
for a small number of regions. The rapid decrease in
the number of regions for each waterfall iteration is also
visible, although this curve also rises with a decreasing
number of regions. The waterfall iteration after the last
one shown in the plot results in a single region for al-
most every image.

For the GCE plot, it is important to remember that
one cannot examine trends in the GCE value as the
number of regions varies, as this metric only makes
sense when comparing segmentations into a similar
number of regions. For this plot, the algorithms within
the same groups are generally ordered as in the PRI plot,
with ms better than fz, and wsvol f3 better than ncut.
There are however discrepancies in metrics between the
groups, especially for a number of regions between 50
and 100, where fz and ms are better than the wsvol and
ncut according to the PRI and worse according to the
GCE.

For the boundary precision-recall graph, the ordering
of the algorithms appears clear, based on the ordering of

the curves and the best F -measures listed in the legend.
It is interesting that there is no crossing of the fz and ms
curves with the wsvol curves, as occurs in the PRI and
GCE plots.

6. Conclusion

It is clear from the discussion that evaluating algo-
rithms on a group of images can lead to different rank-
ings depending on the metric chosen. The large error
bars for the metrics indicate their large variation over
the set of 300 images. Examining the number of regions
using the proposed plots leads to some useful insights.
In particular, the change in the ranking of the algorithms
based on the number of regions obtained is a useful re-
sult — it allows the best algorithm to be chosen based
on the number of regions required. However, given the
large variations in the values of the metrics over the test
images, more insight can only be gained by examining
the values of the metrics on individual images.
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