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Abstract. In this paper, we build upon the idea of using robust dense
correspondence estimation for exemplar-based image classification and
adapt it to the problem of ancient coin classification. We thus account
for the lack of available training data and demonstrate that the matching
costs are a powerful dissimilarity metric to establish coin classification for
training set sizes of one or two images per class. This is accomplished by
using a flexible dense correspondence search which is highly insensitive
to local spatial differences between coins of the same class and different
coin rotations between images. Additionally, we introduce a coarse-to-
fine classification scheme to decrease runtime which would be otherwise
linear to the number of classes in the training set. For evaluation, a new
dataset representing 60 coin classes of the Roman Republican period is
used. The proposed system achieves a classification rate of 83.3% and a
runtime improvement of 93% through the coarse-to-fine classification.

1 Introduction

In ancient times, coins were the usual monetary items and thus everyday objects
like they are today [1]. However, nowadays ancient coins are also considered
as pieces of art which reflect the individualism of the engravers who manually
cut the dies used for minting the coins [2]. Roman coins, for instance, often
depict portraits of gods and emperors or historical events, in a similar manner
as sculptures or paintings from this era do [2]. Fundamental work of coin experts
is the classification of coins according to standard reference books since this
provides additional information such as accurate dating, political background
or minting place. However, classifying ancient coins is a highly complex task
that requires years of experience in the entire field of numismatics [1]. As a
substantial part of numismatic coin analysis, coin classification can be supported
and facilitated by an automatic image-based system.

The difficulty of ancient coin classification arises from the high number of
types (e.g. 550 types are defined for the Roman Republican period [2]) as well
as from the high level of intra-class variability. The complexity is additionally
increased when the discriminability between the classes is low, as can be seen
in Fig. 1 where three coin classes with two samples each are shown. Please note
the high global visual similarity between the classes. Nonetheless, one can also
see local variations within a class as well as missing parts due to abrasions over
the centuries. Apart from abrasions, local spatial variations of features within
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(a) (b) (c)

Fig. 1. Six coins from the Roman Republican period where (a)-(c) each represents a
different class

a class also stem from the fact that different dies from different die engravers
were used for minting the coins. For instance, the legends are located differently
on the two coins shown in Fig. 1(c). Thus, in contrast to modern coins, image
features of ancient coins from the same class can not be aligned and compared
by means of a global image transformation.

In this paper we present a method for automatically estimating the visual
similarity between two coin images and show how this visual similarity can be
used in a coarse-to-fine scheme for the ancient coin classification task. The classi-
fication does not rely on machine learning techniques and offline training which
eases database extensions as new classes do not involve a re-training of the
database. The idea was recently introduced in [3] and we extend this approach
towards a rotation-insensitive coarse-to-fine matching, yielding a significant clas-
sification speed-up. The main motivation for excluding machine learning tech-
niques from our method is that this way we are less dependent on the availability
of a large and representative set of training images. The training of classifiers
which provide both a sufficient discriminability for the hundreds of different
classes and an adequate representation of the possible variability within a coin
class is hindered mainly by the low number of available training samples. Our
database of Roman Republican coins from the Museum of Fine Arts in Vienna
is one of the biggest in the world and comprises around 3900 coins. These coins
represent 515 different types but for only 237 of them more than three pieces are
available. Therefore, instead of trying to cope with the high intra-class variabil-
ity in a heavy offline classifier training phase we tackle the problem online in the
matching stage. We use SIFT flow [4] for this task, but introduce a coarse-to-fine
classification scheme which provides a significant decrease of computational time
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Fig. 2. Schematic illustrating our coarse-to-fine coin classification procedure. Given
an input image, a dense set of SIFT features is extracted and matched against the
database at the coarsest level. A defined amount of most similar coin images is selected
and forwarded to the matching step of the next finer level. This process is continued
until the finest level n is reached where the final classification decision is made

needed for matching against a coin database without loosing the discriminative
power of SIFT flow for classification. An illustration of our method is shown in
Fig. 2.

The work presented in this paper contributes to the research of image-based
ancient coin classification, a quite new application field in the area of computer
vision. Older methods dedicated to modern-day coins [5–8] have already been
shown to be inappropriate for ancient coins [9]. The first approach especially
designed for ancient coins was presented by Kampel and Zaharieva [10] with a
classification rate of ∼ 90%, however by evaluating only three coin types. Their
approach is based on matching sparse SIFT keypoints between coin images.
Similarity of coin images is then estimated by simply counting the number of
matching keypoints while ignoring the geometric configuration of the keypoints.
A method based on offline learning was recently proposed by Arandjelović [11].
For feature description also SIFT keypoint detection is used, but geometry is
introduced by calculating directional histograms at the keypoint positions. The
improvement of adding geometry is shown in the experiments where the pro-
posed method outperforms the bag-of-words approach with a classification rate
of 57.2% against 2.4% on a dataset containing 65 Roman Imperial coin classes.
This indicates that geometry is an important aspect for ancient coin recognition
that we account for by using SIFT flow. This way, we do not depend on the
availability of a large set of training images to generalize the intra-class varia-
tion: while in [11] between 9 and 160 samples per class were used for training,
we show results on a training database of only 1 or 2 samples per class.

The rest of this paper is organized as follows. In Section 2 our SIFT flow based
method for coin classification is presented. Results on a dataset representing 60
types of Roman Republican coins are reported in Section 3. The paper is finally
concluded in Section 4.
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2 Coin Classification Methodology

Our method is based on SIFT flow [4], a method for computing dense pixel-to-
pixel correspondences between two images. SIFT flow works by minimizing an
energy function which can be exploited to estimate the visual similarity of the
images. In a classification scenario, the energy function values between a query
image and all class image samples are determined to assign the query image to
the class sample with minimum energy. Using this classification scheme, SIFT
flow has shown superior results for scene and face classification in scenarios with
a low number of available training samples [4]. The motivation to use SIFT flow
for coin classification is further rooted in its ability to cope with large image
variations in the form they appear within classes of ancient coins. However, we
describe some modifications to account for differences of coin location, coin scale
and coin rotation. Additionally, we present a coarse-to-fine classification scheme
for runtime improvement.

2.1 Insensitivity to Coin Location and Coin Scale by Coin
Segmentation

As a dense set of SIFT features with fixed scale has to be computed for SIFT
flow computation, we normalize all images to a standard dimension of 150× 150
in order to account for scale differences between the coin images. Normaliza-
tion is achieved by segmenting the coins in the images using a shape-adaptive
thresholding approach [12]. The method applies a range and entropy filter to
the image which is assumed to provide higher responses at coin regions than on
background regions. For the final segmentation mask an optimal threshold value
is found by minimizing an objective function describing the circularity of the
binary thresholding result.

2.2 Insensitivity to Coin Rotation and Local Spatial Variations by
SIFT Flow Image Matching

SIFT flow is based on SIFT features [13] which provide a rotation-invariant
description of the local neighborhood by means of gradient orientation distribu-
tions. The SIFT features are computed densely over the image, resulting in the
so called SIFT image s. The pixel-to-pixel correspondences between two SIFT
images s1 and s2 are represented as a field of flow vectors w(p) = (u(p), v(p))
at grid coordinates p = (x, y). The optimal correspondences are found by mini-
mizing the following energy function of w:

E(w) =
∑
p

|s1(p)− s2(p + w(p))| (1)

+
∑

(p,q)∈ψ

min(α|u(p)− u(q)|, d) + min(α|v(p)− v(q)|, d) (2)
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where ψ contains all four-connected pixel pairs. The energy function is composed
of two terms, the data term (1) and the smoothness term (2), and the influence
of the smoothness term is controlled by the parameters α and d. Please note
that in our case we do not consider a small displacement term in contrast to
the original SIFT flow energy function defined in [4]. The reason lies in possible
coin rotation differences between the images which demand to allow large pixel
displacements in the correspondence search without additional costs. Therefore,
without a small displacement term a rotation between image pairs only affects
the correspondence search by producing a slightly larger energy in the smooth-
ness term. We quantitatively proof in the experiments in Section 3.2 that the
influence of the smoothness term in such cases is negligible and that classification
performance is not affected by coin rotation differences. Examples of correspon-
dences found by using the presented energy function can be seen in Fig. 3. Here
the query image of Fig. 3(a) is matched against an image of a coin from the same
class (Fig. 3(b)), which produces the correspondences visualized in Fig. 3(c) by
warping back the image to the query image. We can see that reasonable corre-
spondences have been found despite the variations between the two coins. If we
compute SIFT flow for a rotated version of the coin (Fig. 3(d)), the result is
almost identical (Fig. 3(e)).

2.3 Runtime Reduction by Coarse-To-Fine Classification

A disadvantage of using SIFT flow for example-based classification is that the
runtime is linear to the amount of images in the database. However, SIFT flow
itself uses a coarse-to-fine matching scheme for speed-up and better matching
results, i.e. correspondences are propagated and re-estimated from coarser to
finer levels. We utilize this scheme by selecting only the most similar coin classes
at each level for further processing and thus subsequently reduce the amount
of possible target coin classes. This way, the computational effort of the whole
classification process is reduced as the more costly computations at finer levels
have to be conducted only on a subset of coin classes.

More formally, for each sift image s, n pyramid levels s(k) are constructed
where s(n) = s and s(k−1) is downsampled from s(k) by a factor of 2. If we denote
the set of coin target classes by C and the SIFT flow energy obtained at level k
by E(k), classification of a query image s is achieved in the following manner:

1. For all levels k, k = 1...n

(a) Compute SIFT flow energies E(k) between s(k) and all SIFT images of
level k of classes C.

(b) For each class in C, compute the average energy Ē(k) for all its SIFT
images in the database.

(c) Sort all energies Ē(k) and reduce C by selecting only a percentage λ(k)

of C with lowest energy.

2. Finally, take the class with lowest energy.
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(a) Query image (b) Image of same class (c) Image (b) warped back
to query image

(d) Image (b) rotated by 90
degree

(e) Image (d) warped back
to query image

Fig. 3. Results of SIFT flow applied to images of the same class

3 Experiments

For the experiments we use a set of 60 classes of Roman Republican coins [2],
where each class is represented by three coin images of the reverse side. Sam-
ple images of all classes are shown in Fig. 4. We report both classification and
runtime performance on our dataset for different subselection values λ(k). Ad-
ditionally, we compare the performance when one or two database images are
available per class. As most of the coins show the same rotation in our database,
the insensitivity against coin rotations is addressed in an individual experiment
where the coin images are artificially rotated. Throughout all experiments, we
used the same empirically determined parameters for SIFT flow matching: dense
SIFT features were computed for a local neighborhood of 12×12 pixels, the num-
ber n of pyramid levels was set to 4, and the parameters controlling the influence
of the smoothness term were set to α = 12 and d = 1200.

3.1 Classification Results

In each classification run, one of the 180 coin images served as query image
and one or two of the remaining images per class served as training images.
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Fig. 4. Sample images of all 60 classes of the evaluation database
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Table 1. Classification results

Training
set size

λ(1) λ(2) λ(3) Correct classi-
fications

Classification
rate

Average clas-
sification time

1 100% 100% 100% 257/360 71.4% 235.8s

1 1% 100% 100% 220/360 61.1% 7.1s

1 100% 1% 100% 234/360 65.0% 21.2s

1 100% 100% 1% 257/360 71.4% 70.7s

1 30% 50% 50% 258/360 71.7% 32.5s

1 10% 50% 50% 249/360 69.2% 16.5s

2 100% 100% 100% 150/180 83.3% 471.6s

2 1% 100% 100% 127/180 70.6% 14.1s

2 100% 1% 100% 133/180 73.9% 42.4s

2 100% 100% 1% 141/180 78.3% 141.5

2 30% 50% 50% 150/180 83.3% 65.0s

2 10% 50% 50% 149/180 82.8% 32.9s

This leads to 180 (two training images per class) or 360 classification runs (one
training image per class). For runtime evaluation, we measured the average run-
time of computing the SIFT flow between two coin images by using the C++
implementation provided by the authors on a standard machine with a quad-
core 2.70 GHz processor. The resulting average SIFT flow matching time was
3.93s, where around 3%, 6%, 21% and 70% are needed for the first, second, third
and fourth level, respectively. In Table 1 classification results for both training
set sizes as well as various values of λ(k) are shown. Runtimes are indicated
as the time for classifying one coin against our database of 60 classes, without
considering feature extraction of the query image. Subselection parameters of
λ(1) = λ(2) = λ(3) = 100% mean that no subselection is performed. Subselection
parameters of λ(1,2,3) = 1% mean that only the energies of the first, second or
third level, respectively, are used for classification.

One can see that, without subselection, over 70% of the images can be classi-
fied correctly with only one training image per class available. Adding a second
training image brings a performance improvement of about 7 − 12%. Based on
the results on this dataset, a reasonable choice for the subselection parameters
is λ(1) = 10% and λ(2) = λ(3) = 50%. The classification rate is very close to the
case without subselection (−2.2% for a training set size of 1 and −0.5% for a
training set size of 2, respectively), whereas the runtime improvement is around
93%.

In Fig. 5 we show some of our classification results where Fig. 5(a)-(c) depict
incorrect classifications and Fig. 5(d)-(f) depict correct classifications. We see
that strong abrasions, like in Figure 5(a), as well as the low inter-class variability,
like in Figure 5(b), still pose a problem to the system, since the SIFT flow energy
becomes less reliable under such conditions. However, also the examples shown in
Fig. 5(d)-(f) represent strong abrasions and variations between the images which
can be dissolved by SIFT flow. Figure 5(c) demonstrates the general limits of
image-based ancient coin classification. The query image represents a misprint,
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(a)

(b)

(c)
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(f)

Fig. 5. Six classification results on our dataset. From left to right: query image; most
similar image found in the database warped back using the SIFT flow correspondences;
original most similar image found; correct most similar image depicting a coin of the
same class

which makes it impossible even for human experts to accurately classify the coin
if only this coin side is available for examination.

3.2 Insensitivity to Coin Rotations

In order to assess the sensitivity of our SIFT flow matching to coin rotation
differences, we randomly took a query and a training image from 20 coin classes
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Fig. 6. Results of evaluating sensitivity to coin rotations. (a) Number of correct classi-
fications; (b) Average (solid lines) and maximum increase (dashed lines) of SIFT flow
energy between images of the same class

and simulated different coin rotations by rotating the query image in 90 degree
steps. Figure 6(a) shows the classification results of all four runs for the four levels
of SIFT flow matching. In Fig. 6(b) the average increase of energy due to the
additional costs in the smoothness term are plotted. We see that at a coarser level
the energy values are more sensitive to coin rotations, thus producing a decrease
of classification performance and a higher relative increase of the energy value.
Nevertheless, by using a coarse-to-fine classification with subselection parameters
λ(1) = 10%, λ(2) = λ(3) = 50%, 18 out of 20 classes can be classified correctly for
all coin rotation differences. This shows that, although the method is in theory
not invariant to coin rotation differences, a high degree of insensitivity is given.
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4 Conclusions

In this paper, we have presented a classifier-free system for ancient coin clas-
sification. We proposed to use image matching instead of classifier learning for
ancient coin classification. The main benefit of such a methodology is that it is
less dependent on the number of available training samples as similarities be-
tween coins are determined online. This is shown in our experiments where we
achieved a classification rate of 71.7% on a dataset with only one training sample
available per class.

The major drawback of exemplar-based coin classification is the computa-
tional effort since the expensive image matching has to be performed against
all coin image samples in the database. We therefore presented a coarse-to-fine
scheme that heavily reduces the time needed for classification. In our experi-
ments the average classification time could be reduced from 471.6s to 32.9s, an
improvement of about 93%. Additionally, we experimentally proofed the insen-
sitivity of our energy function to coin rotation differences.

In general, our classification results of 83.3% on 60 classes are higher than
the ones reported by [11] (57.2% on 65 classes). However, a different dataset was
used in the evaluation of [11] and thus no well-founded comparison of classifi-
cation performance can be presented. As a contribution to other researchers in
this field, we make our dataset publicly available1 which allows for quantitative
comparisons of algorithms in the future.

For future research, we plan to further improve our dense correspondence
methods for coin similarity estimation. We will focus on a methodology which is
less sensitive to appearance variations that arise from different relief heights and
lighting conditions. Although due to the efficient optimization scheme SIFT flow
is able to handle a large degree of noise in the features, we assume that more
adapted features and matching strategies will lead to a significant improvement.
We also see potential in using a visual similarity estimation in other forms within
the application field of numismatics. Visual similarity estimation can be com-
bined with other methods like symbol or legend recognition for a more extensive
classification process. It can also be used for automatic coin hoard grouping
where a clustering of coins is performed based on the proposed distance metric.
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