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Summary

Objective: This paper presents an automatic method for the quantification of the
development of cutaneous hemangiomas in digital images. Two measurements on
digital images acquired during follow-up examinations are performed: (1) the skin
area affected by the lesion is measured and (2) the change of the hemangioma during
follow-up examinations called regression is determined. Current manual measure-
ments exhibit inter- and intra-reader variation, which impedes precision and com-
parisons across clinical studies. The proposed automatic method aims at a more
accurate and objective evaluation of the course of disease than the current clinical
practice of manual measurement.
Methods and Material: The proposed method classifies individual pixels and calcu-
lates the area based on a ruler attached to the skin. For the regression detection
follow-up images are registered automatically based on local gradient histograms.
The method was evaluated on 90 individual images and a set of 4 follow-up series
consisting of 3-4 examinations.
Results: The absolute average error of the individual area measurements lies at
0.0775 cm2 corresponding to a variation coefficient of 8.82 %. The measurement of
the regression area provides an absolute average error of 0.1134 cm2 and a variation
coefficient of 7.40 %.
Conclusions: The results indicate that the proposed method provides an accurate
and objective evaluation of the course of cutaneous hemangiomas. This is relevant
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for the monitoring of individual therapy and for clinical trials.
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1 Introduction

1.1 Objective

Cutaneous hemangiomas are benign tumors consisting of newly-formed blood ves-
sels in the skin. They are the most common benign vascular tumors during infancy
with a frequency of about 10 % [1]. Due to their potency for rapid proliferation
they can threaten vital structures by tumor compression or tumor obstruction
and can even impair vital functions such as breathing, vision, hearing, ingestion
or excretion [2]. Safe and effective treatment at the earliest possible time can stop
further proliferation, induce regression and prevent complications [3].

During treatment and during clinical trials that compare different treatment
strategies, the accurate monitoring of the progress of hemangioma growth and
regression is essential. More accurate measurements of the development provide
better feedback during therapy and allow for more significant results given the
limited number of patients included in clinical trials.

In Fig. 1 an example of a base-line and two follow-up examinations are depicted.
At the first examination (Fig. 1(a)), the bigger part of the hemangioma shows a
typical reddish saturated color caused by the excess of blood vessels and almost
no regression has started yet, except for a small region indicated by a so-called
graying in the center of the hemangioma. At the second examination 8 weeks
later (Fig. 1(b)), the regression covers almost the entire hemangioma. 13 weeks
after base-line (Fig. 1(c)), the entire hemangioma is regressing, and healthy skin
regions start to appear.

In current clinical practice, the hemangioma area is estimated by a manual mea-
surement of the height and width of the lesion during a clinical examination.
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The degree of regression is reported by a visual estimation of the fraction of the
hemangioma showing a graying of the typical reddish hemangioma color. Evi-
dently, this way of assessment is inaccurate since only the diameters and not the
- typically irregular - shape of hemangioma are considered in its surveying. Fur-
thermore, the assessment of regression degree is a subjective measurement since
it depends on the rating of an individual dermatologist.

In this paper we propose a fully automatic method for the quantitative assess-
ment of cutaneous hemangioma during therapy. Based on digital images that are
currently obtained solely for reporting reasons, two measurements are performed:

(1) The precise measurement of the area affected by the hemangioma.
(2) The detection and quantification of regressing (healing) regions during follow-

up examinations.

The aim of the work is to provide dermatologists with accurate and precise mea-
surements of hemangioma size and temporal development. Currently, visual scor-
ing is performed by specialists using a small number of reference values [3] that
are related to but do not measure the actual extent of lesions. In the proposed
approach, the actual area covered by the hemangioma is measured and compared
across a temporal sequence of follow-up examinations. A registration of the he-
mangioma allows for a point by point comparison at different acquisition times,
instead of global scores that decrease the local specificity of the assessment.

The benefit of this assessment is twofold: First, it can be used in clinical studies
evaluating the efficacy of different treatments for hemangiomas. In this context,
the significance of the results is increased by a more accurate and objective eval-
uation. And second, the assessment can be used during treatment of individual
patients to evaluate the efficacy of treatments with increased precision and the
ability to perform local comparisons of the lesion appearance.

The method works based on digital images with minimal constraints with regard
to the image acquisition (Fig. 1). The hemangioma is detected by an automatic
image segmentation based on a classifier trained in a supervised manner. The
scale is retrieved from the reference ruler visible in the images. This procedure
surveys the clearly reddish, unregressed regions of the hemangioma and can be
applied to single images. The second part, the detection and surveying of regress-
ing regions describes a change over time. It therefore includes a comparison of the
current hemangioma appearance to the base-line examination. The two images
are registered robustly using feature points and local gradient histograms. This
makes a comparison of hemangiomas possible, even if images are acquired from
different viewpoints, which typically is the case.
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1.2 Related Work

To our knowledge, no research has been published on the image-based assess-
ment of cutaneous hemangiomas. Nonetheless, various other types of skin lesions
have been investigated in this context. In particular, the automatic image-based
classification of melanoma in benign and malignant lesions has been studied ex-
tensively starting as early as 1987 [4]. An overview of work published until the
year 2000 is given in [5]. Recent approaches are summarized in [6]. Classification
of melanoma is thereby typically based on the ABCD rule (Asymmetry, Border
irregularity, Color variegation and Diameter) used by dermatologists [7].
Another skin lesion type covered in the literature is psoriasis [8]. In psoriasis as-
sessment, a psoriasis area and severity index [9] is used to evaluate the degree of
disease. A variable thresholding technique for area computation as part of this
assessment method is proposed by Roening et al. [10]. The automatic change
detection in follow-up psoriasis images is addressed in Maletti and Ersbøll who
propose a method for change detection in both registered [11] and unregistered
images [12], each one by applying the multivariate alteration detection transform
on the data. In [13] two other methods for change detection are explored: simple
image subtraction and principal component analysis. A method for area compu-
tation using active contour models is presented in [14] and applied on images of
leg ulcers.
However, the described methods cannot be applied directly to cutaneous heman-
giomas, because the single measurement of affected skin area cannot be used as
a complete assessment method for this lesion type, since the regression process
starts with color changes (graying) in certain hemangioma regions and not with
their complete disappearance. The change detection scheme proposed by Maletti
and Ersbøll [11,12] shows suitable results on psoriasis images but is designed for
the detection of textural changes, whereas changes in hemangioma images are
indicated by subtle color changes during follow-up.

Although experiments reported in this paper were only conducted on heman-
gioma images, the method is applicable to other lesion types as well. Both the
segmentation of the affected skin area and the detection of regression regions are
based on a pixel-wise classification by a previously trained classifier, thus the
method could be adapted to other lesion types if an adequate amount of anno-
tated training data is available. The registration and localized analysis of skin
appearance development can be transfered to other diseases in a straightforward
way.

The remainder of the paper is organized as follows: the method is presented in
Section 2, divided into the steps of preprocessing (Section 2.1), hemangioma seg-
mentation (Section 2.2), follow-up registration (Section 2.3), regression detection
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(Section 2.4) and scale computation (Section 2.5). Experimental evaluation re-
sults for both area measurement and follow-up regression detection are reported
in Section 3 and discussed in Section 4. A conclusion is given in Section 5.

2 Automatic Hemangioma Assessment

The overall workflow for the assessment of hemangioma development is illustrated
in Fig. 2. Here four follow-up images of a specific hemangioma are given. The
determination of the hemangioma area and the measurement of regions showing
a regression is illustrated for image 4 in the series. In Fig. 2 the hemangioma region
is indicated by a white area whereas the expanding regression during follow-up
is indicated by a gray area. The following steps are conducted:

(1) Hemangioma Segmentation: The image regions of Image 1 belonging to
the hemangioma, called hemangioma regions are determined. In Fig. 2, this
segmentation is indicated by the black border around the white area.

(2) Registration and Transformation: The transformation aligning Image 1
with Image 4 defines a region of interest (ROI) corresponding to the expected
location of the hemangioma in Image 4. This new region is again indicated
by a black border. It is calculated based on the hemangioma segmentation
in Image 1 and the transformation of Image 1 to Image 4.

(3) Regression Detection: The regions exhibiting regression (the regression
regions) are determined in the ROI, facilitated by a local comparison of color
values between Image 4 and the transformed Image 1.

(4) Image Scale Computation: The ruler visible in Image 4 is used to de-
termine the image scale. By combining the information of image scale and
regression/hemangioma regions, the current area of both the hemangioma
and the regression regions is obtained.

2.1 Preprocessing

To account for the varying image acquisition conditions (e.g. pose of the patient,
illumination, visible section of the body part, changing perspective) first a pre-
processing is performed. To remove noise a 5x5 median filter is applied to the
images. Furthermore, image regions containing no skin are detected and are ex-
cluded form further computation. The remaining image is normalized to obtain
consistent skin color over the data set.

Non-skin masking: After the median filtering a simple test for masking out
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non skin regions is used to exclude regions that likely are not part of the skin
or the hemangioma (e.g. the ruler). This step is necessary for a robust skin color
normalization. Our method is based on a heuristic proposed in [15] but substan-
tially simpler. If the red (R), green (G), and blue (B) channel values of each pixel
fulfil R < G and R < B the pixel is marked as non-skin.

Skin color normalization: To account for changing illumination a normaliza-
tion with regard to the skin color is performed. The most frequent color is deter-
mined by a histogram of the RGB color values present in the skin region, i.e. the
most frequent value with intensity v0 = 〈R, G,B〉 with

√
R2 + G2 + B2 > 120

is used for normalization. That is, for each color value v the normalized value is
v′ = v − v0. This procedure uses the large area of skin typically visible in the
data for a color normalization and ensures a consistent color representation for
the further processing of the images. Tests have shown that it is of equal accuracy
as manual normalization.

2.2 Hemangioma Segmentation

The segmentation determines the regions in an image belonging to the heman-
gioma. Image segmentation algorithms usually subdivide images into regions
which show a certain degree of coherence w.r.t. color or texture or use a pri-
ori knowledge about the shape of the object to be detected. Since hemangiomas
can come in a variety of shapes and no assumption about their number and sizes
for a given image can be made only the a priori knowledge of their color can be
exploited. Commonly used color image segmentation algorithms usually deliver a
set of connected regions where it is challenging to discern between hemangioma
and non-hemangioma regions. Therefore, we use a classifier for segmenting the
images that classifies each pixel in the image as hemangioma or non-hemangioma
on the basis of features extracted from the pixel. A single-layer perceptron [16]
is used for classification.

The single-layer perceptron uses four color features for classification. It is trained
on an annotated training set of images and applied to the new images. This
results in a label for each pixel, indicating its belonging or non-belonging to the
hemangioma. In the following the features used for classification are described
and a final postprocessing step eliminating highlight artifacts is explained.

Feature selection: For classification we have to define a set of features showing
a big difference between skin and hemangioma pixels. Possible features for the
classification are the color channels of the color spaces RGB, HSV and CIE 1976
L*a*b* [17]. G from RGB, H from HSV and a* from L*a*b* proved to be usable
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for our purpose by achieving the best results with a perceptron classification of
our images. Additionally we use a 4th feature abdist. As can be seen in Fig. 3,
each of these features exhibits extensive differentiation between pixels belonging
to the hemangioma and pixels belonging to the skin.

The feature abdist : The feature abdist stands for the Euclidean distance be-
tween the skin and the hemangioma in the L*a*b* color space without con-
sideration of the luminance L* and intensification of the a* component. This
feature is adopted from [18]. In this paper the proposed method works on an in-
tensity image describing the Euclidean distance between the skin and the lesion.
If as, bs denotes the a* and b* values of the skin (obtained from the normal-
ization step) and ap, bp that from a particular pixel, its abdist is computed as√

(2as − 2ap)2 + (bs − bp)2. The difference of the a* channel is multiplied by the

factor 2, because the a* value differs more between hemangioma and skin pixels
than the b* value.

Treatment of highlights: Highlights on the hemangioma are normally erro-
neously detected as healthy skin by the classifier. This is corrected by closing
all holes occurring in the masked region. Since hemangiomas with large holes of
normal skin could not be found in the data, they seem to be very rare and a
possible error resulting from that operation can be neglected.

2.3 Registration of Follow-Up Hemangioma Images

The registration of follow-up images is a necessary prerequisite for the detection of
regressions (see Section 2.4). It allows for the establishment of correspondences
across the image series and thereby enables the propagation of the initial he-
mangioma shape to subsequent images. This makes a definition of a ROI for
the regression detection possible, allows for shape and area comparisons, and fi-
nally for a direct comparison of corresponding positions on the hemangioma and
according color values. This is essential for the detection of regression regions
exhibiting subtle color differences.

2.3.1 Robust Feature-Based Method for Registration of Follow-Up Hemangioma
Images

We prefer a feature-based approach to an area-based one [19] since area-based
methods are not well-adapted for the registration of changing structures like he-
mangiomas due to low similarities of corresponding image points in changing im-
age regions of follow-up images. Feature-based methods are more suitable in this
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case since they allow a registration also for missing correspondences by predicat-
ing the registration only on non-degraded image parts. Therefore, our approach
is based on the detection and matching of distinctive interest points by means of
local features. The resulting interest points are used for a robust estimation of the
transformation between images by random sample consensus (RANSAC) [20]. To
obtain reliable matches of interest points we use gradient histograms as used in
the scale-invariant feature transform (SIFT) [21] for the description of interest
point appearance and determination of correspondences between images. Under
the assumption that hemangiomas are on a planar surface, the transformation be-
tween images can be simplified to a homography and estimated by the detected
point correspondences. Note that the planarity assumption can be generalized
to more complex surfaces. However, experiments indicate that it provides suffi-
cient accuracy on our dataset. The use of RANSAC makes the registration more
insensitive to the number of correct matches. Therefore, the risk of misregistra-
tion caused by a high amount of incorrect matches due to changing hemangioma
structures is minimized.

2.3.2 Detection of Interest Points in Hemangioma Images

After segmenting the hemangioma in both images, first distinctive points are de-
tected in the hemangioma region. For this, Canny edge detection [22] is performed
on the green color component.

Constraining interest points to the hemangioma region: The analysis is
constrained to the segmented hemangioma region, provided by the method de-
scribed in Section 2.2. Only interest points inside or near the hemangioma region
are accepted. This ensures that the planarity assumption for the homography es-
timation gives a good estimate of the actual surface, accounts for a better chance
of reliable matches in the close vicinity of the hemangioma and reduces compu-
tational costs. Fig. 4(a) shows the segmentation of the hemangioma area (green
border) and resulting rectangular ROI (blue frame).

Interest point localization: The most reliable interest points lie at the heman-
gioma border because the inner hemangioma parts change to a higher degree from
one time to another. Therefore, in our method interest points are detected along
edges in the green channel of the RGB-images. The green channel is chosen since
for hemangiomas it shows the highest differences among the three RGB color
channels between lesion regions and healthy skin (see Section 2.2 and Fig. 4(b)).
Edge detection is accomplished by means of the Canny edge detector [22] and
interest points are finally localized at edge pixels showing the highest gradient
magnitude in a neighborhood of N pixels. By empirical tests a value of N = 3
combined with low threshold of 0.1 and a high threshold of 0.2 (see [22]) has
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proven to be adequate for obtaining a high number of distinctive interest points.
In Fig. 4(d) the detected interest points are marked as black spots.

2.3.3 Matching of Interest Points

Once the interest points have been localized, a mathematical description of the
interest points’ local neighborhoods is provided by gradient histograms as used in
SIFT descriptors [21] in order to match the interest points. The interest points are
described by accumulating the orientations in a region around the interest point
location. Gradient magnitudes and orientations are sampled in a 16 × 16 array
around the interest point location and weighted by a Gaussian window. The size
of each array sample was empirically set to 2.4× 2.4 pixels, i.e. each descriptor’s
image patch has a size of 38.4 × 38.4 pixels. By computing 8 orientation bins
for every 4 × 4 subarray of the overall 16 × 16 array, an interest point is finally
described by a 128-element feature vector.

Although RANSAC is capable of handling a large portion of incorrect matches,
a preselection of the matches with highest confidence can improve the stability.
Therefore, matches are determined by means of lowest Euclidean distance of
interest point descriptors. All matches are sorted in terms of the distance between
the nearest and the second nearest neighbor in a descending order, and finally only
the first n matches are accepted. Based on initial experiments, n is determined
by n = 2

√
m1, rounded to the nearest integer value, where m1 is the number of

interest points detected in Image 1. Fig. 5(a) shows exemplarily the matching
result between the image from Fig. 4 and the corresponding image from the
following examination.

2.3.4 Robust Transformation Estimation Based on Interest Point Matches

The final step in the image registration procedure is the computation of the
homography that maps the sensed image onto the reference image. The homog-
raphy is computed from the pairs of matched interest points and assigns each
point in the hemangioma of the sensed image to a point in the reference image.
Part of the matches detected by comparing local appearance are incorrect or out-
liers, and have to be detected and discarded. A homography can be estimated
by the normalized direct linear transform (DLT) which minimizes the algebraic
error [23]. Since every match is equally considered for homography estimation
by the DLT algorithm, it is not robust against outliers. To detect outliers the
RANSAC scheme [20] is applied for the homography estimation. RANSAC is a
robust model fitting method which is able to cope with a large portion of incorrect
data samples.
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In Fig. 5 the final results for two consecutive images from a follow-up series are
shown. Fig. 5(b) shows the remaining inliers determined by RANSAC of the initial
matches depicted in Fig. 5(a). In this example 31 of the 76 initial matches are
classified as inliers. The final transformed sensed image can be seen in Fig. 5(c).
The difference between the transformed image and the reference image is shown
in Fig. 5(d).

2.4 Detection of Regressing Hemangioma Regions

While at the beginning hemangiomas typically exhibit a saturated red color,
during the course of therapy regressions appear as pale gray regions, a process
often referred to as graying [2]. Typically, these regressions do not occur uniformly
on the whole hemangioma, but start at certain regions and expand during time
[2]. The detection and size estimation of such regions is an important parameter
to assess the healing process.

The image of Fig. 6(a) was taken at the base-line examination and the entire
hemangioma is a saturated reddish color, except for a small inner region. Image
Fig. 6(b) was taken 6 weeks later and yet the hemangioma shows regressions in
its inner regions. These regressions are marked with a white border in Fig. 6(c).
The regression detection relies on the pixel-wise classification and a comparison
to the base-line examination. The registration (Section 2.3) provides the neces-
sary correspondence for a pixel-wise comparison of follow-up images. Differences
between regressing and not regressing regions are less distinctive than for the seg-
mentation of the hemangioma area (see Fig. 3 for a comparison). Nevertheless,
the experiments in Section 3.5 show that the method achieves a similar accuracy.

The procedure of the proposed method for the detection of regressing heman-
gioma regions is depicted in Fig. 7: consider a series of four follow-up images
(Image 1 to Image 4). Between each consecutive image a homography is com-
puted by the registration method described in Section 2.3.1 (H12, H23 and H34).
In the first step the region encompassing the hemangioma is determined by the
segmentation method of Section 2.2 (white area). Next, the mask defining the he-
mangioma region is transformed with the composite homography H = H34H23H12

to define the ROI for the classification process. In the last step, in this heman-
gioma region all pixels are classified as regressing (gray area in Fig. 7) and not
regressing, using the differences in color values between Image 1 and Image 4 as
additional features whereas the mapping between pixel positions on the heman-
gioma is computed via the composite homography H. In this context, regressing
includes (already healed) healthy skin as well. However, a separation between
regressing and healthy skin can be made by the hemangioma segmentation algo-
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rithm (see Section 2.2).

The images in Fig. 6 illustrate that the differentiation between non-regressing
and regressing regions is far less pronounced than the difference between skin
and hemangioma. To deal with varying illumination conditions during image ac-
quisition all features are skin-normalized by the method presented in Section 2.1.
For feature selection the method proposed by Krizek et al. [24] was used. Their
algorithm removes irrelevant and redundant features by a weight modification of
training samples similar to the AdaBoost algorithm [25]. As a result, the follow-
ing four features were selected: (1) the green channel from the RGB color model,
(2) the a*-channel from the L*a*b* color model, (3) abdist (see Section 2.2), and
(4) the difference between the green channel image from the base-line examina-
tion and the green channel image from the current examination. In Fig. 8 the
values of these chosen features are shown for the image of Fig. 6(c), normalized
to the range 0 to 1 for presentation (black represents 0, white represents 1). A
multi-layer perceptron [26] is used for the classification.

2.5 Computation of the Image Scale

All images show a ruler close to the hemangioma. The ruler has 4 bold lines in
1 cm distance steps (see Fig. 1). The task of the algorithm is to compute the
Euclidean distance between two lines to obtain the scale of the images. First the
ruler is segmented by global thresholding. Afterwards, three scanlines are defined
at the midpoint between the top and bottom of the ruler and parallel but 10
pixels to both sides of the center line. Finally, the maximum distance measured
between two marks is taken to compute the image scale.

3 Experiments

3.1 Data Description

The images used in this paper were acquired by the Division of Special and
Environmental Dermatology at the Medical University of Vienna. The study was
approved by the ethics committee of the Medical University of Vienna and the
parents of all participating children signed informed consent. The photos were
acquired using an analog camera and digitized with a scanner. All images have
a resolution of 512x768 pixels and a bit depth of 8 bits per color channel. In
total the data set contains images from 120 examinations. 24 images are part
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of 6 different cases consisting of 3-5 follow-up examinations (1 consisting of 3, 4
consisting of 4 and 1 consisting of 5 follow-up examinations). Additionally, for 35
examinations, a second image depicting the same hemangioma and taken within
a few minutes is available. This is used for an evaluation of the method’s precision
by measuring the variation of achieved measurements on these image pairs (see
Section 3.3 and 3.6).

3.2 Accuracy of the Hemangioma Segmentation Algorithm

Setup: Experiments were performed on the whole set of 120 images gathered
during clinical examinations. Manually annotated ground truth data (standard
of reference) was provided by a dermatologist. 30 randomly selected images were
used for training and the remaining 90 images served as the test set. To evaluate
the accuracy of the segmentation for every image the following error metrics were
applied: (1) the error rate, (2) false positive rate, (3) false negative rate, (4) ab-
solute area difference, and (5) border error, defines as Area(A ∪M)−Area(A ∩
M))/Area(M), where A and M are the regions obtained by the automatic seg-
mentation and the manual segmentation, respectively. The border error [15] is
the most significant error metric because it is independent of both the size of
the hemangioma and the size of the image. Note that the manually annotation
of the data can not be seen as absolute gold standard since the annotations of
only one dermatologist were available and variation between specialists should
be assumed. To assess this point, an evaluation of the precision of the automatic
measurement of hemangioma size is reported in Section 3.3. It captures both
variability due to repeated annotation and due to repeated image acquisition.

Results: The segmentation of all 90 images results in a 6.8% average segmen-
tation error rate, with 5.5% false positives, 11.6% false negatives, and absolute
area difference of 0.0965cm2, and a border error of 32.1%. Generally, the obtained
average border error of 32.1 % is hardly influenced by few particular outliers with
border errors of more than 100 %. However, the majority of the images (54 out of
90) could be segmented with a border error of less than 20 % and only 15 images
yield an error of more than 50 %. In Fig. 9 some results are depicted. Fig. 9(a)-(c)
belongs to the best segmentation results with border errors of 3.6 %, 5.7 % and
6.8 %, respectively. Fig. 9(d)-(f) belongs to the worst segmentation results with
border errors of 247.7 %, 137.5 % and 141.2 %, respectively.
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3.3 Precision of Automatic Measurement of Hemangioma Size

Setup: To assess the precision of the entire procedure of hemangioma size mea-
surement the hemangioma area on 20 pairs of images, depicting the same heman-
gioma and taken within a few minutes, were measured. In the absence of error,
both images should have precisely the same computed hemangioma area. The
actual error is estimated by the absolute area difference and variation coefficient
of both measurements. The variation coefficient of multiple measurements is de-
fined as their standard deviation divided by their mean. To have an estimate of
the minimal achievable error, given the differences in image acquisition, reference
measurements with manual segmentation and scale computing were made on the
same image pairs.

Results: The average difference of hemangioma area is 0.0775 cm2 while the
average variation coefficient is 8.82 %. The reference measurements with manual
segmentation and scale computing lead to an average difference of 0.0394 cm2

and an average variation coefficient of 4.53 %.

3.4 Registration of Follow-Up Hemangioma Images

Setup: To assess the accuracy of the proposed registration method for follow-up
images we applied our algorithm on four of the six different image series. Two se-
ries (consisting of 4 and 5 examinations, respectively) were excluded from this and
the following experiment of regression detection (see Section 3.5) for two reasons:
(1) image quality impedes a consistent manual annotation of regressing regions
and (2) hemangioma changes are too high to obtain a registration through the
automatic or manual definition of corresponding points (due to missing acquisi-
tions and thereby long intervals between follow-up images). Therefore, each image
series used consists of three to four images, resulting in a total of 11 registrations
marked by two characteristics, patient (1,2,3,4) and position in the sequence of
registrations (A,B,C): 2A shows the registration of the images from the first and
the second examination, 2B indicates the registration of the images from the sec-
ond and the third examination, and so on. The registration error is measured
by manually defining 5 matching points for each follow-up image and measuring
the average pixel distance achieved with the estimated homography. To measure
the consistency of three circularly concatenated registrations, an additional er-
ror metric called average reference point displacement is reported which uses two
images from an examination (Image A and Image A’ ) and one from the subse-
quent examination (Image B). The three homographies HA,B (from image A to
image B), HB,A′ and HA′,A between the images are computed and the composite
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homography HA,A = HA′,AHB,A′HA,B is built. In the absence of error, HA,A is
the identity matrix and every point in Image A is not displaced by a transforma-
tion with it. Inevitably, there is an error which can be measured by the average
displacement of points in Image A. Therefore, a set of reference points is uni-
formly distributed, separated by 10 pixel distances inside the hemangioma region
of Image A and transformed by the composite homography HA,A. The error is
computed as the average Euclidean distance between reference points and their
corresponding transformed points. This error is not stated for the registration
2C because in this case only one image from examination 1 is available. In our
experiments best results were achieved by iterating 2000 times and allowing a
maximum distance of 5 pixels for the inlier decision (in a typical image 5 pixels
correspond to ∼ 0.375mm).

Results: The individual and average errors of the registrations are listed in
Table 1. The average distance error of 5 test points and the average reference
points displacement never exceeds 10 pixels (∼ 0.8mm).

Fig. 10 shows the sensed image, the reference image and the difference image be-
tween the transformed sensed and the reference image for the follow-up images of
patient 1. Since the appearance of a hemangioma changes over time, some regions
show higher differences than others. For example, in Fig. 10(1C) differences occur
at the regressing regions of the reference image.

3.5 Accuracy of Regression Detection on Follow-up Images

Setup: For the evaluation of the regression detection procedure the algorithm
was tested on the four follow-up series described in Section 3.4. For every follow-
up image the absolute area difference and relative border error, compared to
manually annotated standard of reference, was measured. For an evaluation of
the whole dataset a leave-one-out cross-validation scheme was applied: for every
image of a series a new classifier was trained with the data from all series except
the one containing the present image and tested on this image. As described in
Section 2.4, a multi-layer perceptron classifier was used. The network consisted of
2 hidden layers with 20 and 10 hidden units, respectively. The network was trained
by quasi-newton optimization [26] and training performance was measured by the
mean squared error.
Since the overall goal of the proposed method is the automatic determination of
the area/percentage of the hemangioma showing regression signs, these values are
also reported for the same image series. They are listed separately in Table 2. As
discussed in Section 2.4, the change of hemangioma color values is a discriminative
feature for the classifier. To verify this, the experiment was repeated without using
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difference features, i.e. only G, a* and abdist were used.

Results: The results of the experiment are shown in Table 1 and Table 2. Fig.
11 shows the results obtained on the single images. Here the region of manual
detection is marked by a green border whereas the automatically detected region
is marked by a blue border. The largest error occurs in image (3B) with a border
error of 60.2 % but this image exhibits a strong oversaturation caused by the
inadequate image acquisition. For the test reporting the area/percentage of the
regressing region, it can be seen that the fraction of the hemangioma showing a
regression increases or remains constant in all follow-up series. The only exception
is the previously mentioned poor-quality image (3B). For patient 1 the algorithm
assesses already the whole hemangioma area of the first image (1A) as regressing
(percentage = 100 %).

As a result of using no difference feature for the regression detection, all error
values deteriorate compared to the values obtained by using registration and
difference features. Border error increases from 27.1 % to 50.1 % and absolute
area difference from 0.1278 cm2 to 0.3486 cm2.

3.6 Precision of Regression Detection on Hemangioma Images taken at the same
Time

Setup: Since the manual determination of regressing regions is an uncertain and
difficult task (even for dermatologists), this experiment deals with the compari-
son of surveyed regression regions in image pairs showing the same hemangioma,
consistent with the experiment reported in Section 3.3. Again the absolute differ-
ence and variation coefficient between the two measurements are calculated. 2B
was excluded from this test because no second image was available for that case.

Results: The values are listed in Table 3. Compared to the hemangioma segmen-
tation results, the variation coefficient is even less (7.40 % to 8.82 %, see Section
3.3), while the absolute difference between measured regression on image pairs
shows a comparable value (0.1134 cm2 to 0.0775 cm2).

4 Discussion

As part of the hemangioma assessment procedure, the first task is to determine
and measure the whole skin region affected (Section 3.2). By the design of the
algorithm, errors in area computation arise due to three different reasons:
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Error in image scale computation: Tests have shown that scale computation
is accurate (average error rate of 1.55 % on 20 images), with very few exceptions
where the ruler was inadequately placed on the skin or photographed. Therefore,
this type of error is assumed to have the lowest impact on area measurement.

Error in hemangioma segmentation: Hemangioma segmentation works re-
liably and accurately on saturated hemangiomas with no or few regressions, as
shown in Section 3.2 where 54 out of 90 test images could be segmented with
a border error of less than 20 %. Note that the border error is a very sensitive
measurement. In the work of Zhang et al. [27] dermatologists define a border
error of less than 50 % as sufficient for melanoma segmentation and their results
are comparable to our results on hemangioma images (see below). Nevertheless,
our results also show that the algorithm can fail completely on regressing he-
mangiomas because of the lower contrast between skin and hemangioma regions.
However, typically the first images during follow-up studies exhibit no or few
regressions and can therefore be segmented accurately. The affected skin area in
later examinations can then be determined by the proposed registration method.

Variation in image acquisition: For an optimal measurement both ruler and
hemangioma have to be situated parallel to the view plane of the camera. Whereas
this is naturally violated by the fact that hemangioma and skin are never perfectly
planar, errors are also caused by an inadequate positioning of the camera. The
tests made on the image pairs in Section 3.3 show that the variation coefficient
achieved with the presented method (8.82 %) is close to the one achieved with a
manual surveying (4.53 %). An error of ∼4 % can be seen as the natural limitation
of the method, i.e. the minimal achievable error rate.

Registration of follow-up images: The proposed method for image registra-
tion has to cope with the changing hemangioma appearances between examina-
tions. This is achieved by a feature-based method using local gradient histograms
to obtain reliable matches between consecutive images. The inevitable occurrence
of incorrect matches caused by the varying image content is mastered by the use
of a RANSAC scheme for robust homography estimation describing the trans-
formation between the two images. Experimental results reported in Section 3.4
show that the majority of the images can be registered without considerable er-
rors. The average reference point displacement of ∼ 0.4mm accumulated by three
subsequent registrations is acceptable with an average hemangioma diameter of
∼ 14mm. Sources of error are (1) the assumption of hemangioma planarity due
to the homography transformation model and (2) global or local misregistrations
caused by strong changes in hemangioma appearance and thereby a high fraction
of false matches, either solely in specific regions or on the whole hemangioma.
However, the proposed method is designed to deal with changing hemangioma
appearances and the experiments show that it is applicable on the given follow-up
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data.

Regression detection: The tests on the detection of regressing regions (Section
3.5) verify that the registration is accurate enough to support the multi-layer per-
ceptron in classification between regressing and not regressing regions by means
of difference features. Nevertheless, an important aspect of regression detection
is the uncertainty of the manual annotation and therefore the use of the border
error as performance measure. However, by analyzing the determined absolute
areas of the detected regression regions in follow-up series (see Table 2), an en-
largement of regressing regions is reported. The uncertainty of manual annotation
is overcome by a comparison of determined regression areas, measured on image
pairs showing the same hemangioma at the same time. Because of the similar
error values (variation coefficient of 7.40 % compared to 8.82 % of the heman-
gioma segmentation method), it is assumed that this error is again mainly caused
by variations in the image acquisition procedure, i.e. different lighting conditions
and camera viewpoints. Unfortunately, regression detection could be evaluated
only on a limited set of four follow-up series. A larger dataset would provide
support for the general conclusions made. Nonetheless, the results on these series
are consistent when the image quality is high enough (consider the case 2B as an
exception due to the oversaturation caused by the improper image acquisition)
and therefore it is assumed that a larger dataset would not substantially decrease
the accuracy of the proposed method.

Comparison with other methods: As stated earlier, the image-based auto-
matic assessment of cutaneous hemangiomas and the proposed scheme of detect-
ing and measuring regressions by the use of registered follow-up images has not
been covered before. Thus, no direct comparisons to other methods can be made.
However, other skin lesion types were addressed in the past and there are some
comparable results despite different input data, experimental setups and algo-
rithm designs: in [27] border error was used as performance metric for melanoma
segmentation and the authors state that a border error of less than 50% is con-
sidered as sufficient by dermatologists. They report a border error of less than
50 % in 55 out of 66 images. In our results for hemangioma segmentation 75 out
of 90 segmentations have a border error of less than 50 % which corresponds to
the same percentage of 83 %. For the area measurement of skin lesions, in [10]
a method for psoriasis surveying was developed showing an error of less than 4
% to reference measurements in all cases. Although an exact comparison cannot
be made because of nonexistent reference measurements , it must be noted that
in the surveying of hemangioma/regression regions we obtain higher variation
coefficients of 8.8 and 7.4 %, respectively. However, it is not clear to what extent
the method reported in [10] is influenced by the image acquisition.

Based on the results we expect the method to outperform manual measurements
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during clinical trials. The standard approach of height and width measurement
is not sufficient to account for the highly irregular shape of the hemangioma.
Additionally, the determination of the regressing regions during the healing pro-
cess is more consistent, since inter- and intra-reader variability is avoided by the
automatic classification of the skin region.

5 Conclusion

In this paper a method for the automatic image-based assessment of cutaneous
hemangiomas is proposed. Cutaneous hemangiomas are a skin disease that causes
an increased growth of blood vessels beneath the skin in local regions. The proce-
dure measures the current area of the affected skin and detects and tracks regions
exhibiting a regression during follow-up examinations. The accurate and precise
measurement of the affected skin region, and in particular the development of the
hemangioma during the follow-up examinations, is crucial during clinical trials
and during treatment.

The current clinical standard for the assessment of the hemangioma’s healing
process is the manual measurement of its height and width and a coarse estimate
of the percentage showing a regression by the physician. The area estimate does
not account for the irregular shape, which becomes more relevant during regres-
sion, and consequently the regression estimation can exhibit considerable inter-
and intra-reader variability. The proposed measurement method is not affected
by inter- or intra-reader variation and makes the assessment of hemangioma de-
velopment more accurate and objective. Thereby the quality of both clinical trials
and long-term studies can be improved by a more consistent evaluation of the
effect of therapies. Due to the follow-up registration it can quantify even small
local changes of the hemangioma. The detection of regressions is made more con-
sistent by decreasing the subjectivity of a manual regression quantification caused
by differences of opinion between observers.

In clinical practice the procedure can be integrated into a framework that allows
for an approval by the clinical expert, since, in addition to the labeling, the
classifier provides a real-valued output that can be interpreted as the confidence
in the result. Future work will focus on this integration.
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Table 1
Results of the proposed method for image registration and regression detection on 4
image series with 11 registrations in total. Initial matches depicts the number n of
best keypoint matches taken for the registration. Inliers depicts the number of inliers
after the use of random sample consensus (RANSAC). The average distance error of
5 test points and the average reference points displacement measures the error of the
registration in pixel units. Absolute area difference and border error represent the
absolute and relative error of the regression detection by comparison to the standard
of reference.

Image Initial
matches
n (before
RANSAC)

Inliers
(after
RANSAC)

Average
distance
error of
5 test
points
(pixels)

Average
reference
points
displace-
ment
(pixels)

Absolute
area dif-
ference
(cm2)

Border
error
(%)

1A 45 17 7.96 2.41 0.2508 39.9

1B 49 28 3.96 8.67 0.0576 20.7

1C 52 31 6.45 5.79 0.0310 16.3

2A 40 12 3.95 3.60 0.0712 20.0

2B 33 18 4.92 3.76 0.0835 60.2

2C 28 16 5.21 N/A 0.2403 38.6

3A 36 21 3.44 2.70 0.1996 38.6

3B 45 14 4.32 6.02 0.0071 17.4

4A 26 7 8.37 7.50 0.0315 15.9

4B 39 9 8.54 8.70 0.1126 17.6

4C 61 8 5.50 6.82 0.3204 18.2

Average 41.27 16.45 5.69 5.60 0.1278 27.6
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Table 2
Absolute and relative determined areas of regressing hemangioma regions of the images
from Table 1.

Image Regressing Total area of Percentage

area (cm2) hemangioma (cm2)

1A 1.08 1.08 100.00

1B 1.38 1.38 100.00

1C 1.36 1.36 100.00

2A 0.78 1.03 75.34

2B 0.28 1.06 26.82

2C 1.09 1.11 97.84

3A 0.50 0.65 77.10

3B 0.77 0.77 99.76

4A 1.47 1.66 88.42

4B 2.11 2.20 96.10

4C 2.24 2.31 97.12
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Table 3
Differences in automatically determined areas of regression between two images of the
same hemangioma.

Image series Absolute area Variation

difference (cm2) coefficient (%)

1A 0.0906 6.18

1B 0.0854 4.56

1C 0.2570 14.75

2A 0.1165 9.19

2C 0.0986 6.63

3A 0.0467 7.83

3B 0.1272 13.02

4A 0.1597 7.14

4B 0.0120 0.39

4C 0.1402 4.33

Average 0.1134 7.40

25



(a) (b)

(c)

Fig. 1. A follow-up series of hemangioma images.
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Fig. 2. Illustration of the workflow for the assessment of hemangioma development.
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(a) (b)

(c) (d)

Fig. 3. The intensity images of the four features (a) G, (b) H, (c) a and (d) abdist of a
particular hemangioma image.
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(a) (b)

(c) (d)

Fig. 4. Individual steps of the interest point localization procedure.
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(a) (b)

(c) (d)

Fig. 5. (a) Initially detected matches between sensed image (left) and reference image
(right), (b) detected inliers after removal of incorrect matches by RANSAC, (c) trans-
formed sensed image and (d) image displaying the difference between the transformed
sensed image and the reference image.
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(a) (b) (c)

Fig. 6. (a),(b) Consecutive images of a hemangioma and (c) regressions marked with
white border.
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Fig. 7. Illustration of the regression detection procedure.

32



(a) (b) (c)

(d) (e)

Fig. 8. (a) Original hemangioma image with regressing region marked by white border
and values of features: (b) G, (c) a*, (d) abdist, (e) difference of G between first follow-up
and current image. Values are normalized to the range 0 to 1, thus 0 is represented by
black and 1 is represented by white.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Automatic segmentation (white) and standard of reference (black) of 6 images.
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(1A)

(1B)

(1C)

Fig. 10. Difference images (1A)-(1C) of patient 1 in Table 1 showing the same heman-
gioma at different times. The colorbar is shown at the top.

35



1 A-B-C

2 A-B-C

3 A-B

4 A-B-C

Fig. 11. Results of the automatic regression detection during follow-up examinations
for 4 cases. Each row of the table represent the temporal development for one patient.
(green: manual detection, blue: automatic detection).
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