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Abstract

Motivated by the requirements of the present ar-
chaeology, we are developing an automated sys-
tem for archaeological classification of ceramics.
The basis for classification and reconstruction of
ceramics is the profile, which is the cross-section
of the fragment in the direction of the rotational
axis of symmetry, and can be represented by a
closed curve in the plane. This paper compares
and combines several methods for interpolation
and approximation of a closed curve by B−splines
in the plane. The closed curve, representing the
profile, is divided into several parts for which the
most accurate method is selected. All the in-
terpolation and approximation methods are com-
pared on the provided data with respect to the
achieved precision and ’complexity’ of the curve
description. The graphical output of the program
suggests to the archaeologists, which combination
of these methods gives the best representation of
the reconstructed profile from the data under the
smallest possible error and the simplest possible
spline representation.

1 Introduction

Ceramics are among of the most widespread ar-
chaeological finds, having a short-period of use.
Since the 19th century, the physical character-
istics of archaeological pottery have been used
to assess cultural groups, population movements,
inter-regional contacts, production contexts, and
technical or functional constraints (archaeome-
try). Because archaeometry of pottery still suf-
fers from a lack of methodology, it is important to
develop analytical classification tools of artifacts
[26]. A large number of ceramic fragments, called
sherds, are found at every excavation. These frag-
ments are documented by being photographed,
measured, and drawn; then they are classified.
The purpose of classification is to get a systematic
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view on the excavation finds. Archaeological finds
are traditionally grouped by typology [12]. De-
fined forms and types of vessels form codes which
simplify communication within the scientific field.
Figure 1 is a representative of other examples.

Figure 1: Drawing of a complete pot.

The drawing and interpretation of ceramic frag-
ments is very time consuming and costly work, re-
quiring trained and qualified draftsmen. A graphic
documentation done by hand also increases the
possibility of errors. Converting the pencil draw-
ing into an ink drawing is another potential source
of error. There may be errors in the measuring
process (diameter or height may be inaccurate),
and inconsistencies in the drawing of the fragment.
However it is not possible to achieve a consistent
style, since it is very difficult to make a drawing
of an object without interpreting it. This leads to
a lack of objectivity in the documentation of the
material.

Because the conventional documentation meth-
ods were shown to be unsatisfactory [26], the in-
terest in finding any automatic solution increased
(see [13],[33],[32] for some examples). None of the
developed systems could satisfy the requirements
of the archaeologists since the amount of the ac-
quisition work did not reduce. Our automated 3d-
object acquisition system was developed to sat-
isfy the above mentioned archaeological require-
ments [29]. The profile sections are achieved auto-
matically by a 3D-measurement system based on
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structured (coded) light and two lasers technique.
Shape from structured light is a method which
constructs a surface model of an object based on
projecting a sequence of well defined light patterns
onto the object. An image of the scene is taken
for every pattern. This image, together with the
knowledge about the pattern and its relative po-
sition to the camera are used to calculate the co-
ordinates of points belonging to the surface of the
object ([19], [20]).

Up to the present, traditional methods of clas-
sification of archaeological pottery have been ap-
plied (see [2, 1, 3, 6, 8, 11] or [31] for some ap-
proaches). The traditional classification of shapes
is descriptive - supported by the drawing - and
defines primarily the shape of the vessel as well
as the shape of the rim and lip [9, 18]. In most
publications, definitions of the terms shape, type
and variant, are lacking. Subsequently, a subdivi-
sion based on subjective aspects is produced. The
description of shape is subject to the ideas of the
author and are not standardized. For examples
see [5] and [23].

There have been attempts at description and
classification based on mathematical definition of
shape and type; a definition for which the relation
of the diameter of the rim to the height of the
vessel as well as the angle of inclination of the rim
and wall are especially important [17].

A more formal scheme of ceramic classification
has been described by Gardin [10, 11]. Individual
features like the base, neck, and rim are compared
with drawn examples and appropriately coded.
Another method of classifying pottery is to define
types in terms of ratios of the principal dimen-
sions. An overview of such classification systems
can be found in Millet [25] and Orton [27]. (In the
course of a mathematical definition the description
was omitted [14].)

The third way of classifying pottery is based
on the examination of the methods of production
by describing the steps taken to produce a ves-
sel rather than classifying the finished product.
Everything produced in the same way, that falls
within the variations of shape that the particular
technique permits, can be classified as one type
[30]. The classification is a decision tree based on
the traces left on the inner surface during produc-
tion.

Traditional archaeological classification is based
on the so-called profile of the object, which is the
cross-section of the fragment in the direction of the
rotational axis of symmetry. This two-dimensional
plot holds all the information needed to perform
archaeological research. The correct profile and
the correct axis of rotation are thus essential to
reconstruct and classify archaeological ceramics.

Figure 2 shows the inner side of a fragment on
the left, its left side (broken surface) in the middle,
and the profile section generated automatically on
the right (Figure 1 shows the same fragment drawn
by hand). The profile shown in Figure 2 was com-
puted using a laser system and a shape from the
structured light technique described in [21].

Figure 2: (a) Archaeological fragment - (b) site of
fracture and - (c) profile section

The most formalized approach uses mathemati-
cal curves to describe the shapes of the vessels and
their parts. The profile is thus converted into one
or more mathematical curves. These approaches
(i.e. the sampled tangent profile [24], the B-spline
methods [16], the two-curve system [15]) provide
the most precise representation so far, however no
automatic comparison of complete profiles result-
ing from these methods have been published. The
situation is complicated by the fact that ceramic
vessels, produced by hand, do not have mathemat-
ically perfect surfaces which affects the application
of the above mentioned methods and consequently,
the precision of the representation of the vessels is
reduced [28].

In this paper, we apply several methods for in-
terpolation and approximation by B-splines on re-
construction of the vessel profiles (i.e. the pro-
files are projected into the plane). B-splines were
chosen for the profile representation because they
have a universal approximation property (i.e. for
a given approximation error ε, there exists a B-
spline constructed by means of a sufficiently large
data set, so that the error of the approximation
of the data by this function is at most ε, proven
by [22]) and because they have a relatively simple
mathematical definition.

By combining the different spline methods on
subdivided intervals of the curve, the selection of
the method with the best precision on a particu-
lar subdivision of the curve enables the detection
of the significant ’non’-smooth parts of the curve.
This (automatic) subdivision of the curve into in-
tervals is done for two reasons. The first reason
is that this division of a closed curve (i.e. not
a function) is due to that any functional method
can be applied. The second reason is that these
boundary points of these intervals are at the same
time important points for an archaeological analy-
sis done by traditional methods (we suppose that
the profile is given in correct orientation).

The B-spline methods are compared from the
point of view of the approximation error (least
mean square of the differences of the input value
and the spline value) and from the point of view
of the simplicity of the representation. The most
appropriate method (in general, the combination
of approximation and interpolation methods in
single intervals), giving the smallest possible er-
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ror and the simplest possible B-spline representa-
tion, is selected and the error of the whole ’re-
constructed profile’ with respect to the given data
computed. This selection together with a demon-
strative creation of the curve provides the archae-
ologist with as truthful as possible image of the
reconstructed profile. The method was tested on
profiles like shown in Figure 3.

Figure 3: Profiles of different fragments

The organization of the paper is as follows: Sec-
tion 3 explains cubic splines. Selected interpola-
tion methods are described and evaluated in Sec-
tion 4 whereas Section 5 analyses approximation
methods, while the selection of the unique method
with the smallest approximation error and sim-
plest representation is discussed in Section 6. The
paper concludes with a discussion of the results
presented and gives an outlook on future work.

2 Cubic Splines

The following definitions were adopted from [7].
We suppose that the planar closed curve r (the
profile of the vessel) to be fitted (interpolated or
approximated) will be represented by parametric
equations

r(t) = [x(t),y(t)] (1)

in an interval < a, b > in the Cartesian coordi-
nates of R2 and has continuous second derivatives
( i.e. r belongs to C2). The curve is given by a set
of points Pi = [x(t), y(t)] together with the non-
decreasing sequence of knots {ti; i = 1, . . . , n + 1}
of parameter t (for which in the case of inter-
polation x(ti) = ti; i = 1, . . . , n + 1. To con-
struct a curve S(t) which approximates the func-
tion given by the points (or for t = ti passes the
points Pi, i = 0, . . . , n+1 - the interpolation case)
can be done by constructing a cubic spline with
an adequate parameterization and external con-
ditions. The curve must be initially divided into
sub-intervals where functional approximation and
interpolation methods can be applied.

The support of a cubic spline is 5 intervals (i.e.
elsewhere it equals 0). Denote by B4

i an k− th or-
der spline (k ≤ 3) whose support is [ti, ti+4] (this
contains 5 intervals created by the knot sequence).
Then, it is possible to normalize these splines so
that for any x ∈ [a, b] holds

∑n+3
i=−3 B4

i (x) = 1; Fig-
ure 4 shows the basis spline functions over knots
ti−3, . . . , ti. It is clear that the sum of the splines
over the 5 intervals equals 1.

Any cubic spline Sn(x) with knots t0, . . . , tn and
coefficients a−3, a−2, . . . , an can be written in the

Figure 4: B-spline functions

form

Sn(x) =

n∑
i=−3

aiB
4
i (x). (2)

B4
i (x) is a polynomial of the degree at most 4

in each interval < ti, ti+1 >, elsewhere zero.
To achieve a unique spline representation for a
given data set and knots, the data must satisfy
Schoenberg-Whitney Conditions (The arbitrary
data at sites x1 < x2, . . . , < xn with the given
knot sequence are matched by a spline uniquely, if
and only if B4

i (xi) 6= 0 for all i). All our applied
methods satisfy these conditions.

3 Interpolation by Cubic B-Splines

To solve the interpolation problem (i.e. an exact
fitting of data points by a curve, see the Figure 5
below), we selected four methods which empiri-
cally showed up to be appropriate in our experi-
ments:

a) Cubic spline interpolation with Lagrange
end-conditions (cs1) (i.e. it matches end
slopes to the slope of the cubic that matches
the first four data at the respective end);

b) Cubic spline interpolation with not-a-knot
end-condition (cs2);

c) Spline interpolation with an acceptable knot
sequence (cs3);

d) Spline interpolation with an optimal knot
distribution (cs4). As ’optimal’ knot se-
quence the optimal recovery theory of Mic-
chelli, Rivlin and Winograd [4] is used for in-
terpolation at data points τ(1), . . . , τ(n) by
splines of order k;

These methods were applied to each of the inter-
vals of the curve (into which the curve representing
the profile is divided in order to any functional
methods can be used), and their approximation
error (least mean square of the differences of the
input value and the spline value) was evaluated on
the given data set.

All the discussed interpolation methods sat-
isfy the Schoenberg-Whitney conditions, i.e. the
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Figure 5: Interpolation by B-spline functions

achieved representation is for the method, the
given data and knot sequences unique. The se-
lection of a unique interpolation representation of
the curve in the particular interval is made using
the following criteria in the respective order:

1. Minimal approximation error in the corre-
sponding interval.

2. Minimal length of the knot sequence

3. Priority of the interpolation method based on
the statistical observations

The priority of the methods was achieved experi-
mentally on profiles and their particular intervals
as follows: 1. Cubic spline interpolation with La-
grange end-conditions (cs1); 2. Cubic spline in-
terpolation with not-a-knot end-condition (cs2);
3. Spline interpolation with an acceptable knot
sequence (cs3); 4. Spline interpolation with an
optimal knot distribution (cs4).

4 Approximation by Cubic B-
Splines

Since the amount of data pairs acquired to de-
scribe a vessel or its parts do not always suffice
to represent the shape of the vessel reliably, in-
terpolation does not have to be always the appro-
priate method. For this reason, we compared the
approximation methods on representing the over-
all shape of the whole curve with respect to the
interpolation methods. To solve the approxima-
tion method (i.e. an approximate fitting of data
points by a curve with respect to a minimal ap-
proximation error over the interval from which are
the data points taken, see Figure 6), we selected
four methods which appeared as appropriate in
our experiments. As in the interpolation case, the
approximation error is measured as the least mean
square of the differences of the input value and the
spline value. The following approximation meth-
ods were applied and compared:

a) Cubic smoothing spline with the smoothing
parameter p > 0 (cs5); This smoothing spline
f minimizes p

∑n
j=1 wj(yj − f(xj))

2 +(1−p)∫
(f (2)(t))2 with wj = 1, j = 1, . . . , n, where

n is the number of data points. (For p =
0, the smoothing spline is the least-squares
straight line fit to the data, while, at the
other extreme, i.e. for p = 1, it is the ’natu-
ral’ or variational cubic spline interpolant.)

b) Smoothing spline with the smoothing param-
eter tol > 0 (cs6);
This function creates the smoothest function
f in the sense that
F (f (2)) =

∑ ∫ xn

x1
(f (2)(t))2 is the smallest, for

which E(f) =
∑n

j=1 wj(yj − f(xj))
2 ≤ tol,

with the weights wj = 1 and data points xj ,
j = 1, . . . , n (where n is the number of data
points.)

c) Least squares spline approximation with the
number of knots equal to a half of the amount
of the data (cs7);

d) Least squares approximation with the num-
ber of knots equal to the number of data -
degree of the spline in the particular interval,
(cs8);

Figure 6: Approximation by B-spline functions

The approximation errors of both smoothing
spline methods cs5 and cs6 vary with great dif-
ferences, depending on the selection of the param-
eters p > 0 and tol > 0, respectively. A correct
selection of p and tol can decrease the error over
the interval, but there is no simple method for such
selection known which would in general guarantee
that the approximation error of the corresponding
functions is minimal for such a choice of param-
eters. In the case of the cubic smoothing spline
with parameter p (cs5), the selection of p = 1
gave a variational cubic spline interpolant (and
thus ’low’ errors with respect to the data). (As
the setting of tol in the method cs6 is more diffi-
cult, this method did not show up as appropriate
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for creating an automated system, whose part the
selection of the curve representation should be).

An ’optimal’ (in the sense of the compared
methods, given data and the applied criteria for se-
lection) method is selected according to the same
criteria as in the interpolation case and again, the
priority ordering of the methods was achieved ex-
perimentally: 1. Cubic smoothing spline with the
smoothing parameter p > 0 (cs5); 2. Smooth-
ing spline with the smoothing parameter tol > 0
(cs6); 3. Least squares spline approximation with
the number of knots equal to a half of the amount
of the data (cs7); 4. Least squares approximation
with the number of knots equal to the number of
data - degree of the spline (cs8).

5 Results

When the most appropriate interpolation and ap-
proximation methods are computed and selected
for each of the intervals of the curve, the method
with a smaller error (in case of ambiguity, the
interpolation method is preferred) is selected for
the interval. The approximation error of the rep-
resentation over the whole curve is computed.
This representation is unique and optimal with re-
spect to the above-mentioned criteria. The most
frequently selected interpolation method was cs1
and the most frequently selected approximation
method was cs6 in our experiments. An interpo-
lation method was preferred in the intervals where
a sufficient number of data with respect to the
length of the interval was given. An approxima-
tion method was preferred in the intervals where
there was a lack of data.

The process of applying all interpolation and
approximation methods is displayed for every sub-
interval of the curve after each run of the pro-
gram (Figure 8 shows the methods applied on sub-
interval no. 8). While the curve is generated grad-
ually for each sub-interval of the curve, the overall
approximation error is computed. The final pic-
ture of the profile constructed from the selected
methods is displayed (Figure 9), and compared to
the data set. Table 1 displays the approximation
errors for all methods in all intervals of the profile
from Figure 7, including the selected interpolation
and approximation methods for the corresponding
interval and the selected overall method for the
whole profile. The whole data sets contained ap-
proximately 350 data points and the length of the
whole curve was approximately 400 points.

6 Discussion and Conclusion

The method presented for selection of an ’optimal’
representation (optimal with respect to the consid-
ered methods and selection criteria) of a (2-dim)
profile of an archaeological fragment computes and
displays a unique solution. The achieved fragment
representations, the first part of an automated sys-
tem for classification of archeological fragments,
are the input of the second part of the system,

Figure 7: Computed profile subdivided into 8 in-
tervals

Figure 8: Interval nr. 8 computed with 8 different
methods

classification. The profile parts - the so-called pro-
file primitives are used to perform the classifica-
tion. The segmentation (division) into primitives
depends on the orientation of the fragment. In or-
der to achieve a unique representation, it is impor-
tant to set a unique orientation for all fragments.
The classification will be solved in the high dimen-
sional real space and therefore the uniqueness and
the high precision of the profile representation are
very important.

The classification will be solved in the high di-
mensional real space and therefore the uniqueness
and the high precision of the profile representation
are very important.

The method has been tested on synthetic and
real data with good results. The current task is
to meet the archaeological requirements as for the
achieved representation.
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Figure 9: Glued intervals

method /
interval 1 2 3 4
cs1 0.2163 0 0.6047 0.0781
cs2 0.2163 0 0.5994 0.0782
cs3 0.2163 0 0.5994 0.0782
cs4 0.2163 0.6169 2.1080 0.0877
cs5 (tol = 5) 0.2163 2.3114 0.5994 1.1816
cs6 (p = 1) 0.1350 0 0.6229 0.07812
cs7 0.2163 5.9470 5.5298 0.5015
cs8 0.2163 0.0032 0.6014 0.1308
select. intp. 1 1 2 1
select. appr. 6 6 5 6
overall select. 6 1 2 1

method /
interval 5 6 7 8
cs1 1.1685 2.2497 1.1424 0.0884
cs2 1.1686 2.2514 0.1433 0.0884
cs3 1.1686 2.2514 0.1430 0.0883
cs4 1.4510 2.3485 0.1615 0.0991
cs5 (tol = 5) 2.9430 2.2514 2.2073 0.0884
cs6 (p = 1) 1.1687 2.2496 0.1646 0.0884
cs7 6.9127 6.2323 0.8617 1.0675
cs8 1.1850 3.8347 0.1430 0.2551
select. intp. 1 1 1 1
select. appr. 6 6 8 6
overall select. 1 6 1 6

Table 1: Approximation errors for all methods in
all intervals
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phores. In Méthodes classiques et méthodes
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