
A Flexible Concept for Automatic Visual Inspection

Robert Sablatnig

Technical University Vienna, Institute of Automation,
Pattern Recognition and Image Processing Group

Treitlstr. 3 / 183-2, A-1040 Vienna, Austria
e-mail: sab@prip.tuwien.ac.at

Abstract

This work aims to show a systematic automated visual inspection concept that speeds up the
development of such systems by providing a software reuse and setup concept. A new, highly
adaptable concept for visual inspection separates the detection of primitives from the model-
based analysis process. This separation is reached by defining a general analysis graph for in-
spection, containing detail relations that represent detection algorithms. Together with an object
specific description, defined in a so called description language, the analysis graph is instan-
tiated. Existing pattern recognition software is re-used in the detection stage and therefore the
use of any detection algorithm is possible without changing the analysis. The flexible visual in-
spection concept is based on a systematic approach, that is able to increase the degree of flexi-
bility and thus to decrease the set-up costs taking into account different type of data, positio-
ning, occlusions and tolerances. The concept can be seen as "recipe" for solving industrial ap-
plications, stating at which stage, which kind of decisions have to be made.

The visual inspection of analog display measuring instruments serves as a demonstration of
this concept. The flexibility of the concept is demonstrated by testing the analysis process with
the description of two instruments (a hygrometer and a clock), which is performed by adapting
the analysis graph but without changing the detection algorithms. Since the detection is repre-
sented as detail relation in the analysis graph, a change of the detection algorithm is possible
without changing the overall analysis. The separation of detection and analysis therefore en-
sures, that any existing pattern recognition software can be re-used.

1 Introduction

Industry needs automated visual inspection (AVI) because in the manufacturing process uncer-
tainties like tolerances, defects, relative position and orientation error, etc. exist, which can be
resolved by vision sensing [FRE89]. Vision has undergone a development of over 30 years of
research (in the computer vision field) and application (in the machine vision field), resulting
in a wide range of different algorithms and systems. The problem is how to match the tech-
nology to a specific application in an optimal, cost-effective way. From the viewpoint of
industry there are three main difficulties for automated visual inspection to be used widely:
• Cost: Development costs are still too high; vision software development, in particular

makes up a substantial portion of the cost of a new application.
• Technology: At present AVI systems require controlled environment and precise positio-

ning, are unable to handle shadows, highlights, and occlusions [CHI92].
• Ad hoc solutions: Solutions to ensure robustness are very specific in their application

[MAR92]. This approach seems to be the best way to solve a particular problem since such
solutions are dealt with case-by-case and tend to be simpler, more compact, and cheaper,
but customized techniques for specific problems cannot be duplicated or reused.

The major drawbacks are the high set-up costs resulting from the extensive pre-inspection
set-up by experienced operators, hard- and software development costs, labor, and maintenance
costs. The key to solving the problem of flexibility is the development of visual inspection sys-
tems which are able to inspect a large variety of different objects without or only partly
changing the analysis algorithm. In short, there is a requirement for generic visual inspection
cells based on the principles of "Soft Automation", in which product modelling is coupled with
flexible manufacturing systems and flexible inspection cells which can produce any product
with the minimum of design and quality control constraints [TOD88].

A systematic approach ensures that costs are reduced, due to re-usable systems and that less
qualified personnel can operate them, with the help of a user interface. As far as speed and
technology are concerned, faster hardware is under development (the processing speed doubles
every year), so that better algorithms can be used to solve vision problems. At present, how-
ever, these systems are not available; there are only prototypes in use and almost no new con-
cepts can be found in the literature. The main reason for this is company politics; developments
made by so-called Machine Vision Companies are not reported in the literature, since com-
petitors in the market could use these concepts and sell them better. In the academic field only
a few researchers are working on systematic AVI, the majority is trying to adapt computer
vision algorithms to machine vision applications (see [NEW95]), struggling with system engi-
neering problems [BAT96]. Therefore, work on this topic helps to advance progress in AVI.

This paper shows a new visual inspection concept that speeds up the development of AVI
systems by providing a concept for software re-use and systematic set-up, adding a higher
degree of flexibility to the inspection system. This flexibility decreases the set-up costs by
taking into account different types of data, positioning, occlusions and tolerances. The speed
constraint in terms of hardware will not be discussed, since processing capability is still
increasing and price is decreasing. The global concept is explained in the following section.
Following a case study of the concept for different types of analog display instruments in
section 3 the concept is discussed in the conclusion.

2 Visual Inspection Concept

The AVI system design cost has already been reduced

Figure 1 General inspection system concept

by the development of libraries of image processing
algorithms (e.g. Matrox Image Library [MAT96]) or
interactive image processing systems (like Khoros
[KHO95], KBVision [AME95], and Matrox Inspector
[MAT96]), which allow rapid prototyping and the re-
use of algorithms. However, it is unlikely that the
common inspection system user will have the relevant
image processing expertise to be able to set up an
inspection system. If image processing systems are to
be adopted and used for inspection, it is essential to
reduce the expertise required in the configuration of
the inspection system [BOD95].

One solution in designing a flexible visual inspection system lies in the separation of the
application-independent feature detection from the application-dependent analysis, forming the
model-based AVI system [SAB95,SAB96]. Figure 1 shows the off-line part of the proposed
concept (rectangles indicate processes, rounded rectangles data). This part is called off-line since
it is not performed at the speed of the production line. The generated executable inspection sys-
tem is used on-line, i.e., it works within the production line flow.

2.1 Inspection Model Generation

All visual inspection systems use a priori knowledge to perform the inspection. Therefore, the
first step in the set-up of an inspection system is the off-line generation of the inspection model.
The goal of the inspection model generation is to provide a description of complex objects
using a small set of simple primitives and relations (or structural rules). Due to the structural
rules this approach is referred to as structural or syntactic pattern recognition approach [FU82,
BUN92]. Syntactic methods use the internal object structure as an analysis element, based on
the fact that an object can be described recursively from simple primitives through its structure.

In order to provide a general concept, primitive types are not limited or constrained. The
application type (binary or intensity images,from cameras, X-ray, ultrasonic, range sensors and
other), data type (sparse, dense, noisy) is thus application dependent. Generally, the following
constraints for choosing primitives have to be considered [DAR88,SAB96b]:
• Primitives should have a unique name and there should be a finite number of primitives.
• Primitives should be independent, i.e. not defined in terms of each other.
• The set of primitives should be compact. No subset should be replaceable by smaller sets.
• Primitives should be comprehensive. They should be basic pattern elements to provide com-

pact but adequate description of patterns in terms of specified structural relation.

The object structure (shape primitives and properties) is represented in a description lan-
guage consisting of a graph structure in which nodes represent primitives and arcs relations bet-
ween primitives. A priori information concerning the quality standard (e.g. manufacturing and
detection tolerances) are also part of the model. Modeling can be interpreted as a syntactic pat-
tern recognition approach in which primitives are transformed into a vocabulary and relations
are transformed into a grammar [FU82]. This concept can be seen as an application of semantic
networks [DAR88], since semantic networks are labeled, directed graphs where nodes represent
objects, sub-objects, or shape primitives and arcs represent relations between them. A set of
attributes that describe different object features is attached to each node; a set of attributes that
describe different properties is attached to each arc. Once the object is transformed into this re-
presentation operations for recognition, verification, and inspection can be executed on this
graph structure. The advantage of a description language lies in the uniqueness of represen-
tation, different objects result in different descriptions.

Formally, the description language is a graph G=<O,R>, where O= denotes
the set of nodes and R={ O} the set of arcs. A node O consists of different sub-ob-
jects or primitives. Each node has different attributes a, with weights w, and tolerance T(a) de-
fined as:

, (1)

where c is the tolerance, and amod denotes the

Figure 2 Description language graph

value of attribute a in the model and aimg the
value of the property a in the image.

Two nodes in relation according to R.
Each relation <c,d> is decomposed into k
subrelations between the same nodes, each
with a weight v and a tolerance T(r) defined
analog to weights and tolerances of attri-
butes. Figure 2 shows the resulting graph
and the inner structure of nodes and arcs.

The weights w and v are necessary for the model verification. Each of the geometrical, po-
sitional, and relational properties has a certain weight in order to verify the corresponding des-
cription to a given image. Since these weights are influenced by the data and therefore applica-
tion dependent, they have to be fixed during the set-up procedure. The verification of image to
description consists of verifying whether the number and type of features and primitives are the
same. Next, attributes and relations are checked whether they match within given tolerances.
The verification process is carried out by comparing all attributes of a node and its successors
with the model. The confidence for a node can be computed based on the result of the
comparison:

(2)

By computing the consistency for different descriptions the one with the highest confidence
value can be chosen if the confidence is above a certain threshold. The use of weights allows
a two step identification; primitives with high weights are first detected and checked, next pri-
mitives with low weights are postulated on a certain position and verified.

2.2 Detection

The success of feature-based inspection techniques depends on the quality of feature detection.
Expert systems have been developed and used to solve and refine feature detection. Problems,
such as edge detection and region extraction, to name the most important in 2-d feature detec-
tion, belong to the mathematical class of inverse ill-posed problems [POG85]. There exists no
unique and stable transformation function that can build a specific description starting from an
arbitrary observation. To overcome this problem, one has to reduce the number of acceptable
solutions by introducing a priori knowledge of the problem space on the solution space and
considering the detection process as being decomposed into a sequence of sub-problems that
are either well-posed problems or problems for which regularization methods exist [CRE93].

Feature detection algorithms are composed of detection components. Different components
(like different edge detectors) have to be arranged to find an optimal solution in terms of quali-
ty and performance. To be able to use different components, a common interface has to be de-
fined for the components and if different algorithms should be used to detect the same type of
primitive a defined interface has to exist for algorithms too. An interface specification describes
the function of the component or algorithm. The effects of the component’s or algorithm’s exe-
cution on program state are described in the definitions provided by the primitives.

2.3 Analysis

The description language provides the inspection model, generally the inspection could take
place based on this model. Since performance and speed are crucial and the verifying phase is
a graph isomorphism problem whose general case is known to have NP complexity [EVE79],
the semantic information stored in nodes and arcs decreases complexity.

The analysis is formulated in a hierarchical graph structure. It represents the space of all
possible problem solutions in the particular domain. A solution is formulated by instantiating
the graph to form a unique solution. Each node in represents an element of the solution called
cell, i.e. an image processing task like Sobel edge detection or a working step like image ac-
quisition. The arcs between the nodes represent one of the following semantic relations:
• Subdivide relation: This is a n- ary relation representing a subdivision of a cell into its con-

stituent set of sub-cells. For example image acquisition can be subdivided into CCD size,

upper and lower threshold for transistor response, and frame transfer to name a few. Each
subdivide relation has a weight, which allows an ordering of relations within the graph,
subdivide relations with equal weights may be executed in parallel.

• Optional subdivide relation: This is a n- ary relation allowing optional subdivisions of a
cell providing alternative subdivisions. For example, a segmentation can be performed by
using region growing or optionally by split and merge. The relation is again provided with
weights. If there are optional subdivisions that have to be performed together, this is deno-
ted by an arc in the graph.

• Detail relation: This is a relation between a cell and a detail of the cell. For any cell there
may be a number of different possible details. For example a cell representing edge detec-
tion could be detailed in Roberts, Sobel or Canny algorithm.

Each cell can have a set of in- and outputs, which can be connected to in- and outputs of
other cells in the analysis graph, representing the data-flow. The hierarchy in the graph is kept,
the output of one cell in one level may be interconnected to the input on the same level, the
in- and outputs of cells in different levels represent the same values.

The building up of the analysis graph for inspection can be generalized, since inspection

Figure 3 General analysis graph

differs only in the description and detection, the overall process is common to all of the inspec-
tion problems. Figure 3 shows the general analysis graph for inspection. The input of the object
inspection graph is the description, the output is the result of inspection. The object inspection
can be (non-optionally) subdivided into:
• Image acquisition: The image and its statistical parameters like noise distribution are output

of this cell.
• Feature determination: The feature determination determines specific parameters of features

(like position and size), within the image. Depending on the image acquisition, feature
determination can be subdivided into:
• Object detection: The object has to be located and its size has to be determined, and
• Feature detection: Within the object, features used for inspection have to be located.

Optionally, if the image acquisition parameters are fixed (the object has always approxima-
tely the same position, orientation and size) these two cells can be replaced by:
• Hypotheses generation: Hypotheses about the position, orientation and size of all

features are generated with the help of the description.
• Hypotheses verification: The specific parameters of the features, either determined by detec-

tion or by the generation, are checked whether they match with the description using
features, which were not used up to this step.

• Model matching: The final step of analysis matches the actual parameters of the features
with the description, thus producing the result of inspection.

The weights of the analysis graph are set in accordance with their probability of detection.
If some primitives can be found accurately with high probability, they get a high weight. Primi-
tives with high weights are searched first, if they can be found, primitives with lower detection
probability are predicted in a specific part of the image (a hypothesis generation) and then
checked for their presence (a verification of the hypothesis).

2.4 Inspection System Generation

Following the preliminary system test, the user has to check, whether the inspection system ad-
heres to the industrial constraints. If they are not adhered to, strategies to solve the problem
have to be developed. This interactive adaption of the inspection process results in a new in-
stantiation of the analysis graph and possibly in a reduction of features to be looked for. The
new inspection process has to be tested again if it attains the constraints within the testset of
defect-free ("gold") and defect-images. This test determines the rate of false negatives, i.e. the
number of objects classified as defective in the "gold" series, and the rate of false positives, i.e.
the number of objects classified as defect-free in the defect-images series.

The final inspection system test shows if the inspection system performs correctly with de-
fect and defect-free images, determining computation time, performance and accuracy. If one
or more of the results are not satisfactory, an adaption of the inspection process has to take
place. If the results are far from being satisfactory, a complete re-design of the image acquisi-
tion and illumination is necessary. If all parameters lie within the constraints, the final inspec-
tion system is ready, description language and analysis graph together with the detection algori-
thms are used to perform the inspection. Nevertheless, since the inspection system was set up
using a limited number of images, it has to be monitored during the first operational use.

3 Calibration of Analog Display Instruments

This chapter shows the applicability of the inspection concept proposed in the previous chapter
on the case study of Analog Display Instruments (ADI). This type of instrument serves as a de-
monstration since there are various different types of measuring instruments with innumerably
different displays and layouts, but all of them have certain common properties which can be
used to build up a specific description.

3.1 Primitives of Analog Display Instruments

The generation starts with a definition of the primitives of

Figure 4 Primitives of a hygrometer

ADI’s, which are not necessarily the same as the primitives
for generic detection, since non parametric primitives are
added in this definition step. Three primitives describe ana-
log measuring instruments (see Figure 4):
• Pointer: A pointer can have any symmetric shape such

as line, triangle, rectangle or a combination of them. In
addition, pointers that rotate have a circle at their center
of rotation (see Figure 4). The shape is defined by a
primitive, a combination of them, or in the case of a
shape that is not easily represented by primitives, by a bitmap, containing one half of the
shape and the medial axis.

• Scale: The shape of a scale depends on the motion of the pointer, scales with rotating poin-
ters have the shape of a circle or a circular arc. Pointers moving straight have rectangular
scales.

• Lettering element: They carry information about the measurement and the orientation. and
includes all writings such as unit, company name, firm’s symbol, maker’s emblem.

The nodes of the description contain the shape features of the object. They have the follow-
ing generic parameters, all of them are defined in an object-centered coordinate system referred
by the origin in image coordinates:
• Measuring instrument: type (for every measuring instrument type there must be a descrip-

tion that allows a distinction of the measuring instrument), shape (shape of the instrument:
circle, rectangle, triangle, free form ...), origin (origin of the object centered coordinate sys-
tem in x,y coordinates), size (size of the instrument in pixel and millimeters), number of
measuring units (n), number of lettering elements (m), absolute measurement value (mvn,
measurement value in measurement unit).

• Measuring unit: normalized measurement (c, states the relative measurements in units),
measurement digits (e, states which digit of the unit is displayed), unit (u, unit of measure-
ment of the scale), offset (o, origin of measurement).

• Scale: symmetric scales can have three different shapes with following parameters: type
(circular, elliptic, or rectangular), size (radius(r), or we,he, or height(h)), origin (ps0), orienta-
tion (αs0), graduation (αsg or dsg), range (αsr, or width (w)).

• Pointer: type (circular or rectangular), shape (bitmap or line with length and offset or rec-
tangle with length and with), origin, position (αp or pp, variable).

• Lettering: type (bitmap, string, geom. primitive), origin (pl, in x,y coordinates), content
(bitmap, string, geometric primitive), size (width and height in pixels).

Following the definition of primitives, relations between them complete the description. The
basis for the generic parameters of the spatial relations are again the results gained from generic
detection. All other relations, like measurement value, have to be added. For analog display
instruments following relations (conditions, equations,..) among primitives which are defined
in the grammar of the description language, further rules can be added [SAB96]:
• At the level of a measuring unit:

R1: type(pointer) = type(scale)
R2: For circular scales only: origin(pointer) = origin (scale)

R3: (unit independency) or

R4: (range constraint) or

• At the level of a measuring instrument:
R5: Measuring units on the same measuring instrument are related through their posi-

tion. Note that different measuring units may be overlaid at the same position.
R6: Lettering elements are related through their position
R7: (measurement digits) where i = 0..n denotes the measuring unit

R8: (measurement) where u0 = 1

Following the definition of

Figure 5 Description language for analog display instruments

primitives, relations, and generic
parameters, the graph forming
the description language is de-
fined. The hierarchical structure
is built up in a top-down man-
ner; it starts with the abstract
class of measuring instrument
and ends up in the primitives.
Figure 5 shows the description
for ADI’s including parameters.

The root of the graph is the
primitive "Measuring instru-
ment", which is subdivided into
n "Measuring units" and m "Let-
tering" elements. A common in-
strument like a hygrometer has
only one measuring unit, but a
clock for instance has normally 3 measuring units. Therefore, this sub-hierarchy is necessary.
Every measuring unit is subdivided into one "Pointer" and one "Scale", all the previously de-
fined primitives are the leaves of the graph. This general description language allows a repre-
sentation of any analog display instrument in a separate graph, constructed out of the results
of the generic detection. Weights and tolerances are added during the analysis step.

Figure 6 shows an example for a manometer with a temperature scale. The description
results in two different measuring units, temperature and pressure.

Figure 6 Examples for specific descriptions

3.2 Analysis Graph for Analog Display Instruments

The next step in generating an inspection system for ADI’s is the construction of the analysis
graph. The general analysis graph is applied to the specific problem. In- and output parameters
are described at the top level of the graph only, to simplify the graph. This general concept is
used for the definition of the analysis graph for ADI’s.

For the example of manometer inspection, the imaging parameters are supposed to be un-
known. Therefore, the analysis graph of the manometer (Figure 7) has two subdivisions of the
node feature determination. First the manometer is detected using a circle detection, defining
the origin of the object-centered coordinate system. Since the origin of the two scales is the
same as the origin of the instrument, only one lettering element has to be looked for to deter-
mine the orientation of the scales (i.e. "NH3" is looked for using a pattern matching technique
along a circle in a known distance). To verify the result, the lettering element "15" is checked
by hypotheses verification, i.e. using an OCR algorithm. If the test is successful the positions

of the 2 pointers are

Figure 7 Analysis graph: manometer

determined. In this
example pointer 2
cannot be detected
since it is outside of
the scale range.
Since the orientation
of the scales and the
position of one poin-
ter are known, the
measurement unit
determination, com-
puting the angle bet-
ween the origin of
scale 1 and the
pointer 1 is per-
formed. In this example, the measuring instrument value determination has the result mv1= -0.01
and mv2= not valid.

3.3 Results

Two examples were chosen to show that the des-

Figure 8 Result hygrometer (mvn= 41% hum.)

cription language and the analysis graph together
with detection algorithms can handle different
types of analog display instruments:
1. Hygrometer: The appropriate description and

analysis graph were used. Furthermore, two
circular lettering elements to define the orien-
tation and the pointer are detected. Figure 8
shows the result for the test image; a humidity
of 41% was the correct result.

2. Watch: With the description of the clock, ge-

Figure 9 Result for a watch (mvn = 4:54:31 h)

nerated by interactive definition of the primi-
tives the analysis produced the result shown in
Figure 9. In our test series (20 samples) all
pointer positions were computed exactly, the
time was correctly read in all images.

The working time for adapting the description
and the analysis graph interactively was approx.
1.5 hours each for the hygrometer and the clock. To solve the problem of overlapping pointers,
the minutes hand was searched first. If the other hands could not be detected, they were
assumed to be overlaid by the minutes hand.

The examples were simulated applications, therefore concrete data about reliability and ac-
curacy cannot be given. Image acquisition, illumination, and image series with golden and de-
fect images of different objects of the same type should be used to determine these parameters.
However, the three additional examples showed that the claimed flexibility of the concept is
given by adapting description and analysis graph to the specific object.

4 Conclusion

In this paper a concept for visual inspection has been presented in which the detection of pri-
mitives was separated from the analysis. This separation was achieved by defining a general
analysis graph for inspection, containing detail relations that represent detection algorithms.
Existing pattern recognition software was re-used for detection. The use of any detection algo-
rithm was possible by changing the analysis graph instantiation in the detail relation, the overall
analysis process stayed the same. Together with an object specific description, defined in a so
called description language, the analysis graph was instantiated. This systematic approach to
inspection allows its application to a wide range of inspection problems. It can be seen as a "re-
cipe" for solving industrial applications, stating at which stage which kind of decisions have
to be made. The systematic approach also permits a high degree of flexibility since it contains
application specific and application independent parts.

The applicability of the inspection concept was demonstrated on the case study of analog
display instruments. This type of object served as a demonstration since there are various diffe-
rent types of instruments with innumerable different layouts, but all of them have common pro-
perties which were used to build up a specific description language. Examples demonstrated that
the ADI analysis graph can be used to inspect specific instruments (hygrometer and clock).

5 References

[AME95] Amerinex Artificial Intelligence Inc., 409 Main Street, Amherst, MA 01002, USA, "The KBVision System - User’s
Guide", 1995.

[BAT96] B.G. Batchelor, P.F. Whelan, "Machine vision systems: Proverbs, Principles, Prejudices and Priorities", Proc. of
SME Conf. on Applied Machine Vision, Cincinnati, pp. 7-19, 1996.

[BOD95] R. Bodington, "A Software Environment for the Automatic Configuration of Inspection Systems", Proc. of Intl.
Workshop on Knowledge- Based Systems for the (Re)Use of Program Libraries, Sophia Antipolis, France, Vol.1,
pp.100-108, 1995.

[BUN92] H. Bunke, A. Sanfeliu, "Statistical and Syntactic Models and Pattern Recognition Techniques", in: C. Torras (Ed.),
"Computer Vision: Theory and Industrial Applications", Springer Verlag, New York, pp.215-266, 1992.

[CHI92] R.T. Chin, "Automated visual inspection algorithms", in: C. Torras (Ed.), "Computer Vision: Theory and
Industrial Applications", Springer Verlag, New York, pp.377-404, 1992.

[CRE93] D. Crevier, "Expert Systems as Design Aids for Artificial Vision Systems: A Survey", Proc. of SPIE, Vol.2055,
pp.84-96, 1993.

[DAR88] A.M. Darwish, A.K. Jain, "A rule-based approach for visual pattern inspection", IEEE Trans. Pattern Anal. Mach.
Intell., Vol.10, No.1, pp.56-58, 1988.

[EVE79] S. Even, "Graph Algorithms", Computer Science Press, Rockville, 1979.
[FRE89] H. Freeman, M.Y. Chiu, D.D. Dreyfuss, I. Gorog, "Is Industry Ready for Machine Vision?", in: H. Freeman (Ed.),

"Machine Vision for Inspection and Measurement", Academic Press, Inc., 1989.
[FU82] K.S. Fu, "Syntactic Pattern Recognition and Applications", Prentice- Hall, Englewood Cliffs, New Jersey, 1982.
[KHO95] Khoral Research Inc., USA, "KHOROS Program Services - User’s Guide", 1995.
[MAR92] A.D. Marshall, R.R. Martin, "Computer Vision, Models and Inspection", World Scientific, 1992.
[MAT96] Matrox Electronic Systems Ltd., 1025 St. Regis Blvd., Dorval, Quebec, H4P 2T4, Canada, "Matrox Imaging

Library (MIL) - Product Overview", 1996.
[NEW95] T.S. Newman, A.K. Jain, "A Survey of Automated Visual Inspection", Comput. Vision, Graphics, Image

Processing, Vol.61, No.2, pp 231-262, 1995.
[POG85] T. Poggio, C. Koch, V. Torre, "Computational Vision and Regularization Theory", Nature, Vol. 317, pp. 314-319,

1985.
[SAB95] R. Sablatnig, "A highly adaptable Visual Inspection Concept by Separating Detection and Analysis Process",

Proc. of Intl. Workshop on Knowledge- Based Systems for the (Re)Use of Program Libraries, Sophia Antipolis,
France, Vol.2, pp.25-27, 1995.

[SAB96] R. Sablatnig, "Flexible Automatic Visual Inspection based on the Separation of Detection and Analysis", Proc.
of 13th International Conference on Pattern Recognition, Vienna, Vol. 3, pp. 944-948, IEEE-Computer Society
Press, 1996.

[TOD88] J.D. Todd, "Advanced Vision Systems for Computer-Integrated Manufacture -Part 1", Computer Integrated Manu-
facturing Systems, Vol.1, No.3, pp.143-154, 1988.

