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Abstract In order to create a complete three-dimensional
model of an object based on its two-dimensional images, the
images have to be acquired from different views. An increas-
ing number of views generally improves the accuracy of the
final 3D model but it also increases the time needed to build
the model. The number of the possible views can theoreti-
cally be infinite. Therefore, it makes sense to try to reduce
the number of views to a minimum while preserving a cer-
tain accuracy of the model, especially in applications for
which the performance is an important issue. This paper
shows an approach to Next View Planning for Shape from
Silhouette for 3d shape reconstruction with minimal differ-
ent views. Results of the algorithm developed are presented
for both synthetic and real input images.

1 Introduction

One possibility for obtaining multiple views is to choose a
fixed subset of possible views, usually with a constant step
between two neighboring views, independent on the shape
and the complexity of the object observed. This is illus-
trated in Figures 1a and 1b, which show a reconstruction of
a corner of a square by drawing lines from the point O with a
constant angle between two lines and connecting the points
where the lines intersect the square. We can see that the
corner reconstructed using 9 lines (Figure 1b) looks ”better”
than the one reconstructed using 5 lines (Figure 1a), but also
that neither of these two methods was able to reconstruct the
corner perfectly. In addition to this, some of the views (20◦

in Figure 1a and 10◦, 20◦, 30◦, 60◦ and 70◦ in Figure 1b)
could have been omitted — without them the reconstruction
of the corner in Figures 1a and 1b would have been exactly
the same.

This simple example illustrates the need for selection of
views based on the features of the object — this is called
Next View Planning (in short, NVP). For the square from
Figure 1, if we had a way of selecting the significant views
only, we could reconstruct the corner of the square perfectly
using 3 views only, as shown in Figure 1c.

A thorough survey of Next View Planning, also called
Sensor Planning, is given in [19]. Tarabanis et al. [19], sum-
marize the NVP problem as follows: ”Given the informa-
tion about the environment (e.g., the object under observa-
tion, the available sensors) as well as the information about

the task that the vision system is to accomplish (i.e., detec-
tion of certain object features, object recognition, scene re-
construction, object manipulation), develop strategies to au-
tomatically determine sensor parameter values that achieve
this task with a certain degree of satisfaction”. Following
this definition, in order to design an NVP algorithm for a
given computer vision task, one has to identify the sensor
parameters which can be manipulated (e.g., the position of
the camera) and define the ”degree of satisfaction”, i.e., con-
struct a metrics for evaluation of the parameter values pro-
posed. The number of parameters that can be manipulated
is also called the number of degrees-of-freedom. Increasing
number of degrees of freedom increases the complexity of
an NVP algorithm.

(a) (b) (c)

20

40

60

10

50

0

80

0
20

40

80

60

0

80

45
30

70

O O O

Figure 1: Reconstruction of a square corner

There are several computer vision tasks which can incor-
porate an NVP problem, differing in the necessary amount
of an a priori knowledge about the object, the sensors and
the environment:

• Object feature detection: here the goal of NVP is to deter-
mine the sensor parameters values for which the particu-
lar features of a known object in an image satisfy certain
constraints, such as being visible and in-focus [5, 20].
A considerable amount of a priori knowledge about the
approximate pose of the object and the environment is
required.

• Visual inspection: this is a sub-area of object feature de-
tection — a typical task of visual inspection is to deter-
mine how accurately a particular object has been man-
ufactured [22, 21, 12]. A nearly perfect estimate of the
geometry and the pose of the object have to be known.

• Model-based object recognition: in this area NVP tries
to find the sensor parameter values which make it pos-
sible to identify an object and/or estimate its pose in a
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most accurate and efficient way [7, 8]. Based on models
of sensors and possible objects, a search on object’s iden-
tity and pose is performed, usually using the hypothesize-
and-verify method: in the first step, the hypotheses re-
garding the object’s identity and pose are formed; then,
these hypotheses are evaluated according to certain met-
rics; finally, the new sensor parameter values are pro-
posed based on a given criterion until a stopping condi-
tion is met.

• Scene or object reconstruction: in this case, the task of
NVP is to find the best values of the sensor parameters in
order to build a model of an unknown scene or object [11,
4, 14, 16]. A model is built incrementally, guided by the
information about the scene/object acquired to this point.
Usually there is no a priori known scene information.

The approach presented in this work falls into the cate-
gory of object reconstruction. For this task, many different
NVP strategies have been developed: Maver and Bajcsy [14]
proposed an NVP algorithm for an acquisition system con-
sisting of a light stripe range scanner and a turntable. They
represent the unseen portions of the viewing volume as 2

1

2
D

polygons. The polygon boundaries are used to determine the
visibility of unseen portions from all candidate next views.
The view which can see the largest area unseen up to that
point is selected as the next best view.

Connolly [4] used an octree to represent the viewing vol-
ume. An octree node close to the scanned surface was la-
beled as seen, a node between the sensor and this surface as
empty and the remaining nodes as unseen. Next best view
was chosen from a sphere surrounding the object. Con-
nolly proposed two NVP algorithms: one called planetar-
ium, which used a form of ray tracing to determine the num-
ber of unseen nodes from each candidate view and selected
the one seeing the most unseen nodes, and a normal algo-
rithm, which selected the next best view from 8 candidate
positions only and did not take occlusions into account, and
therefore was significantly faster.

Whaite and Ferrie [23] use the range data sensed so far
to build a parametric approximate model of the object. The
view from which the data fits the current model the worst is
chosen as the next best view. This approach does not check
for occlusions and does not work well with complex objects
because of limitations of a parametric model.

Pito [16] uses a range scanner which moves on a cylindri-
cal path around the object. He partitions the viewing volume
into its seen and unseen portions, and defines the surface
separating the two volume portions as void surface. This
surface is approximated by a series of small rectangular ori-
ented void patches. In his positional space (PS) algorithm,
the next best view is chosen as the position of the scanner
which samples as many void patches as possible while re-
sampling at least a certain amount of the current model.

Our approach is based on the work of Liska [10], who
uses a system consisting of two lasers projecting a plane
onto the viewing volume and a turntable. The next best
view (the next position of the turntable) is computed based
on information from the current and the preceding scan. In
each of the two scans the surface point farthest from the

turntable’s rotational axis is detected as well as the corre-
sponding point in the other scan. The pair of points with
the greater change in the distance from the rotational axis is
used to determine whether the current turntable step should
be enlarged or made smaller.

This paper is organized as follows: Section 2 describes
the basic Shape from Silhouette method used to perform the
3d model reconstruction and Section 3 presents the Next
View Planning method developed. Experimental results
with both synthetic and real data are given in Section 4. At
the end of the paper conclusions are drawn and future work
is outlined.

2 Shape from Silhouette

Shape from Silhouette is a method of automatic construction
of a 3D model of an object based on a sequence of images of
the object taken from multiple views, where the object’s sil-
houette represents the only interesting feature of an image
[18, 17]. The object’s silhouette in each view (Figure 2a)
corresponds to a conic volume in 3D space (Figure 2b). A
3D model of an object (Figure 2c) can be obtained by inter-
secting the conic volumes, which is also called Space Carv-
ing [9]. Multiple views of the object can be obtained either
by moving the camera around the object or by moving the
object inside the camera’s field of view. In our approach
the object rotates on a turntable in front of a stationary cam-
era. Shape from Silhouette can be applied on objects of arbi-
trary shapes, including objects with certain concavities (like
a handle of a cup), as long as the concavities are visible from
at least one input view.

(a) (b) (c)

Figure 2: Image silhouettes (a), a conic volume (b) and the final
model (c)

There have been many works on construction of 3D
models of objects from multiple views [1, 13, 3, 17].
Szeliski [18] first creates a low resolution octree model
quickly and then refines this model iteratively, by intersect-
ing each new silhouette with the already existing model.
Niem [15] uses pillar-like volume elements instead of an
octree for the model representation. Wong and Cipolla
[24] use uncalibrated silhouette images and recover the
camera positions and orientations from circular motions.
In recent years there have been also Shape from Silhouette
approaches based on video sequences [6, 2]. The work
of Szeliski [18] was used as a base for the Shape from
Silhouette part of the method.

3 Next View Planning Approach

Our idea was to implement a simple and straight-forward
NVP algorithm which will at least nearly preserve the accu-
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racy of the models built using all possible views while reduc-
ing the number of views significantly. In most of the object
reconstruction tasks which involve some kind of Next View
Planning, the NVP algorithm is part of the model building
process and is guided by some features of the partial model
built based on preceding views. In our 3D modeling ap-
proach the acquisition of multiple views of an object and
the actual object reconstruction are separated tasks — the
modeling algorithm takes the images acquired as input and
does not perform any view planning itself. Therefore, our
goal was to design an NVP algorithm which does not need
the partial model but uses only the features of the images
acquired.

The acquisition system consists of a turntable, two cam-
eras and a laser. The cameras and the laser are fixed while
the turntable can rotate around its rotational axis. That
means, our system has one degree of freedom. The minimal
rotation angle of the turntable is 1◦. Therefore, the maximal
number of views for our system is 360. With one degree of
freedom and 360 possible views our acquisition system is
fairly simple from the NVP point of view. Having the addi-
tional constraint of using the features of the images only, we
propose a simple approach which takes only the current and
the preceding image to decide what the next rotational step
of the turntable will be. It defines a normalized metric for
comparison of the current and the preceding image. If the
change is less than or equal to the maximal allowed change
then the step is doubled. If the change is higher than the
maximal change, then the current image is discarded and
the turntable moves back by half the current step. In spe-
cial cases where doubling the step exceeds the maximum or
halving the step falls below the minimum, the new step is
set to the maximum or minimum, respectively.
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Figure 3: Change between two silhouette images

The only information provided by a pixel in a silhouette
image is whether the pixel represents the object or the back-
ground. Following the notation common in NVP, we define
a pixel representing the object as seen and a pixel represent-
ing the background as empty. Note that in a silhouette image
there are no occlusions — the value of a pixel depends only
on whether in the conic volume defined by the pixel there
is a 3D point belonging to the object. Therefore, there can
not be any unseen pixels, i.e., pixels for which we can not
be sure whether they should be marked as seen or empty. In
a binarized silhouette image all white pixels are seen and all
black pixels empty. Therefore, our NVP algorithm binarizes
an acquired image and compares two binary images in the
following way (illustrated in Figure 3): it counts all pixels
which are seen in one and empty in the other image; in order
to normalize this value, it is divided by the number of pixels

which are seen in at least one of the images.
With this metric definition, if two silhouette images are

identical, the change is 0, and if the silhouettes do not inter-
sect at all, it is 1. Note that calculating the change uses fea-
tures of the images only and none of the information about
the geometry of the acquisition system. This means that the
system does not need to be calibrated prior to applying the
NVP algorithm. Our NVP approach performs these steps:

1. Parameters are initialized. The user sets the initial step
αinit and the maximal step αmax (αinit ≤ αmax), as
well as the maximal allowed change Cmax between two
subsequent images. This change is assumed to be nor-
malized, i.e., 0 ≤ Cmax ≤ 1. The minimal step αmin

is implied by the resolution of the turntable (1◦ for our
turntable).

2. The first image I1 is taken. The current step αcurr is set
to the initial value: αcurr = αinit. Number of acquired
views n is set to one: n = 1.

3. If the turntable already has made a complete revolution of
360◦, we are done. Otherwise, the turntable is rotated by
the angle αcurr, the image In+1 is taken and we continue
with Step 4.

4. The change Ccurr between the images In+1 and In is
evaluated. If Ccurr ≤ Cmax or αcurr = αmin the image
In+1 is accepted, jump to Step 6. Otherwise the image
In+1 is discarded, continue with Step 5.

5. The step αcurr is halved: αcurr =
1

2
· αcurr. If αcurr

became smaller than αmin it is set to αmin. The turntable
is rotated by−αcurr (i.e., back by the half of the previous
step). Go back to Step 4.

6. Increment the image counter n by one and double the
step αcurr: n = n + 1, αcurr = 2 · αcurr. Jump back to
Step 3.

4 Results

Experiments were performed with both synthetic and real
objects. For synthetic objects we built a model of a virtual
camera and laser and created input images such that the im-
ages fit perfectly into the camera model. As synthetic object
we created a virtual cuboid with dimensions 100× 70× 60

mm. For tests with real objects we used 6 objects: a metal
cuboid, a wooden cone, a globe, a coffee cup, and two ar-
chaeological vessels. The real volume of the first 3 objects
can be computed analytically, for the other objects we can
only compare the bounding cuboid of the model and the ob-
ject.

The user definable parameters for NVP are the maximal
and the initial step between two neighboring views, as well
as the maximal allowed difference between them. The pa-
rameter with the greatest impact on the number of the views
selected is the difference between two images. For all ob-
jects presented the range is from 2–15%. It was low for
highly symmetrical objects (the cuboids and the cone) and
high when the object was not placed in the center of the
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turntable. For all objects the maximal step was set to 16◦

and the initial to 4◦.

In order to evaluate the NVP-based models, we compare
them with models built with a fixed number (60) of equian-
gular views and with models built using all 360 possible
views. We expect to see that the volume of NVP-based
models is closer to the volume of models built using all
views than the models built with equiangular views. Fig-
ure 4 shows the models built and Table 1 summarizes the
results.

The results in Table 1 indicate that for none of the objects
there is a significant difference between the volume com-
puted using NVP-based and equiangular views. This can be
expected for objects with asymmetric, highly detailed sur-
faces, such as the vessels or completely rotationally sym-
metric objects, such as the cone or the globe. For simply
shaped, but asymmetrical objects, such as the cuboids and
the cup, a certain increase in the accuracy of the models
built using NVP could be expected. In order to additionally
examine our NVP algorithm, in Figure 5 we illustrate the
views selected for the synthetic and real cuboid, the cone
and the cup. All figures show the objects from the top view,
facing the x-y plane of the world coordinate system.

In Figure 5 each dashed line indicates the direction the
camera was viewing from, i.e., it represents the camera’s
optical axis. High density scanning areas should be those
for which the silhouette border moves fast, e.g., when the
width of the silhouette changes rapidly. This happens when
an object’s part which is far from the rotational axis starts or
ends being visible from the camera. Figure 5a illustrates the
difference between two views and dashed lines represent the
optical axis of the camera in Figure 5. For the cuboids (Fig-
ures 5c and 5d) such parts are its corners, for the cone (Fig-
ure 5b) there are no such parts and for the cup (Figure 5e) it
is its handle.

Let us analyze each of the objects from Figure 5. For
the silhouette views of the cuboids (Figures 5c and 5d) the
views with the highest density are 0◦–60◦ and 180◦–240◦.
That makes sense, because the width of the cuboid silhou-
ettes as defined in Figure 5 is smallest for views from 30◦

and 210◦ and largest from approximately 75◦, 165◦, 255◦

and 345◦. For views close to 30◦ and 210◦ the silhouette-
width is determined by the two corners close to the camera.
Because of being close to the camera these corners move al-
most orthogonally as the turntable moves, so the silhouette-
width changes rapidly here and the scans are most dense
in these areas. For the views of the cone (Figures 5b) all
views look nearly the same, so the step between two views
was constantly equal to the maximal allowed step. The step
was smaller only for views close to 0◦, solely because of the
starting angle being smaller than the maximal angle. For the
silhouette-views of the cup (Figure 5e) high density views
were taken from angles close to 165◦ and 255◦. This is ex-
pected, because for those views the cup handle starts/ends
being visible (i.e., not occluded by the body of the cup).

5 Conclusion and Outlook

Obviously, our NVP algorithm did not fail in choosing the
”right” views (except for the laser views of corners of the
cuboids), and did not bring any significant differences in the
results (measured in terms of the volume and the size of the
objects) compared to the models built using an equivalent
number of equiangular views. Therefore, the number of sig-
nificant views was dramatically decreased while preserving
the geometry of the object. Measuring the volume only is
also not the best similarity measure since this does not nec-
essarily describe correct geometry. For example, the NVP-
based model of the cup in Figure 4 contains the complete
handle, whereas the model built using equiangular views
misses some parts close to the top of the handle. In con-
clusion we proofed that the NVP algorithm for shape from
silhouette is able to decrease the number of views to be com-
puted (and thus save acquisition and computing time) for not
highly structured objects.

In the future we want to test our NVP algorithm with
complex, asymmetric synthetic objects and want to extend
the acquisition procedure by combining the NVP guided
shape from silhouette technique with an active laser trian-
gulation method in order to be able to detect concavities.
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