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Abstract

A major obstacle to the wider use of 3D object reconstruction and modeling is the
extent of manual intervention needed to construct 3D models. Such interventions are
currently massive and exist throughout every phase of a 3D reconstruction project: col-
lection of images, image management, establishment of sensor position and image ori-
entation, extracting the geometric detail describing an object, merging geometric, texture
and semantic data. This work aims to develop a solution for automated documentation
of archaeological pottery, which also leads to a more complete 3D model out of multiple
fragments. Generally the 3D reconstruction of arbitrary objects from their fragments can
be regarded as a 3D puzzle. In order to solve it we identified the following main tasks:
3D data acquisition, orientation of the object, classification of the object and reconstruc-
tion.We demonstrate the method and give results on synthetic and real data.

1 Introduction

Reassembly of fragmented objects from a collection of thousands randomly mixed fragments
is a problem that arises in several applied disciplines, such as archaeology, failure analysis,
paleontology, art conservation, and so on. Solving such jigsaw puzzles by hand may require
years of tedious and delicate work, consequently the need for computer aided methods is
obvious [9]. The assembling of an object from pieces is called mosaicing [7]. It is similar to
the automatic assembly of jigsaw puzzles, which among others has been addressed by [1]. In
[6] a system for analyzing and assembling a 2D image of pieces of a jigsaw puzzle is presented.
The matching method is based on the shape and color characteristics of the pieces. However
these approaches rely on specific characteristics of the pieces like color, critical points, or no
gaps between matching pieces.
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In archaeology, most of the finds are in form of fragments especially in the area of ceramics.
Therefore mosaicing is of great interest in this field since it enables both, a real and a virtual
reconstruction of the original object. Most of the ceramic is rotationally symmetric and using
this fact, one can solve the mosaicing problem even if there are gaps between the fragments,
just like a human would solve the problem. We work with fragments of rotational symmetric
pottery. Figure1a shows a box filled with archaeological fragments, which possibly could fit
to each other. Figure1b illustrates manually identified, matching fragments.

(a) (b)

Figure 1: Archaeological objects: (a) Box with possibly, matching fragments, (b) Matching
fragments.

More generally mosaicing can be seen as a special case of object recognition by approx-
imate outline matching: The specific problem of identifying adjacent ceramic fragments by
matching the shapes of their outlines was considered byÜçoluk and Toroslu [17]. They repre-
sent the 3D fragments by their boundary curves. From the 3D boundary curve data, curvature
and torsion scalars are computed. A noise tolerant matching algorithm serves to find the best
match of two such circular strings. Hori et. al. [2] propose a method for joint detection among
two potsherds designed for pottery fragment outlines. They consider that 2D images instead
of 3D shape data are applicable. Their approach is based on a partial verification method of a
pair of contours without knowledge of the shape features of a piece. Kong et. al. [5] approach
the jigsaw problem in two stages: first, local shape matching aims to find likely candidate pairs
for adjacent fragments. Second ambiguities resulting from local shape matching are resolved
by a global solution. The matching is based on the notion of an alignment curve to represent a
correspondence between two curves. 2D Potsherd reconstruction based on shape similarities
is presented by Kanoh et. al. [4]. In a first step they join potsherds in two dimensions. The
contour of a potsherd is divided into sub-contours by salient points [14], and the matching
of the sub-contours is performed by P-type Fourier descriptors. In the second phase, three
dimensional shape is recovered by mapping the 2D points into the 3D coordinate system of a
cone or a cylinder. Marques et al. [10] present a 2D object matching technique based on the
comparison of a reference contour to the contours in the image partition. The comparison is
based on a distance map that measures the Euclidean distance between any point in the image
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to the partition contours.
H.C.G. Leiťao introduced a method for automatic reassembly of two-dimensional frag-

ments [8]. Together with Stolfi [9] she demonstrates a multiscale matching method based on
the idea that the outlines of two matching fragments are two noisy copies of the same time-
domain signal. They compute the curvature encoded fragment outlines in order to compare
possible matching candidates. To reduce the cost of computing the optimum pairing for a can-
didate, they progressively increase scales of resolution. The implementation is restricted to
flat objects, such as tiles and murals. For curved fragments the three-dimensional geometry of
the fracture line must be recovered with fairly high resolution, so as to have a representation
of the fracture line that is insensitive to the fragment’s orientation in three dimensions. G.
Papaioannou et. al. [11, 13] present a semi-automatic reconstruction of archaeological finds
from a geometric point of view: they rely on the broken surface morphology to determine
correct matches between fragments. In the first stage they estimate coarse surface regions (i.e.
the fractured side of the fragment) by surface bumpiness estimation [12]. In the second stage,
a matching error is calculated for all candidate regions of every possible pair of fragments.

Summarizing existing techniques on the assemblage of virtual pots we observe a main
focus on the analysis of the outline of the break curve: 2D outline matching is most common
[9, 4, 5, 1, 6], but work on 3D outline matching exist [17]. Surface matching of fractured
surfaces is proposed in [11]. So far, no complete system from acquisition to reconstruction has
been described.

This paper focuses on the reconstruction of pottery out of many fragments. With respect to
our previous work [16], the paper describes the finding and matching of candidate fragments
as its main contribution.

Our approach to pottery reconstruction is based on the following main tasks: After acquir-
ing 3d data with the Minolta VIVID 900, we start with the estimation of the correct orientation
of the fragment, which leads to the exact position of a fragment on the original vessel. Next,
the classification of the fragment based on its profile section provides a systematic view of the
material found and allows us to decide to which class an object belongs presented in Section
2. Since we know the orientation of the candidate fragments we defined a two-degrees-of-
freedom search space for representing the alignment of two fragments. A matching algorithm
based on the point-by-point distance between facing outlines is proposed in Section3. Re-
construction results on synthetic and real data are given in in4, followed by conclusions and
outlook on future work.

2 Determination of matching candidates

In order to find matching candidates the fragments are classified based on absolute measure-
ments (e.g. diameter, height, ...) and the segmentation of the profile line into so called char-
acteristic points. The classification leads to primitives and attributes describing the fragments
unambiguously [3]. In order to find the confidence between two fragments, a description lan-
guage is applied. A vessel or fragment is transformed into the description language by using
the primitives and attributes found. In order to find the candidate fragments that could match
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a fragment the generated description is compared with already existing descriptions. Compar-
ison of newly found fragments of unknown type is performed by comparing the description
of the new fragment with the description of already classified fragments. The fragment struc-
ture is formed by itsshape features(or geometric features like the profile) and itsproperties
(or material like clay, color and surface). The description of the fragment is structured in a
description language consisting of primitives and relations. Primitives are a representation of
shape features, relations represent the properties.

The description language, which was originally designed to solve 2D automatic visual in-
spection problems [15], is applied and extended in order to solve the classification problems.
The actual profile contains features, which are a representation of shape features. To accom-
plish classification, primitives are further subdivided into part-models (or part- primitives), the
consistency between part-primitives is established by relations among part parameters.

Formally, the description language is a graphG =< O, R >, whereO = {m|1 <= m <=
n} denotes the set of nodes andR = {< c, d > |c, d ∈ O} the set of arcs. A nodeO consists
of different sub-objects or primitives. Each node has different attributesa, with weightsw,
and a toleranceT (a) defined as

T (a) =

{
1, if|adb − anw| ≤ c, and

1
|adb−anw| otherwise (1)

wherec is the allowed tolerance,adb denotes the value of attributea in the archive, andanw

the value of the attributea of the object.
Two nodes are in relation according toR. Each relation< c, d > is decomposed intok

sub-relations between the same nodes, each with a weightv and a toleranceT (r). The shape
primitive S1 is subdivided intoc different shape primitives (such as profile, diameter and the
like). For each of these shape primitivesn different sub-primitives (such as rim, wall and the
like) are defined. Since the manual segmentation of the profile varies, tolerances and weights
are included in the description.

The weightsw andv are necessary for classification. Each property has a certain weight in
order to verify the corresponding description to a given fragment. The verification of fragment
to description consists of verifying whether the number and type of features and primitives are
the same. Next, attributes and relations are checked to verify whether they match within given
tolerances. Comparing all attributes of a node and its successors with the model carries out
the verification process. The confidence for a node can be computed based on the result of the
comparison:

conf(p) =
n∑

g=1

wg ∗ T (ag) +
m∑

(p,g)

v(p,q) ∗ conf(q). (2)

wherewg are the weights of the attributes of the nodes andv(p,q) the weights of the sub-relations
of the arcs. Observe thatn, the number of attribute values, andm, the number of arcs, depend
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on the nodep. Moreover, for leaves we have:

conf(p) =
n∑

g=1

wg ∗ T (ag). (3)

This enables us to compute the confidence of a node by summing up the weighted toler-
ances of each attribute of the node and the overall confidence of the subgraph connected to
this node. By computing the consistency for different descriptions, the one with the highest
confidence value can be chosen if the confidence is above a certain threshold. For a given
profile all primitives are represented in the description of the profile.

3 Fragment Matching

The optimal pairing of matching candidates obtained serves as input for the fragment match-
ing part. Consequently we know those pairs of fragments which were probably adjacent in the
original object. We virtually glue two matching fragments together by computing the transfor-
mation parameters, which bring two candidate fragments into alignment.

In order to represent the matching of two fragments, G. Papaioannou et. al. [11] describe
seven pose parameters. In their approach the two fragments are first prealigned so that their
broken facets face each other. In our case we know the orientation of a fragment, consequently
we prealign two candidate fragments by simply aligning their axis of rotation. As a result, a
two-degrees-of-freedom continous search space is defined. The transformation which matches
two candidate fragments consists of a translation along the z-axis with parameterTz and a
rotation around the z-axis with parameterRz (see Figure2a).

(a) (b)

Figure 2: (a) Fragment Matching with 2-degrees-of-freedom (b) Matching outlines.

The basic concept in our method for estimatingRz is that the best fit is likely to occur at
the relative pose which minimizes the point-by-point distance between the facing outlines. For
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this reason, we introduce a matching errorεM based on the mean Euclidian distance between
the corresponding points of the outlines of the candidate fragments with pointsX = (x, y)
andX ′ = (x′, y′):

εM =
1

N

N∑
i=1

√
(xi − x′

i)
2 + (yi − y′

i)
2. (4)

whereN is the number of data points used. The height of the fragment limits the length of the
matching segments. Different fragments types lead to the following matching possibilities:

A Rim fragments: firstTz is computed by aligning the rim along the orifice plane [3]. Next
Rz is estimated, so that the positioning transformation with the smallest matching error
εM is considered to be the correct position. Figure2b shows matching outlines of two
rim-fragments.

B Bottom fragments: firstTz is computed by aligning the bottom along the base plane.
NextRz is estimated in the same way as for rim fragments.

C Wall fragments: Candidates are first aligned along their profile sections. NextRz is
estimated in the same way as for rim fragments. Since it is not clear whether a new
candidate fragment is in bottom up or bottom down position, we have to computeRz

andTz for both positions. The positioning transformation with the smallest matching
errorεM is considered to be the correct position.

Matching algorithm

1. Define reference fragmentFref with its axis of rotationROTref : defines a new potP ,
creates the pot coordinate system,ROTref is aligned to the z-axis.

2. Prealignment of the candidate fragmentFcand by its axis of rotationROTcand: ROTcand

is aligned toROTref . This results in a two-degrees-of-freedom search space.

(a) translationTz along the axis of rotation (up/down).

(b) rotationRz around the axis of rotation.

3. Estimation of the translation parameterTz: search for minimal distanced between all
y-values (radius) of the profile ofFref and the profile ofFcand.
Exception A: Rim fragments are aligned along the orifice plane.
Exception B: Bottom fragments are aligned along the base plane.

When the candidate fragment is a wall fragment, the minimal distanced is computed for
both positions, and the one with the smaller is considered to be the correct position.

4. Estimation of the rotation parameterRz by finding the position with the smallest match-
ing errorεM .
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4 Results

In order to evaluate the results we have tested our method on synthetic 3D data of three parts
of a synthetic pot. The orientation of the fragments is defined, which leads to three perfect
matching parts. The experiment has shown a100% theoretical accuracy of the approach. To
find out if the method is working on real data, we used a flowerpot with known dimension. We
broke this flowerpot into 5 parts (see Figure3) in order to get data of matching fragments of
a whole pot. We got three rim fragments, one wall fragment and one bottom fragment. Each
part was digitized leading to a front and back view of each fragment. The biggest part (nr. 2)
covers half of the pot and consists of 135070 triangles, whereas the smallest consists of 8210
triangles.

Figure 3: 5 parts of a flowerpot.

Next we computed the orientation of the fragments, which leads to four matching candi-
dates and one not processable object: a large part of the bottom fragment (Part 4) consists of
flat area. It was therefore excluded from further processing due to its curvature being too low.

Starting with part one as reference fragment for each candidate a matching error was com-
puted. Next part two was defined as reference fragment and again for each remaining candidate
a matching error was computed. This procedure was continued until no candidate remained.
Table 1 summarizesTz, Rz and the matching errors for each possible candidate.RFnr. and
CFnr. denote the number of the reference fragment and the number of candidate fragment
respectively, andεM denotes the matching error. The value ofεM for correct matches ranges
from 1.12 to 0.63, the combination of part 3 and 5 shows an incorrect match with an errorεM

of 12.92.
Figure 4a displays the resulting match of part 1 and part 3 as both parts are rim fragments.

Figure 4b shows the resulting match of part 1 and part 5. Since part 5 is a wall fragment
theεM was computed for both possible positions, and the position with lowerεM was finally
choosen. Figure4c shows the final reconstruction of the pot. Correct matches for all four
candidate fragments have been found. The missing bottom of the pot is due to part 4, not
being processable because of its flat shape.

We applied our technique to real archaeological fragments (Nr: 319-71, 209-71 from the
late Roman burnished ware of Carnuntum [16], as shown in Figure5a and b. Both pieces are
rim fragments. Each part was digitized leading to a front and back view of each fragment.
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(a) (b) (c)

Figure 4: Matched parts: (a) part 1 and part 3 (b) part 1 and part 5 (c) Matching parts 1, 2, 3,
and 5.

(a) (b) (c) (d)

Figure 5: Archaeological rim fragments: (a) Part1, (b) Part 2, (c) Matching outlines, (d) Match-
ing parts.

Next we computed the orientation of the fragments. The alignment along the orifice plane
allowed the estimation ofTz = 7.49cm. The smallestεM = 0.31 was found forRz = 3.35◦.
Figure 5c shows the matched outlines of the two fragments and Figure5d shows the final
reconstruction. Due to the dense sampling and the non eroded fracture sides of the original
fragments (the fragment was possibly broken during excavation) the reconstruction method
managed to yield to a small matching error.

Another example on real archaeological fragments was done on the common ware of
Sagalassos [16]. One rim and two wall fragments were recorded and processed. The num-
ber of points and triangles of the front and back views ranges from 9000 to 16500 triangles.
After the estimation of the orientation we started with part one as reference fragment and com-
puted for each candidate a matching error. Next part two was defined as reference fragment
and again for each remaining candidate a matching error was computed. This procedure was
continued until no candidate remained. Table1 summarizesTz, Rz and the matching er-
rors for each possible candidate. Correct matches were found between part one and part two
(εM = 1.32) and part two and part three (εM = 1.21). No correct match was found between
part one and part three (εM = 14.81), because there was no alignement of the profile sections
(part one is on top of part three). Nevertheless all three fragments were matched together, since
the matching of part two suceeded for both candidates.

The results demonstrate the possibility of automatically matching adjacent fragments by
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Ware RFnr. CFnr. Tz [mm] Rz [deg] εM

Flowerpot 1 2 12.03 22.81 1.12
Flowerpot 1 3 8.67 -41.29 0.81
Flowerpot 1 5 9.34 73.21 0.63
Flowerpot 2 3 -4.94 17.61 0.92
Flowerpot 2 5 -10.02 -26.75 0.71
Flowerpot 3 5 11.10 32.99 12.92
Carnuntum 1 2 7.49 3.35 0.31
Sagalassos 1 2 -4.29 11.70 1.32
Sagalassos 1 3 -1.61 7.59 14.81
Sagalassos 2 3 -5.19 15.76 1.21

Table 1: Results of the matching process.

our method. It works for fragments which can be orientated and classified by our approach
with one exception: two adjacent fragments on top of each other cannot be matched by our
method, because they do not have overlapping profile sections. Furthermore if the surface of
the fragment is too flat or too small (that would lead to an incorrect axis of rotation) or the
classification is not known, the fragment is not considered for reconstruction automatically.

5 Conclusion

We have proposed a method for the assembly of an object from pieces, which in our case
means the reconstruction of an archaeological pot from its fragments. The outcome on vessel
reconstruction out of multiple fragments was described by real 3D data. The ceramic docu-
mentation and reconstruction system described was recently integrated into the virtual exca-
vation reconstruction project 3D MURALE. Future work will be directed towards setting up
a pottery database with more then 100 fragments and applying the algorithm to find matching
pieces.
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