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Abstract. We present and evaluate an approach for finding local inter-
est points in images based on the non-minima suppression of Gradient
Vector Flow (GVF) magnitude. Based on the GVF’s properties it pro-
vides the approximate centers of blob-like structures or homogeneous
structures confined by gradients of similar magnitude. It results in a
scale and orientation invariant interest point detector, which is highly
stable against noise and blur. These interest points outperform the state
of the art detectors in various respects. We show that our approach gives
a dense and repeatable distribution of locations that are robust against
affine transformations while they outperform state of the art techniques
in robustness against lighting changes, noise, rotation and scale changes.
Extensive evaluation is carried out using the Mikolajcyzk framework for
interest point detector evaluation.

1 Introduction

Interest points are an important tool in many current solutions to computer vi-
sion challenges. Fergus et al. [1] point out that frameworks using interest points
are heavily dependent on the detector to gather useful features. They detect
locations of characteristic structures such as blobs, corners or local image sym-
metry.

The interest point and interest region detectors allow for the reduction of
computational complexity in scene matching and object recognition applications
by selecting only a subset of image locations corresponding to specific and/or
informative structures. The extraction of stable locations is a successful way to
match visual input in images of the same scene acquired under different con-
ditions. As evaluated in [2], successful approaches extracting stable locations
rely on corner detection [3,4] or blobs like Maximally Stable Extremal Regions
(MSER) [5] and Difference of Gaussians (DoG) [6]. The well known approach of
detecting local symmetry [7] is also included in our evaluation.

Donner et al. [8] take the minima of the Gradient Vector Flow (GVF) [9]
with one manually adjusted set of parameters to locate centers of local symme-
try at a certain scale. We extend their approach and propose a GVF based scale
space pyramid and a scale decision criterion to provide general purpose interest



2 Julian Stöttinger, René Donner, Lech Szumilas and Allan Hanbury

points. This multi-scale orientation invariant interest point detector has the aim
of providing stable and densely distributed locations. Due to the iterative gra-
dient smoothing during the computation of the GVF, it takes more surrounding
image information into account than other detectors. Its stability against noise,
blur, JPEG artifacts, rotation and illumination change makes it a promising
approach for many applications in computer vision. For example, low quality
images and videos in on-line applications and used in mobile computing suffer
from such effects. Medical imaging also often deals with low contrast images.

In the next section, we give an overview of the interest point detectors used.
We introduce our approach in detail in Section 3. Experiments and results are
given in Section 4. Finally, the conclusion is given in Section 5.

2 Interest Points

We describe the most successful approaches for detecting interest points. For the
most stable and broadly used corner detectors, we choose the Harris Laplacian
approach for its excellent performance in [2] and describe it in Section 2.1. In
Section 2.2, we go into more detail about broadly used blob detectors: DoG and
MSER. Symmetry based interest points are covered in Section 2.3.

2.1 Harris Laplacian Detector

The Harris corner detector introduced in [3] provides a corner measure for im-
age data. The pixels are analyzed to result in a one dimensional corner mea-
sure, also referred to as Harris energy. It is based on the trace and determinant
of the second moment matrix M . An extension of the Harris corner detector,
the scale-adapted Harris detector, was introduced to achieve scale invariance by
Mikolajczyk and Schmid [10]. The resulting patch size is the size of the Gaus-
sian kernel as the scale σ of the corner detector. The second moment matrix of
a certain scale is then

M = σ2
DGσI

⊗
[
L2
x(σD) LxLy(σD)

LxLy(σD) L2
y(σD)

]
(1)

where Lx and Ly are respectively derivatives in the x and y direction calculated
after smoothing the image by a Gaussian of size σD (derivation scale). GσI

is a
Gaussian function of width σI (integration scale). As suggested in [10], we set
σI = 3σD.

To detect the characteristic scale, the maxima of the Laplacian of Gaussian
function Λ are used [11,4] and is extended to take advantage of different color
spaces in [12].

2.2 Blob Detectors

Blob detectors, based on space-scale theory introduced to computer vision by
Witkin [13] and extended by Lindeberg [14], rely on differential methods such
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(a) image 1 (b) image 6

Fig. 1. Harris Laplacian detector applied to the graffiti testset (see Fig. 7(a))
image 1 (a) and image 6 (b). The size of the circles indicates the size (scale) of
the kernel with the highest peak.

(a) image 1 (b) image 6

Fig. 2. DoG applied on image 1 (a) and image 6 (b) of the graffiti testset.

as Laplacian of Gaussian (LoG), difference of Gaussian (DoG) and Determinant
of Hessian (DoH) [11]. The result of blob detection using either LoG or DoG
methods depends on the choice of the scale sampling rate which is analyzed
in [6]. Another technique within the class of blob detectors but unrelated to
scale-space theory is MSER [5] which is outlined further on.

DoG As demonstrated in [6], LoG results can be approximated with the DoG
at reduced computational complexity.

In this case the Laplacian operator Λσ is approximated by the difference be-
tween two Gaussian smoothed images. The scale space Sσ is defined by Sσ =
Gσ ⊗ I. The image pyramid level Dσi is computed as the difference of the
input image I convolved with Gaussian kernels of size σi =

(√
2
)i

as Dσ =
(G√2σ −Gσ)⊗ I. The implementation leads to an early diminished dataset, as
the majority of the pixels are discarded at the first scale level.

To discard edges and prioritize corners, the already calculated Hessian matrix
is used to process an adapted Harris corner detection algorithm. An example of
the resulting interest points is given in Fig. 2.
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(a) image 1 (b) image 6

Fig. 3. Example of MSER locations applied on the graffiti testset image 1 (a)
and image 6 (b). The ellipses mark the most stable blobs.

MSER [5] are obtained by a watershed-like algorithm. Connected regions of a
certain thresholded range are selected if they remain stable over a set of thresh-
olds. The algorithm is efficient both in run-time performance and detection rate.
The region priority is measured in the number of thresholds where the region
remains stable.

An image region Q is extremal if the intensity of all pixels q ∈ Q is higher
than the intensity of boundary pixels p (adjacent to Q) I(q) > I(p) for maximum
intensity regions or lower I(q) < I(p) for minimum intensity regions. Region Q is
a contiguous image patch i.e. there is a path S connecting any two pixels q ∈ Q
such that S ∈ Q. Extremal regions are then such that I(Qi + ∆) > I(Qi) >
I(Qi −∆). The maximally stable extremal region is the one for which variation
of the area q(i) has a local minimum at i:

q(i) =
|Qi+∆| − |Qi−∆|

|Qi|
(2)

Ellipses fitted to the MSER locations can be seen in Fig. 3.

2.3 Symmetry Based Interest Points

The Generalized Symmetry Transform (GST) [15] inspired the Fast Radial Sym-
metry Transform (FRST) by Loy and Zelinsky [16,7]. A pixel of the image con-
tributes to a symmetry measure at two locations called negatively and posi-
tively affected pixels. The coordinates of negatively affected p−ve and positively
affected p+ve pixels are defined by the gradient orientation at pixel p and a
distance n (called range in [16]) as follows:

p+ve = p + round
(

g(p)
‖g(p)‖

n

)
, p−ve = p− round

(
g(p)
‖g(p)‖

n

)
(3)

The symmetry measure is a combination of orientation projection On and
magnitude projection Mn maps, which are obtained through agglomeration of
positively and negatively affected pixel contributions. Each positively affected
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pixel increments the corresponding element of the orientation projection map
by 1 and magnitude projection map by ‖g(p)‖ while the negatively affected
pixel decrements the map by these values:

On
(
p+ve(p)

)
= On

(
p+ve(p)

)
+ 1, On

(
p−ve(p)

)
= On

(
p−ve(p)

)
− 1 (4)

Mn

(
p+ve(p)

)
= Mn

(
p+ve(p)

)
+ ‖g(p)‖, (5)

Mn

(
p−ve(p)

)
= Mn

(
p−ve(p)

)
− ‖g(p)‖

The radial symmetry measure at range n is a combination of normalized ori-
entation and magnitude projection maps, additionally smoothed by a Gaussian
kernel:

Sn = Gσn
⊗
(
Mn

kn

)(
|On|
kn

)α
(6)

where kn is the scale normalization factor and α is the radial strictness parameter
which allows to attenuate the symmetry response from ridges. The orientation
projection map used for final calculations is thresholded using kn. The symmetry
measure can be also averaged over a set of ranges N = {n1, ...nK} to achieve
partial scale invariance:

S =
1
K

∑
n∈N

Sn (7)

An exhaustive discussion of the parameter choice and results are presented
in [7]. We refer to these interest points as Loy Points (see Fig. 4).

3 Gradient Vector Flow based Interest Points

To detect points of high local symmetry we use the GVF based interest points
(GVF points) as proposed in [8]. The GVF [9], which yields a rotation invariant

(a) image 1 (b) image 6

Fig. 4. Example of Loy symmetry points with a simple scale selection applied on
the graffiti testset image 1 (a) and image 6 (b). The size of the circles indicates
the size of the range with a symmetry peak.
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(a) frontal (b) 20 degree (c) 50 degree (d) 1st scale (e) 2nd scale (f) 3rd scale

Fig. 5. GVF points on image details of the graffiti testset. (a)-(c): GVF points
under geometric transformation. (d)-(f): GVF points of the first three scales of
one image detail.

vector field, was originally proposed to increase the capture range of active con-
tours. It is defined as the vector field v(x, y) = (u(x, y), v(x, y)) which minimizes

G =
∫ ∫

µ(u2
x + u2

y + v2
x + u2

y) + |∇f |2|v−∇f |2dxdy (8)

where f denotes the edge map of image I

f2(x, y) = |(Gσ(x, y) ∗ I(x, y))| (9)

and the parameter µ gives the relation between the first smoothing term (com-
pare with the classic optical flow calculation [17]) and the second term. Its
strengths include the ability to detect even weak structures while being robust
to high amounts of noise in the image. When |∇f | is small, the energy yields a
very smooth field.

The field magnitude |G| is largest in areas of high image gradient, and the
start and end points of the field lines of G are located at symmetry maxima.
E.g. in the case of a symmetrical structure formed by a homogeneous region
surrounded by a different gray level value the field will point away from or
towards the local symmetry center of the structure.

The symmetry interest points are thus defined as the local minima of |G|. In
contrast to techniques based on estimating the radial symmetry using a sliding
window approach this will yield a sparse distribution of interest points even in
large homogeneous regions.

We increase µ iteratively thus smoothing G. As we lose information on local
structure and v takes a gradually larger area into account, a rotation invariant
scale space pyramid is built. For the experiments, the parameters µ = 0.1 and
scale factor f = 1.33 are used. We apply the scale factor five times per image
smoothing G for taking more area into account.

Examples of the resulting images are shown in Fig. 5: (d)-(f) show the dis-
tributions of the resulting points for increasing scale; (a)-(c) show the interest
points on geometric transformations. Further examples are shown in Fig. 6.
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(a) GVF points on image 1 (b) GVF points on image 6

Fig. 6. GVFpoints applied to image 1 (a) and image 6 (b) of the graffiti testset.

4 Results

In this section, a performance evaluation of the GVFpoints is given. We show
that they outperform current approaches for invariant interest point locations
in several important tasks.

We give an overview of the experimental setup and then give a detailed review
of the results of the experiments. Mikolajczyk and Schmid [2] suggest a test for
the quality of local features. They measure the repeatability of local features
under different image transformations. These tests consist of a set of images,
where one acts as the reference image and the other images show the same scene
under predefined changes like blur, rotation, zoom, viewpoint change, JPEG
compression or lighting changes5.

Having a correct homographyH between two images L and L′, we can project
a point x in L into the transformed image x′ in L′. Regarding the area of interest
points, the overlap of the projected area is estimated. Areas are normalized so
that each radius is set to 30 pixels. If the overlapping error is below 40% to the
nearest neighbour, the interest point is repeated. The repeatability rate is defined
as the ratio between the number of detected correspondences and the number of
regions that occur in the area common to both images. Feature detectors tend to
have higher repeatability rates when they produce a richer description. Twelve
commonly used data-sets have been chosen for this evaluation. Examples of the
images are shown in Fig.7.

The histograms in Fig. 8 provide a summary view of the ranks of the individ-
ual algorithms. Each of the 91 reference image / test image pairs was treated as
a separate experiment. For each of these, the algorithms were ranked according
to their repeatability from 1 to 5. In 57.1% of the cases the GVFpoints exhib-
ited the best performance (rank=1), while in 80.2% they performed either best
or second best (rank≤2). Harris Laplacian and Loy’s symmetry points show far
lower performance, with Loy having the lowest performance (rank=5) in 47% of
cases. MSER and DoG display mixed results: while leading in same cases they
fare badly in others, exhibiting an average performance overall.

5 http://lear.inrialpes.fr/people/mikolajczyk/Database
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(a) Test-set graffiti depicts a painted wall under heavy viewpoint changes.

(b) Test-set boat changes the viewpoint and the zoom level while rotating the
scene.

(c) Test-set cars provides a natural scene at different daytimes.

(d) 6 out of 20 images of the test-set toy. It provides a natural scene under
different lighting directions. Main challenge is the stability against shadowing
effects.

(e) Test-set bikes with different bikes becoming more and more blurred.

(f) Test-set ubc adds JPEG compression to a natural scene.

Fig. 7. One data-set per challenge used in the experiments.

For one testset per challenge, the repeatability graphs and numerical results
are given. These statistics give the means of the repeatability rate, number of
correspondent regions, area of the circles in the images in pixel2, standard devi-
ation of the area and the average number of interest points in the image. GVF-
points show to be repeatable under geometric transformation (Fig.10). Elongated
structures like the ones found in the graffiti testset (see Fig. 7(a) and Fig. 5)
are centered precisely. This works also for MSER, having very well defined blobs
on the wall. Therefore, DoG performs also better than the Harris Laplacian
as the corners are heavily transformed during the challenge. For Loy points, no
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Fig. 8. Histogram of the ranks of the
compared algorithms. For each of the
91 test images the algorithms were
sorted according to their performance.

GVFp MSER DoG HarLap Loy
ø(rep) 74.2 66.9 49.5 42.0 36.0
corresp 7361.7 215.8 1984 1016.8 474.5
ø(area) 2496.2 1565.7 65.1 4490.5 684.4
std(area) 4273.5 3930.7 149.5 17926.1 1013.8
nr. pts 17349 533 5479 3116 1690

Fig. 9. Repeatability experiment test-
set graffiti – viewpoint transformation
of colourful patterns. GVFpoints per-
form best for each of the test images.

GVFp MSER DoG HarLap Loy
ø(rep) 89.9 62.4 69.6 51.5 52.9
corresp 15828.8 1026 8270.8 3036.2 776.5
ø(area) 2481.8 507.8 52.8 1714.9 669.2
std(area) 4252.9 1459.3 65.0 2789.4 1007.6
nr. pts 28093 2363 13604 7599 1600

Fig. 10. Repeatability experiment test-
set bricks – viewpoint transformation
on a highly structured plane.

GVFp MSER DoG HarLap Loy
ø(rep) 75.5 61.3 69.1 55.8 42.2
corresp 6990.6 497 4969.7 1628.4 502.3
ø(area) 2422.3 1083.8 51.6 3857.0 816.6
std(area) 4206.8 4320.7 33.9 11852.8 1077.8
nr. pts 17625 1524 13797 4961 1803

Fig. 11. Repeatability experiment test-
set boat for zoom and rotation.

repeatability is found for the last two test images. Note the high number of GVF-
points compared to the other approaches because of the elongated structure of
the blobs, which increases the repeatability rate. On small, often repeated struc-
tures like in test-set bricks, GVFpoints are able to estimate correspondences for
over 75% of all locations, even after 60 degree of transformation (Fig. 9). The
experiment on the testset boat (see Fig. 7(b)) shows that GVFpoints exhibit
higher repeatability at small details, being more invariant to rotational change
than other approches. As shown in Fig. 12 and Fig. 13, GVF based points are
more stable against changing illumination than all other interest point detec-
tors. Linear illumination change does not affect the GVF to the same degree as
the other interest point detectors. For heavy change of lighting, MSER provide
slightly more stable locations than GVF. Fig. 14 shows the GVFpoints are al-
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GVFp MSER DoG HarLap Loy
ø(rep) 83.5 70.1 71.3 57.9 60.2
corresp 10467.2 90.2 8623 421.5 950.7
ø(area) 2369.7 1395.7 51.4 2345.5 576.4
std(area) 4168.9 3824.4 32.8 4916.2 934.0
nr. pts 14524 172 12477 813 2106

Fig. 12. Repeatability experiment test-
set cars with increasing illumination.

GVFp MSER DoG HarLap Loy
mean(rep) 64.1 54.0 65.4 48.9 53.8
corresp 3804.2 56.3 3742.2 348.8 538.4
mean(area) 2493.1 350.8 54.0 3671.8 263.5
std(area) 4264.8 625.5 76.6 11198.4 621.3
nr. points 6995 117 5732 799 1238

Fig. 13. Repeatability experiment test-
set toy with changing lighting direction.

GVFp MSER DoG HarLap Loy
mean(rep) 96.1 63.9 63.1 57.9 59.8
corresp 13795.7 193.2 6893 1096.7 898.3
mean(area) 2476.8 580.2 51.4 5894.8 669.2
std(area) 4248.7 1726.0 32.0 25058.1 1007.6
nr. points 19648 616 14382 2111 1600

Fig. 14. Repeatability experiment test-
set bikes challenging blur.

GVFp MSER DoG HarLap Loy
mean(rep) 84.9 58.1 67.2 75.2 64.2
corresp 11743.2 415.7 5160.2 1482.3 983.8
mean(area) 2403.7 451.8 51.4 2839.4 669.2
std(area) 4194.2 1708.6 36.8 8376.9 1007.6
nr. points 15388 770 8417 2053 1600

Fig. 15. Repeatability experiment test-
set ubc for JPEG compression.

most perfectly invariant to blur. Local noise like the JPEG compression artefacts
in testset ubc is evaluated in Fig. 15. We show that the GVFpoints provide more
stable locations up to the point where the extrema are significantly shifted by the
newly introduced structures. Surprisingly, MSER turn out to be very unstable
to this kind of noise, where Loy points provide better results. Harris Laplacian
points are obviously more stable and perform almost comparably to the DoG.

5 Conclusion

We showed that for the majority of challenges, interest points based on GVF
provide more stable locations than the well known and broadly used corner
or blob detectors. They give a rich and well-distributed description for diverse
visual data. Especially the invariance against linear and arbitrary lighting and
illumination changes as well as viewpoint transformations makes the proposed
interest points well suited for many problems dealing with rotation, noise, low
contrast or heavy compression. These effects often occur in on-line and mobile
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applications. Medical imaging often deals with low contrast images, where the
GVFpoints have advantages compared to corner or blob detectors. The GVF
deals with those challenges in a very stable way, being almost invariant to blur
and more repeatable towards JPEG compression than other detectors.
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