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ABSTRACT  

At excavations a large number of sherds of archaeological 
pottery is found. Since the documentation and 
administration of these fragments represent a temporal and 
personnel effort, we construct a computer aided 
documentation system for archaeological fragments to 
form the basis for a subsequent semi-automatic 
classification and reconstruction.  

In archaeology the determination of the exact volume of 
arbitrary vessels is of importance since this provides 
information about the manufacturer and the usage of the 
vessel. The technique used for the 3d-acquisition is shape 
from silhouette. The major problem of the 3d surface 
reconstruction using a turntable is the varying resolution in 
direction to the camera due to the varying rotation of 
object points in respect to the rotational axis of the 
turntable.  

Therefore, the optimal set of views for capturing the 
viewable object surface is a set of angles, which 
guarantees a uniform object resolution. In this paper we 
present a technique, which estimates the next angle 
dynamically, depending on the entropy of the silhouette 
actually acquired. The relation proposed guarantees a 
uniform object resolution on one side and a minimal 
number of acquisition steps on the other side. The method 
has been tested on synthetic and real data with reasonably 
good results. The paper concludes with a presentation of 
results and an outlook on future work.  

KEYWORDS: 3d acquis ition, automated recording and 
archivation 

INTRODUCTION 

Ceramics are one of the most widespread archaeological 
and are a short-lived material. This property helps 
researchers to document changes of style and ornaments. 
Therefore, ceramics are used to distinguish between 
chronological and ethnic groups. At excavations a large 
number of ceramic fragments, called sherds are found. 
These fragments are photographed, measured, drawn 
(called documentation) and classified. Up to now 
documentation and classification have been done manually 

which means a lot of routine work for archaeologists and a 
very inconsistent representation of the real object. First, 
there may be errors in the measuring process. (Diameter or 
height may be inaccurate), second, the drawing of the  
fragment should be in a consistent style, which is not 
possible since a drawing of an object without interpreting 
it is very hard to do.  

Since the documentation and administration of these 
fragments represent a temporal and personnel effort, we 
construct a documentation system for archaeological 
fragments to form the basis for a subsequent semi-
automatic classification and reconstruction [8, KS99]. 
Because the conventional method [12, 14] for 
documentation is unsatisfactory, we developed an 
automated 3d-object acquisition with respect to 
archaeological requirements.  

The optimal set of views for capturing the complete object 
surface depends on the unknown shape of the surface and 
the degree of freedom of the equipment used for the 
acquisition. Our acquisition system consists of one 
turntable, two CCD-cameras and two lasers. The turntable 
used allows movements of the objects of one degree of 
freedom in controlled steps. Therefore, the determination 
of the next sensor position will be reduced to the 
estimation of the next rotation angle. The technique used 
for the acquisition is shape from silhouette [16, 13]. It is a 
robust approach for the automatic reconstruction of the 3d 
shape, which extracts the silhouette from the input images 
in a step and reconstructs  a volume cone for each 
silhouette in a second step. Finally, the intersection of the 
volume cones results in the bounding volume [20]. Shape 
from Silhouette offers a unique 3d-voxel based data 
representation even for objects with a complex surface like 
the handle of a vessel.  

The major problem of the 3d surface reconstruction using 
a turntable is the varying resolution in direction to the 
camera due to the varying rotation of object points in 
respect to the rotational axis of the turntable [10]. 
Therefore, the optimal set of views for capturing the 
viewable object surface is a set of angles, which 
guarantees a uniform object resolution.  

In order to guarantee a uniform object resolution, we have 
to calculate the next angle dynamically, depending on the 
entropy of the silhouette actually acquired. High entropy 



means that the selection of a wide angle leads to the loss of 
information. Therefore, we need a relation between the 
entropy and the angle, which guarantees a minimal loss of 
information for the next acquisition step.  

In this paper we present a technique, which estimates such 
a relation in order to calculate the next viewing angle 
dynamically. The relation proposed guarantees a uniform 
object resolution on one side and a minimal number of 
acquisition steps on the other side. The paper is organized 
as follows: In Section 2 we describe the acquisition system 
used and in Section 3 we explain how we estimate a 
uniform object resolution with minimal acquisition steps. 
Experimental results are described in Section 4 and we 
conclude with a summary and future work in section 5. 

ACQUISITION SYSTEM 

The acquisition system consists of the following devices:  

• 1 turntable with a diameter of 50 cm, which can 
be rotated about the z-axis, used to move the 
object of interest through the acquisition area. 
The position desired can be specified with an 
accuracy of 0.05 degrees  

• 2 red lasers to illuminate the scene for the next 
view planning process. One mounted on the top 
(distance to rotation plane is 45 cm), one beside 
the turntable (distance to the rotation center is 48 
cm). Both lasers are extended with cylindrical 
lenses to spread the laser beam into one 
illuminating plane. The laser light plane 
intersects with the object surface, forming one 
laser stripe.  

• 1 CCD-camera (b/w) used for next view 
planning (shape from structured light - sfsl), with 
a 16 mm focal length, a resolution of 768x572 
pixels, and a distance of 40 cm to the rotation 
center. The angle between the camera normal 
vector and the rotation plane is approximately 45 
degrees. A frame grabber card is used to connect 
the camera to a PC.  

An important issue is the illumination of the object 
observed, which should be clearly distinguishable from the 
background, independent from the object's shape or the 
type of its surface. For that reason back-lighting [1] is 
used. A large (approximately. 50x40 cm) rectangular lamp 
is put behind the turntable (as seen from the camera) 
Figure 1.  

 

Figure 1: back-lighting for sfs 

• 1 CCD-camera (b/w) for the 3d -acquisition 
process (shape from silhouette - sfs), with a 16 
mm focal length, a resolution of 768x572 pixels, 
and a distance of 70 cm to the rotation axis. The 
angle between the camera normal vector and the 
laser plane is approximately 90 degrees. A frame 
grabber card is used to connect the camera to a 
PC.  

• 1 Intel Pentium PC under Linux operating 
system. 

Figure 2 depicts the acquisition system. Prior to any 
acquisition, the system is calibrated in order to determine 
the inner and outer orientation of the cameras and the 
rotational axis of the turntable. The calibration method 
used was exclusively developed for the Shape from 
Silhouette algorithm presented and it is described in detail 
in [2, 18]. 

 

Figure 2: Acquisition system 

SENSOR PLANNING 

The estimation of the next best view (NBV) [6] can be 
divided into three categories:  

• Minimization of occlusions: Occlusions are 
interpreted as filled polygons. Then, a set of 



sensor positions and angles relative to the objects 
surface are computed for each pixel of these 
polygons. The result of this step is a set of 
intervals from which the polygon pixel is visible. 
Decomposing these intervals gives the next 
sensor position. Whereas [6, 5] analyses range 
images, [11] uses volume models, to solve the 
NBV-Problem.  

• Analyzing the geometric properties of the 
surface: In [7] the surface structure is given by 
triangulated surface points. The surface is 
completed by stepwise refinement. Regions, 
which show highly structured parts will be 
scanned with higher density than regions which 
show low structured parts.  

• Heuristic search and objective functions: The set 
of next sensor positions is reduced by applying a 
heuristic search. The best position is estimated 
by maximi zing an objective function [15, 19]. 

The result of the first category approaches is information 
about the position and orientation of occlusions in the 
scene. This information is two or three-dimensional. To 
reduce occlusions, a system, which allows a movement of 
more than one degree of freedom, is needed. The turntable 
allows a movement about the z-axis and the next best 
sensor position will be estimated by the analysis of the 
surface structure. The notion of the next “best" sensor 
position can be defined in two ways:  

• The system should achieve a minimal number of 
acquisition positions and steps to reconstruct the 
object of interest.  

• Computing those acquisition positions and 
directions, which give the best reconstruction 
results.  

In this work, we develop a system, which achieves a 
minimal number of acquisition steps by accomplishing 
given accuracy requirements. 

Adaptive Image Acquisition 

One of the major problems of the 3d surface 
reconstruction using a turntable is the varying resolution 
in the direction to the camera, due to the varying distance 
of object points to the rotational axis of the turntable [3, 
4]. The varying resolution leads to a loss of surface 
features. Figure 3 shows two examples to the loss of 
information. Sampling the object with a constant angle of 
20 degrees (Figure 3a) we loose one corner of the square. 
On the other side, sampling the object with a lower 
constant angle, the loss of information is less (Figure 3b) 
than sampling with a higher constant angle. Therefore, the 
accuracy of reconstructions can be improved by 
decreasing the sampling angle, whereas the effort of the 
acquisition process will be increased. 

 

Figure 3a: Sampling with equiangular steps (10 
degrees) 

 

Figure 3b: Sampling with equiangular steps (20 
degrees) 

Complexity  

The maximum number of acquisition steps depends on the 
camera resolution. Therefore the minimum angle is given 
by  

A

r
arctanmin =φ  Equation 1 

where r is the distance of one surface point to its center of 
revolution and A is the resolution of the camera . The 
maximum number of acquisition steps is then given by  
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Let n be the desired number of maximal acquisition steps. 
The complexity of the NBV-problem is then given by  
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Equation 3 is viewed as the more general set theory 
problem of finding a minimal number of subsets that 
comp letely covers a set [17], which is in the class of NP 
complete problems and therefore only solvable with 
polynomial effort. 
The limitation to a directed movement and the definition 

of a maximum angle maxφ  reduces the complexity, 
because the number of possible next positions will be 
decreased. 

Computing the Next Sensor Position 

In order to estimate the sensor position, we have to 



calculate the distance of the captured surface points 
relative to the axis of rotation. The calculation of the next 
rotational angle is given by the following expressions:  

• Defining and calculating a distance function: Let 
L be a set of back transformed surface points P 
given by one acquisition step. For each of these 
points, we calculate the Euclidean distance 

normd  to its axis of rotation. SvRRaxis ⋅+= . 

normd  is given by 

( )
S

RPxS
d norm

−
=  Equation 4 

• Defining and calculating the gradient of one 

surface point: Let max,iP  be the surface point 

with maximum Euclidian distance normd  to 

axisR  in the i-th acquisition step. The gradient 

ig  is calculated by the following algorithm (see 
also Figure 4):  

1. Estimation of max,id : This is explicitly 

given by max,iP . 

2. Estimation of the surface point 1−iP  

(acquired in the previous step 1−i ) with 

the same z-component as max,iP  and 

calculation of ( )11 −− ii Pd . 

3. Computation of the approximated gradient 

ag  between 1−id  and max,id . 

4. Computation of the gradients angle 
aα  of 

ag . 

5. Estimation of the surface point iP  with the 

same z-component as the point max,1−iP  and 

calculation of ( )ii Pd . 

6. Computation of the approximated gradient 

bg  between max,1−id  and id . 

7. Computation of the gradients angle bα  of 

bg . 

8. Estimation of the region with the highest 
entropy. This region is denoted by 

( )ba αα ,max . 

 

Figure 4: Calculating the next viewing angle 

• Calculation of the next rotation angle: The 
gradient value could be positive, negative or 
zero, depending on increasing, decreasing or 
unchanging entropy. Table 1 shows the 

calculation of the relative change 
reli,φ  and the 

absolute angle absi,φ  depending on the sign of 

the gradient ig , the gradient angle iα  and the 

relative change reli ,1−φ  of the (I-1)-th step, where 

the threshold αt  encodes the geometric under 

which the system sampling density will be 
increased. 

ig  iα  reli ,1−φ  reli ,φ  absi,φ  

2min ⋅> φ  ( ) ( )
2

1−− ii PP φφ  
relii .1 φφ −−  

2min ⋅< φ  minφ  
relii .1 φφ −−  

0>  
αt>  

2min ⋅=φ  minφ  relii .1 φφ +−  

0>  
αt≤  - 

reli ,1−φ  relii .1 φφ +−  

2min ⋅>φ  ( ) ( )
2

1−− ii PP φφ  
relii .1 φφ −−  

2min ⋅< φ  minφ  
relii .1 φφ −−  

0<  
αt>  

2min ⋅=φ  minφ  
relii .1 φφ +−  



2
maxφ<  2,1 ⋅− reliφ  

relii .1 φφ +−  0<  
αt≤  

2
maxφ≥  maxφ  relii .1 φφ +−  

2
maxφ<  2,1 ⋅− reliφ  

relii .1 φφ +−  0=  0=  

2
maxφ≥  maxφ  relii .1 φφ +−  

Table 1: Next rotation angle 

3d acquisition 

We combine two different techniques for 3d acquisition: 
First of all, a shape from structured light system is used to 
estimate the next best view and to determine highly 
structured parts of the object. The second system is a 
shape from silhouette system, which is used to estimate 
the surface and build a volume model of the object of 
interest. 
We define an iterative process, which combines the two 
approaches, by the following steps (see also Figure 5, 
which depicts this process): 

1. sfsl-Image acquisition: The scene is captured by 
the sfsl-CCD-camera. The result is a grayscale 
image, which shows the intersection between the 
laser plane and the object, which forms a line. 

2. sfsl-Feature extraction: The line shown in the 
camera image is extracted. The result is a set of 
2d points. 

3. sfsl-Registration: The set of 2d points extracted 
in the previous step is transformed from the 
world coordinate system in its object 
coordinates. 

4. sfsl-Integration: Each registered point is 
integrated into the existing model computed and 
integrated at the previous iterations of the 
acquisition process. 

5. Next View Planning: The next viewing angle is 
computed based on the algorithm shown in the 
previous section and the turntable moves to the 
calculated absolute angle. 

 

 
Figure 5: Iterative procedure for a combined sfs/sfsl-

approach 

The shape from silhouette process, which runs 
simultaneously with the sfsl-process is defined by the 
following steps: 

1. sfs-Image acquisition: The scene is captured by 
the sfs-CCD-camera. The result is a grayscale 
image, which shows the objects silhouette of the 
current acquisition step. 

2. sfs-Feature ext raction: The silhouette shown in 
the camera image is extracted. The result is a set 
of 2d points. 

3. sfs-Registration: An octree node is projected into 
the image plane by projecting all of its eight 
vertices. Octree coordinates of a vertex can be 
determined by the path from the root node of the 
octree to the node the vertex belongs to. We need 
to transform the octree coordinates of a vertex 
into image coordinates. This transformation is 
performed in three steps, each of which, if we 
use homogeneous coordinates [9] to represent 
points in all three coordinate systems, can be 
described by a 4 x 4 or 4 x 3 transformation 
matrix. 

4. sfs-Integration: The result of the projection of an 
octree node into the image plane are image 
coordinates of all of the vertices of the node's 



corresponding cube. In the general case, the 
projection of a node looks like a hexagon. 

5. sfsl/sfs-Integration: In this step, the surface 
points and the volume model will be integrated. 
Therefore the intersection of the two models is 
generated. 

6. 3d-model visualization. 

The process repeats until the turntable revolves one 
complete rotation.  

RESULTS 

Figure 6 shows the reconstruction of an archaeological 
amphora using the sfsl-approach. The symmetry axis of 
the pottery and the rotational axis of the turntable are 
roughly justified. The minimum angle was defined as 

minφ = 4deg and the maximum angle as maxφ = 12deg. 
Analyzing the reconstructed data shows a displacement of 
1.8 mm in x-direction and 2.1 mm in y-direction. 
Therefore, the object was sampled with varying relative 
angles in 36 steps. 

 

Figure 6a: Recorded pottery reconstructed 

 

Figure 6b: Recorded pottery rendered 

We built three octree models for three different objects 
(see Figure 7) by using 4, 12 and 36 input views. In a first 
step we used a uniform angle between two consequent 
views, with octree resolution of 2563 voxels. Figure 8 
shows the 3D models constructed and Table 2 gives the 
octree statistics and the size comparison between the real 
objects and their constructed models. In a second step we 
used our NBV-strategy in order to get a minimal number 
of steps to reconstruct the object of interests. First results 
have shown that the number of views can be reduced by 
32%, which reduced the computation time by 50%. 

             

(a) (b) 

 

(c) 

Figure 7: Real objects: a metal cuboid (a) and two pots 
(b) and (c)  

 



          
(a): 4 views  (b): 12 views 

 
(c): 36 views 

         
(a): 4 views  (b): 12 views 

 
(c): 36 views 

 

        
(a): 4 views  (b): 12 views 

 
(c): 36 views 

Figure 8: Constructed models of real objects with 
different number of views (a: 4, b:12 and c: 36 views) 

object Dimensions 
[mm] 

Voxel 
size 
[mm] 

# nodes CPU 
time 
[sec] 

Cuboid 
real 

100.2 x 60.1 
x 70.3 

- - - 

Cuboid 
4 views 

109.0 x 62.1 
x 77.3 

0.59 84065 9.76 

Cuboid 
4 views 

109.0 x 62.1 
x 77.3 

0.59 161625 15.15 

4 views x 77.3 
Cuboid 
4 views 

109.0 x 62.1 
x 77.3 

0.59 310649 36.10 

Pot1 real 141.2 x 93.7 
x 84.8  

- - - 

Pot 1 
 4 views 

148.4 x 93.8 
x 89.1 

0.78 275177 12,30 

Pot 1 
12 views 

145.3 x 93.8 
x 89.1 

0.78 486585 23.47 

Pot 1 
36 views 

145.3 x 93.8 
x 85.9 

0.78 857753 67.28 

Pot 2 
real 

114.2 x 87.4 
x 114.6 

- - - 

Pot 2 
4 views 

118. x 89.1 
x 115.6 

0.78 257897 12.57 

Pot 2 
12 views 

117.2 x 89.1 
x 114.1 

0.78 424201 23.32 

Pot 2 
36 views 

117.2 x 89.1 
x 114.1 

0.78 726689 65.10 

Table 2: Octree statistics for real data with varying 
number of views 

The results with both synthetic and real input data show 
that there is a certain minimal octree resolution required 
to obtain an accurate model of an object, especially for 
highly detailed objects, like the two pots used for tests 
with real images. To increase the octree resolution would 
not improve the results of our tests, because the projection 
of a single voxels would be less than half the pixels size. 
Concerning the number of input views used for obtaining 
a model of an object, it turned out that beginning from 12 
views, the constructed model does not change a lot - in 
our tests the octrees built from 12 views were almost the 
same as the ones built from 36 views, except that they 
took much less time to construct.  
The results with synthetic data, where we had a perfect 
transformation matrix, showed that the error in the 
dimensions of the model lies within or is slightly higher 
than the error introduced through the minimal voxel size. 
The error with real data depends additionally on the 
accuracy of the calibration algorithm. 

CONCLUSION 

We have presented a next -view-planning technique 
combined with shape -from-silhouette in order to reduce 
the computational effort in 3d surface reconstruction. The 
work was performed in the framework of the 
documentation of a ceramic fragments. First results have 
shown that the number of views can be reduced by 32%, 
which reduced the computation time by 50% without 
decreasing the quality of reconstruction. The surface 
structure is preserved since high structured parts of the 
surface are sampled with higher density than unstructured 
parts. 
It is part of continuing research efforts to improve the 
results from multiple, various objects since the technique 
has some drawbacks. The first one refers more to the 
calibration algorithm, which makes many simplifying 



assumptions about the acquisition system, the one about 
the optical axis of the camera lying exactly in the 
turntable. However, it showed to be a very good 
approximation, which greatly simplifies the calibration 
algorithm.  
For archaeological applications, the object surface has to 
be smoothed in order to be applicable to ceramic 
documentation, for classification, however, the accuracy 
of the method presented is sufficient since the projection 
of the decoration can be calculated and the volume 
estimation is much more precise than the estimated 
volume performed by archaeologists. 
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