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Abstract. In this paper the problem of recognizing textureless objects
in unconstrained illumination and material conditions is investigated.
We evaluate the discriminative power of various low-level image features
for a pixelwise representation of the underlying surface characteristics of
the object. For this purpose, a new dataset with rendered images of 3D
models is used which allows to directly compare the influences of texture
and material properties in an object recognition scenario. The results
are further validated on a dataset of real object images and finally reveal
that jets of single- and multi-scale even Gabor filter responses outperform
other proposed features in scenarios with textureless objects and strong
variations of illumination.

1 Introduction

Achieving invariance to illumination conditions is a major problem of many
computer vision tasks. It has been heavily researched in the past in research
areas like face recognition [1] or object recognition [2]. However, usually meth-
ods presented in these areas have the goal to extract the albedo information
(a.k.a. reflectance or intrinsic image) and reduce the illumination effects. In the
standard model [3], the image I(x, y) is considered to be the product of the re-
flectance R(x, y) (i.e. the albedo or texture) and the illumination effects L(x, y),
I(x, y) = R(x, y) ·L(x, y). For textured objects, this decomposition makes sense
because the albedo image R(x, y) provides a discriminative basis for object com-
parison. For instance, for face images R(x, y) describes the position and shapes
of the lips, eyes, eyebrows etc. However, there is also a wide range of objects in
the world with constant albedo (i.e. textureless objects), like coins, statues or
facades. As for these objects R(x, y) is constant over the entire image, such a de-
composition does not provide any new information helpful for object recognition.
In this paper we especially focus on this kind of objects. We address the problem
of determining if two aligned images of textureless objects or object parts show
the same 3D surface. We thereby restrict our study to low-level features in sce-
narios with arbitrary, unknown illumination conditions and arbitrary, unknown
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bidirectional reflectance distribution function (BRDF) of the objects’ material.
Furthermore, we do not consider methods which exploit any other additional in-
formation, like 3D object models [4] or learned object appearance from training
images [5].
Related Work. In fact, there is only few research related to this problem. Local
image features for multi-view object matching have been evaluated with regard
to their performance under lighting variations [2, 6], but these studies were more
general and did not especially evaluate the pixelwise low-level representations
on textureless objects. Illumination-invariance in general has also been investi-
gated by Chen et al. [7] concluding that without a priori information for general
object classes a trueillumination invariant does not exist. Nevertheless, there
are representations which are less sensitive to illumination conditions than the
original images. Chen et al. proposed to use image gradient directions as they
are invariant to linear brightness transformations. Thus, gradient directions are
a good choice for flat, textured objects or objects with surfaces of anisotropic
depth (i.e. surfaces where the depth changes rapidly in one direction and slowly
in another). Another study focusing on low-level features was performed by Os-
adchy et al. [8]. They showed that the decorrelation induced by a whitening
filter for isotropic surfaces increases the distinctiveness of object images. As an
approximation for whitening, the Laplacian of Gaussian (LOG) filter was pro-
posed. LOG could be effectively combined with the gradient orientation to a
jet of oriented second derivative filters for a distinctive representation for both
isotropic and anisotropic surfaces.
Contribution. The problem with these existing studies is that they do not
explicitly separate the cases of textured and textureless objects and thus can
not give a well-founded statement about the performance of the investigated
representations on textureless objects. It is also unclear how the performances
of low-level features are related to the material properties or the amount of il-
lumination changes. To explore these questions, we evaluate several low-level
representations proposed by earlier works with respect to their performance on
textureless and textured objects. This is achieved by a comprehensive evaluation
on a new database of synthetically generated images allowing to directly inves-
tigate the effects of different material BRDFs and the texturedness of objects.
Furthermore, we validate our results on real images of textureless objects. Thus,
this paper helps to assess the discriminability and illumination-insensitivity of
low-level representations which is helpful for researchers developing superior fea-
tures and methods for textureless objects. The investigated representations are
the basis for more sophisticated local features, e.g. gradient direction [9], gra-
dient orientation [10] or steerable filter responses [11]. Therefore, one can also
derive from the presented evaluation how these features act in scenarios with
textureless objects.

2 Low-Level Image Representations

We compare eight image representations that have been chosen from literature:
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Gradient Direction (GD): Image gradient directions have been identified
by Chen et al. [7] as an illumination-insensitive image feature. In the circular
domain, the distance between two gradient directions GD(p) and GD′(p) at the
image point p = (x, y) is computed as the minimum between (

∣∣GD(p) − GD′(p)
∣∣)

and (2π−
∣∣GD(p) − GD′(p)

∣∣). Using this distance metric for the individual pixels,
we take the Sum of Squared Differences (SSD) to compare two images.
Gradient Orientation (GO): Instead of representing image gradients in a
signed version (directions between 0-360 degree), we can also use an unsigned
version (orientations between 0-180 degree) of gradients. Gradient orientations
are in theory less sensitive to the lighting directions than gradient directions,
as opposite lighting directions tend to produce opposite gradient directions at
depth discontinuities on the surface [8]. From the gradient direction GD(p), the
gradient orientation GO(p) can be simply computed as GO(p) = mod(GD(p), π).
To compare two images, the SSD is used where the pixel difference is defined as
the minimum between (

∣∣GO(p) − GO′(p)
∣∣) and (π −

∣∣GO(p) − GO′(p)
∣∣).

Laplacian of Gaussian (LOG): The Laplacian of Gaussian is an approxima-
tion of the whitening filter tending to decorrelate the images which makes the
filter appropriate for isotropic surfaces [8]. We use the LOG filter by convolving
the image and normalizing the absolute responses to unit length. The distance
between two images is then again determined by the SSD.
Jets of Gabor Filter Responses (JG): Gabor filters refer to the work of
Dennis Gabor [12] in which he proposed to represent a signal as a combination of
elementary functions. Gabor filters are widely mentioned to be insensitive against
illumination conditions [13, 8, 14] due to their invariance against additive and
multiplicative intensity changes which makes them a popular low-level feature for
applications like face recognition [13]. A Gabor filter G has complex coefficients
and can thus be defined in terms of a real/even part Ge and an imaginary/odd
part Go,

Ge(x, y) = e−
x′2+γ2y′2

2σ2 cos

(
2π
x′

ω

)
, Go(x, y) = e−

x′2+γ2y′2

2σ2 sin

(
2π
x′

ω

)
(1)

with x′ = x cos θ+y sin θ and y′ = −x sin θ+y cos θ. The parameter σ defines the
standard deviation of the Gaussian envelope whereas ω represents the wavelength
of the sinusoidal plane wave. To construct Gabor filters of different sizes but
equal shapes one can define σ as a linear function of ω, σ = c · ω. θ defines
the orientation of the filter and γ is the spatial aspect ratio. To construct a
Gabor filter bank we keep the parameters σ, c and γ fixed, use N equally spaced
orientations θ1 . . . θN and filter the image with the corresponding N Gabor filters
Gθie and Gθio . The jet J̃G(p) is a vector of the magnitude responses of the filtered
images Iθie = I ? Gθie and Iθio = I ? Gθio ,

J̃G(p) = [

√
(Iθ1e (p))2 + (Iθ1o (p))2, . . . ,

√
(IθNe (p))2 + (IθNo (p))2] (2)

In addition to complex shading patterns, illumination variations can also induce
simple multiplicative changes of image intensities which can be compensated by
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normalizing the jet to unit length [14, 8]. The final feature is thus given by the
normalized jet JG(p) and the distance between two jets JG(p) and JG′(p) is com-
puted as the L2-norm of their vector difference. Image distances are computed
by taking the SSD of JG(p) and JG′(p) for all image points p.
Jets of Even Gabor Filter Responses (JEG): Besides Gabor jets, jets
of oriented second derivatives of Gaussians [15] have also been proposed as an
effective way of combining LOG and GO to produce a representation which is
appropriate for both isotropic and anisotropic surfaces [8]. Even Gabor filters
have a very similar shape to oriented second derivatives of Gaussians if the cosine
bandwidth is chosen such that the Gaussian envelope roughly covers the cosine
range of [−1.5π, 1.5π] (i.e., c ≈ 0.4) [14, 8]. In this study we use even Gabor
filters as they provide a higher flexibility in the definition of the filter shape, due
to a more general set of parameters. However, it is clear from the high similarity
of the filters that substantially the same performance can be achieved by the
use of second derivatives of Gaussians. In contrast to JG, the jet J̃EG is formed
only from the absolute values of Iθie ,

J̃EG(p) = [
∣∣Iθ1e (p)

∣∣ , . . . , ∣∣IθNe (p)
∣∣] (3)

The final feature is again given by the normalized jet JEG(p).
Jets of Multi-Scale Even Gabor Filter Responses (JMSEG): The op-
timal size of the filters depends on the surface characteristics, as for smoother
surface parts a wider filter is needed than for less smooth surface parts [8]. One
can learn the optimal filter size for a given application domain by means of
training data as done in [8], but nonetheless the variation of surface smoothness
is disregarded if only one single filter size is used. As in a general scenario the
surface characteristics are usually unknown and varying, it is beneficial to extend
the single-scale jet JEG towards a multi-scale representation JMSEG. For this
jet the single-scale jets JEGωi , obtained by filtering with Gabor filters of scales
ω1 . . . ωM , are simply concatenated,

JMSEG(p) = [JEGω1
, . . . , JEGωM ] (4)

Self-Quotient Image (SQI): SQI was introduced by Wang et al. [16] as a
method to separate the albedo information R(x, y) from images. Similar to other
works in this area, the idea is - based on the Lambertian assumption - that
the illumination effects mainly appear in the low-frequency components of the
image and that they can therefore be eliminated by dividing the image by a
smoothed version of it. The method is intentionally designed for textured objects,
but showed superior performance in a study of illumination invariance for face
recognition [1] on the nearly textureless face parts cheek, chin and nose. Another
motivation for including SQI in our evaluation is to assess the performance of
the vast amount of methods dedicated to textured objects by evaluating one
representative method. For our experiments, we use the implementation of SQI
provided by the INFace1 toolbox and take the SSD of the SQIs as distance
measure.
1
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face tools/INFace/



Illumination-Insensitive Recognition of Textureless Objects 5

Gray Value (GV): In order to have a baseline performance, we also report
results for simple image differencing, i.e., measuring the SSD between the original
gray values of the two images.

3 Experiments

Experiments are conducted on synthetic image datasets built from 3D histori-
cal coin models as well as on real datasets of textureless and textured objects.
We use synthetic images because this way the parameters of image formation
can be freely changed to produce images with different illumination conditions
and material properties with or without texture. In this manner, we are able to
directly compare the performance of the features under different conditions with-
out introducing a bias due to different objects used between datasets. The real
dataset is used to validate our results for various real-world material properties
and illumination conditions.
Synthetic Datasets. The synthetic datasets consist of images of 14 coin models
which were rendered using the open-source graphics software Blender2. For each
model, twelve sets of 500 × 500 images with 65 illumination directions were
rendered where each set represents one out of four material BRDFs and one
out of three texture density levels. Material BRDFs are intended to represent
different levels of specularity starting from a Lambertian material with zero
specularity up to specular intensity values of 0.25, 0.50 and 1.00. Three texture
density levels were chosen to show the correlation of the features’ performances
to the amount of texture on the objects. The first level shows no texture and
thus represents the set of textureless objects. For the remaining two levels we
used synthetically generated textures. For each model and dataset, 65 images
with varying illumination directions were rendered. The camera image plane is
placed parallel to the coin and light source positions are defined by their azimuth
angleφ and elevation angle λ. We used eight levels of λ with eight levels of φ
each to produce 64 images. The 65th image is rendered with the light placed at
the camera position (i.e. λ = 90◦). Fig. 1(a) shows images of one model rendered
with the same illumination parameters for the twelve synthetic datasets. Please
note that the coin models have, on a local level, smooth isotropic as well as non-
isotropic surface parts and thus cover the wide range of surface characteristics
desired for our purpose. The dataset is available for download3.
Amsterdam Library of Object Images. The Amsterdam Library of Ob-
ject Images (ALOI) [17] is an image database of 1000 objects that were pho-
tographed from three viewpoints and with eight illumination configurations each.
The database contains a wide variety of textureless objects (e.g., a nut, a sponge,
white cotton, a metal elephant, a plastic cup...) as well as textured objects (e.g.,
labeled boxes, an alarm clock, a calendar, a cream tube, a shoe ...). Therefore,
the ALOI images provide a realistic and challenging database due to the high
variation of material BRDF and surface smoothness among the objects.

2
http://www.blender.org/

3
http://www.caa.tuwien.ac.at/cvl/people/zamba/sidire/
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Fig. 1: (a) Coin model rendered with different material properties and texture
densities; Patch pairs of size 64 × 64 from (b) the synthetic datasets, (c) ALOI
textureless dataset and (d) ALOI textured dataset.

3.1 Evaluation Scheme

The performance evaluation scheme is inspired by [11]: as a “good” feature will
minimize the distance between image patches showing the same object part and
maximize the distance between image patches showing different object parts, we
measure these two groups of distances for a given feature and set of true and
false image patch pairs. True patch pairs show the same object patch but with
different illumination conditions, whereas false patch pairs show different object
patches. False positive and true positive rates are sampled from these two groups
of distances by means of a varying threshold and used to build a ROC curve of
which the area under curve (AUC) is computed as performance measure. For
patch pair generation we randomly extracted the same amount of true patch
pairs and false patch pairs from the images of a dataset. We use a patch size
of 16 × 16 pixels, but in general the patch size has no significant impact on the
results, as has been observed in initial tests. Figure 1(b)-(d) show examples of
true patch pairs from the synthetic datasets, the ALOI textureless dataset and
the ALOI textured dataset, respectively (64×64 patches for better illustration).
To generate patch pairs from the ALOI datasets, we manually identified 80
textureless objects and 80 textured objects in the dataset and randomly picked
non-overlapping true and false patch pairs (12000 from the textureless objects
and 18000 from the textured objects, as the textureless objects in the dataset
are smaller on average).

3.2 Results and Discussion

Parameter Selection. As our main purpose is the study of the features’ behav-
ior on textureless objects with varying material properties, tests for parameter
selection were conducted on a mixed set consisting of 50000 true and false patch
pairs extracted from the four synthetic datasets of textureless objects. Parameter
selection was then achieved by an exhaustive search over the parameter space.
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Fig. 2: (a) Recognition performance dependent on parameters c and γ; Recog-
nition performance for different levels of material specularity on (b) textureless
objects, (c) objects with texture density level 1 and (d) objects with texture
density level 2.

For GD and GO, we tested if a presmoothing of the patches or a bigger Sobel
filter than the standard 3 × 3 one are beneficial in terms of recognition perfor-
mance, but no improvement could be detected. For LOG we used an exhaustive
search to find the optimal standard deviation of the Gaussian. For SQI, no ex-
haustive parameter selection was conducted as this method is intended for tex-
tured objects and initial tests with several parameter settings were not successful
in substantially improving the generally bad performance of SQI. Therefore, we
used the standard settings defined in the INFace Toolbox. For the features GJ
and GEJ, the parameters defining the shape of the Gabor filters (c and γ) as well
as the number N of orientations are of interest. Figure 2(a) shows the maximum
AUC achieved over the parameter space for various fixed values of c and γ. We
can derive from these results that the best performance is achieved when c is set
in a range of 0.45 − 0.50, i.e. the filters have a shape close to second derivatives
of Gaussians. The optimal value for the aspect ratio of the filters defined by
the parameter γ is around 0.9. Our experiments also revealed that the number
of orientations does only have a minor influence on the overall performance for
N > 4. Based on our results, for the further experiments we used parameter
values of γ = 0.9 and N = 6 for JG, JEG and JMSEG, as well as c = 0.50 for
JEG and JMSEG and c = 0.45 for JG. We also identified optimal filter sizes
ω1 . . . ωM for JMSEG as ωj = ω12(j−1)/2 with ω1 = 1 and M = 8.

Recognition Performance Depending on Object Specularity and Tex-
turedness. To evaluate the recognition performance of the features for the
twelve synthetic datasets, we randomly extracted 50000 true and false patch
pairs for each dataset. Patch pairs contained in the mixed set for parameter
selection are not contained in the four textureless datasets used for this evalua-
tion. The results are plotted in Figure 2(b)-(d). It can it can be clearly seen that
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on textureless objects the representations based on even Gabor responses (JEG
and JMSEG) perform best. The multi-scale representation of JMSEG is benefi-
cial especially on Lambertian surfaces where it shows a significant improvement
of recognition performance over JEG (AUC of 0.933 against 0.899). Complex
Gabor filter responses (JG) are better than the other remaining features but it
can be concluded from the worse performance compared to JEG that the phase
invariance of the complex filter decreases its recognition power. For image gradi-
ents, there is a large discrepancy between the use of gradient orientations (GO)
and gradient directions (GD). GD is much less stable than GO as it is highly
vulnerable to edge polarity changes induced by opposite lighting directions be-
tween true patch pairs. SQI is only slightly better and performs substantially
worse than the top-performing features, as this representation is designed for
textured objects and is thus highly affected by changes of the shading patterns
on textureless objects. Therefore, the method achieves its best results on Lam-
bertian objects with a high texture density (Figure 2(d)). Another conclusion
from the results on textureless objects is that more specularity of the objects’
material increases the performance. Although a specular BRDF causes more
appearance variations from light source variations than a Lambertian BRDF,
surface characteristics are also more accentuated by a specular surface, which
in turn supports its recognition. The only exception of this effect is LOG which
has been especially proposed for smooth, Lambertian objects [8].

The results on textured objects shown in Figure 2(c)-(d) demonstrate that
texture increases the recognition performance of all features and in general that
their performance is correlated to the degree of texture variation, since albedo
discontinuities are less affected by lighting variations than discontinuities of ob-
ject depth. However, the representations based on Gabor filters are the best
performing features for all material types, regardless of the texture density of
the objects.

Influence of the Amount of Light Source Change. An interesting question
in the context of our evaluation is how the amount of light source difference
between the images to be compared has an influence on the discriminative power
of the features. Therefore, we took this issue into account for the ROC curve
generation by subselecting patch pairs from the textureless objects with a given
difference of light source azimuth or elevation. Hence, only true patch pairs with
a specified azimuth difference and no elevation difference, and vice versa, are
considered. The results of these tests are shown in Figure 3(a)-(b). The plotted
curves demonstrate that for smaller light source changes the performances of the
features are close together whereas for stronger changes there is also a higher
difference in performance. GD is a competitive feature for small light source
changes of 45◦ azimuth and 10◦ − 20◦ elevation, but its performance decreases
stronger than that of other features for larger light source changes. GD, SQI and
GV are especially vulnerable to changes of the light azimuth, as they are not
invariant to edge polarities which tend to change on depth discontinuities for
opposite lighting directions. An important aspect of these experiments is that
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Fig. 3: Recognition performance in relation to (a) the difference of light elevation
angle λ and (b) the difference of light azimuth angle φ; (c) Performance on real
ALOI datasets.

the Gabor-based features show the top performance for all levels of light source
changes, but their dominance is more pronounced for higher levels of change.

Recognition Performance on Real Datasets. As can be seen in Fig. 3(c),
the results on the real datasets widely reflect the findings of the experiments
on the synthetic datasets. JMSEG is again the best performing feature for tex-
tureless and textured objects, followed by JEG and JG. The generally lower
performance on the real datasets is explained by image noise on the images as
well as the acquisition setup used. There are more underexposed (i.e. completely
black) and overexposed (i.e. completely white) objects parts which evidently
hinders recognition. Nonetheless, the results show that the insights gained from
our experiments on synthetic datasets can be transferred to the real world.

4 Conclusions

In this paper we addressed the problem of comparing images of textureless 3D
objects in unconstrained conditions. Although in general invariance to illumina-
tion conditions is a central computer vision problem, we identified the subarea
of textureless objects as an under-researched topic. Therefore, we evaluated sev-
eral well-known pixelwise low-level features with respect to their recognition
performance for textureless objects. Unlike previous studies [7, 8], we separately
evaluated textureless objects and demonstrated that features claimed to be in-
sensitive to illumination conditions, like gradient direction or the self-quotient
image, perform substantially worse on textureless surfaces than on textured sur-
faces. Our findings are based on a comprehensive evaluation on synthetic datasets
with varying degrees of specularity and texturedness as well as real images of
textureless and textured objects.

Our experiments revealed that jets of even Gabor responses are the features
of choice for capturing surface characteristics in an illumination-insensitive way,
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not only for textureless but also for textured objects under strong illumina-
tion changes. We also demonstrated that for improved performance one can
extend the single-scale representation towards multiple scales by concatenating
the single-scale jets. We think that this representation offers a powerful basis
for more sophisticated methods that tackle computer vision problems involving
textureless objects or heavily changing illumination conditions. For future work,
we plan to intensively investigate their usage for higher-level features which will
allow for the improved recognition, registration or reconstruction of objects in
such scenarios.
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