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Abstract. In this paper we present an approach for the georeferencing
of historical World War II images by registering the images to present-
day satellite imagery, with the aim of supporting the risk assessment
of unexploded ordnances. We propose to exploit the local geometry of
corresponding interest points in a Hough voting scheme to identify the
most likely transformation parameters between the images. Our method
combines the evidences from local as well as global correspondences and
uses a spatial zoning rule to establish solutions with preferably uniformly
distributed correspondences. An experimental evaluation is conducted
on a set of 42 pairs of historical and present-day images and reveals
the outstanding performance of our method compared to state-of-the-art
image matching and registration algorithms, including commonly used
hypothesize-and-verify and graph matching methods.
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1 Introduction

Assessing the risk of UneXploded Ordnances (UXOs) is an important concern
for public safety [20]. Nowadays, a particular risk still comes from World War II
bombing, as it is assumed that 10 − 30% of bombs remained unexploded [4].
UXO risk assessment involves the analysis of aerial photographs taken after
bombing [17]. Indications of past bombardment such as craters can be used by
analysts to derive such risk maps, but demands for a tedious prior georeferencing
process by manually registering the images with modern satellite imagery.

In this paper we present an approach to register old World War II images
with modern satellite images for automatic georeferencing. While being a typical
image registration problem [25], this task poses specific challenges that demand
for a well-adapted solution. First and foremost, the time spans of over 70 years
lead to changes in image content of varying degrees, as shown in Fig. 1. Fur-
thermore, the historical images are grayscale only and are affected by over- or
underexposure, uneven illumination, low spatial resolution, blurring, sensor noise
or cloud coverage. Due to this challenges, existing solutions for registering his-
torical aerial photographs rely on manual interaction steps like line and point



(a) (b)

Fig. 1: Examples of image changes between World War II aerial images and
present-day satellite imagery; (a) Vienna’s 3rd district, (b) Vienna airport in
Schwechat, Austria.

feature detection [18], prior rough alignment [7] or registration of a reference
image [1, 10].

In image registration, commonly feature-based registration techniques are
exploited due to their ability to ground the registration only on a few salient
image parts, which makes them robust against occlusions and other image de-
terioration effects and allows to handle complex spatial transformation between
the images [25]. These techniques consist of a feature matching step followed by
a spatial verification step, where outlier correspondences are filtered out and the
transformation with highest support from the set of putative matches is iden-
tified. A dominant example for spatial verification are hypothesize-and-verify
methods such as RANSAC [8] and similar techniques [21], where transformation
model hypotheses are created from randomly chosen correspondence samples and
evaluated by means of congruence with the remaining correspondences. However,
these estimators are only effective if the extracted local features are discrimina-
tive enough to deliver a certain inlier ratio in the set of putative matches. For
weaker local features the feature matching step can be coupled with the spatial
verification step to increase the inlier ratio, as done by graph matching meth-
ods [6, 22]. Here feature matching is cast as an optimization problem involving
both the similarities of the local feature vectors as well as pairwise or higher-order
geometric consistencies of matches. However, graph matching is only computa-
tionally tractable for extracted feature sets in the order of 101 − 103 [6], thus
allowing only a small set of initial candidate matches resulting in low recall.

The method presented in this paper builds upon the idea of using Hough
voting in the transformation space, as used for object recognition [14], image
retrieval [11] or image co-segmentation [5]. Due to the available local geometry
of interest points, each single correspondence is able to cast a weighted vote
based on feature similarity. Although a single correspondence gives only a weak
evidence about the image transformation, stronger evidences are produced the
higher the number of correspondences, and false votes can be effectively ruled
out. As adding new correspondences has only linear costs, we can rely the trans-
formation estimation on much more correspondences (in our case in the order
of 105). This is especially effective for high-resolution remote sensing image data,
as all small local structures in the comparatively large earth surface areas covered



are possibly useful for image registration. Hence, we transfer the idea of Hough
voting from single correspondences to our problem of old-to-new image aerial
registration and propose two reasonable extensions to improve the performance:
the combination of local and global image similarities and the use of a corre-
spondence zoning scheme to favor solutions with spatially evenly distributed
correspondences.

The remainder of this paper is organized as follows. Section 2 reviews related
work in the registration of remote sensing images in general and aerial WWII
images in particular. Our methodology is described in Section 3. In Section 4,
quantitative results are reported and discussed. Concluding remarks are given
in Section 5.

2 Related Work

Registration of Remote Sensing Images: Image registration plays a major
role in various remote sensing applications, such as image fusion, change detec-
tion and georeferencing [12]. Depending on the specific scenario, the effectiveness
of an algorithm is mainly determined by weather it uses the global image infor-
mation or rather focuses on local parts of the image [24]. Global techniques aim
at optimizing the transformation parameters based on a global similarity metric
of pixel intensities, e.g. mutual information [13]. They are usually favored when
the detection of salient structures in the image is not possible and accurate sub-
pixel registration is privileged, but suffer from high computational load and local
minima trapping and are thus limited to registration problems with a bounded
search space of transformation parameters, e.g. the fine registration of roughly
aligned image pairs [13]. Therefore, local techniques are more prominently used
in general scenarios [15, 16], as here the registration is based on a few salient
features, which makes them also more robust against dissimilar, non-matchable
image parts and other types of appearance changes. Typical appearance changes
that are considered between remote sensing images are different modalities [16],
illumination effects or disaster damages [3]. Automatic multitemporal image reg-
istration is also followed [9, 19, 23], but commonly not for such long time-spans
as in our case of historical-to-modern image registration.

Registration of WWII Aerial Images to Present-Day Satellite Im-
agery: only a few works consider the problem addressed in our paper, with
Murino et al. [18] being the first to provide a semi-automatic solution. In their
approach, all possible matches between interactively selected line and point fea-
tures are included for a RANSAC homography estimation. Automatic alignment
of aerial images from WWII was also addressed in the GeoMemories project [1],
but only between the historical images, whereas the actual georeferencing is
achieved by selecting a reference historical image with known coordinates. The
same principle is followed by Jao et al. [10], as historical-to-historical image
registration has to deal with much less image variations and thus spatially ver-
ified SIFT feature matching is a suitable choice. Another solution to simplify



the problem is presented by Cléry et al. [7]. Here a coarse initial registration is
assumed, which can then be automatically refined by matching line features to
a topographic map of the area. In contrast, our method does not make such as-
sumption and represents, to the best of our knowledge, the first fully automatic
approach to register aerial WWII images to present-day satellite imagery with
a-priori unknown orientation and translation relation.

3 Methodology

In our application scenario, historical aerial images cover an area of 2.5 - 16 km2

and are registered to regions-of-interest in modern satellite imagery with a size
of 1.5 - 10 times the size of the aerial image. We exploit the already known
approximate image scale of the historical images derived from the recorded air-
craft altitude and camera focal length to scale-normalize both images and limit
the Hough parameter space to translation and rotation only. A preliminary in-
spection of our test data revealed an error of the estimated image scales of only
4.7 %, with the maximum being at 30 %. Hence, neglecting scale differences in
local feature extraction and the Hough transformation space is a justified choice,
whereas the small scale differences are respected in the final estimation of the
image transformation from the correspondences responsible for the global peak
in Hough space.

3.1 Hough Voting from Corresponding Local Interest Point
Geometry

Extraction of local image features, e.g. SIFT features [14], from an image deliv-
ers descriptor vectors di as well as local feature frames fi = (xi, yi, σi, θi). Here,
(xi, yi) is the feature location relative to the image center, σi is its scale and
θi is the orientation. When registering image I ′ to image I ′′, we first compute
similarities between all features d′i and d′′j as si,j = (‖d′i − d′′j ‖2)−1. For com-
putation of the Hough space, we take the subset M containing the N matches
with highest similarity, mi,j = (f ′i , f

′′
j ) ∈ M. Each mi,j ∈ M votes for a rigid

transformation in the 3D Hough Space H(xmi,j , ymi,j , θmi,j ), with

θmi,j
= θ′i − θ′′j , (1)
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H is initialized with zeros and updated as

H(xmi,j , ymi,j , θmi,j ) = H(xmi,j , ymi,j , θmi,j ) + si,j (3)

for each mi,j = (f ′i , f
′′
j ) ∈M.

After the N votes are cast, the transformation parameters x∗, y∗ and θ∗ are
identified at the maximum value in H. We then select the matches M∗ that



voted for a similar transformation by thresholding the translation and rotation
differences, i.e.

M∗ = {m |

∥∥∥∥∥
(
xm
ym

)
−

(
x∗

y∗

)∥∥∥∥∥
2

< Tt ∧ π −
∣∣|θm − θ∗| − π∣∣ < Tθ} (4)

with Tt and Tθ being the thresholding values for translation and orientation,
respectively. From all correspondences in M∗, we estimate the final similarity
transformation to account also for small scale differences between the images.

3.2 Combination of Votes from Local and Global Features

The strong appearance changes between old and new images not only decreases
the discriminative power of the extracted features, but also affects the repeata-
bility of interest point detection. Therefore, we rather apply a dense feature
extraction scheme where local features are sampled on a regular grid with a
fixed feature scale.

In this case, the selection of feature scale is influential to the performance
of feature matching as it decides the level of image details to be compared.
For multitemporal remote sensing data, both smaller and larger structures are
potentially helpful: while smaller scales capture finer details like buildings, larger
scales capture rougher structures like the courses of rivers and streets, which are
likely less affected by changes over time. Therefore, we combine evidences from
correspondences of both local and global image features by constructing two
Hough spaces Hl and Hg and join them to the combined Hough space Hc as

Hc = λ ·Hl + (1− λ) ·Hg, (5)

where λ serves as weighting parameter.

3.3 Correspondence Zoning

Dense feature extraction ensures that features are uniformly distributed in both
images, but the feature points belonging to correspondences responsible for a
certain peak in Hough space might be concentrated on very few image parts
with high appearance similarity. However, spatially uniform distributed corre-
spondences should be preferred over clustered ones, since the estimation of the
global image transformation is more robust and the final result is more trustable
as it is grounded on evidences from different image parts.

Therefore, we utilize a zoning procedure that ensures that only one vote is
allowed between two image regions, and consequently gives preference to solu-
tions with spatially uniformly distributed correspondences. For this purpose, we
set up an indicator function Z(x′i, y

′
i, x
′′
j , y
′′
j ) ∈ {0, 1} that defines if a correspon-

dence between the points (x′i, y
′
i) and (x′′j , y

′′
j ) has already been used. The Hough

space update of Eq. 3 for Hl is applied only if Z(x′i, y
′
i, x
′′
j , y
′′
j ) = 0 and after an



update with the match mi,j , Z(x′, y′, x′′, y′′) is set to 1 for all (x′, y′) ∈ Nx′
i,y

′
i

and all (x′′, y′′) ∈ Nx′′
j ,y

′′
j

, with Nx,y specifying a neighborhood system of the

point (x, y).
The effect of correspondence zoning is exemplarily shown in Fig. 2. When

no correspondence zoning is applied, nearby erroneous matches produce a global
peak in Hough space, resulting in a wrong registration result (Fig. 2a). How-
ever, with correspondence zoning the influence of nearby matches is reduced
and the final matches of the global Hough peak are correct and more uniformly
distributed over the image (Fig. 2b).

3.4 Implementation Details

In our implementation, we use SIFT features [14] to describe both the local and
global image patches. For the local Hough space Hl, features are extracted on a
regular grid with an interval of 40m and a patch size of 120m, based on empirical
tests. For each feature the orientation θi is determined from the dominant gra-
dient direction within the patch [14]. For the global Hough space Hg, we extract
a SIFT feature over the whole historical image area for 18 regularly spaced ori-
entations. Features of the same size are extracted from the present-day satellite
image with a fixed orientation and an interval of 100m.

For the discretization of the Hough space, we use a step size of one pixel
for the translation parameters and 2π

18 for the orientation. Due to the rougher

(a) (b)

Fig. 2: Image matches chosen based on global Hough peak; (a) without corre-
spondence zoning; (b) with correspondence zoning.



discretization of the orientation parameter, we use bilinear interpolation to dis-
tribute the value of θi to adjacent bins. For the correspondence zoning, a circular
neighborhood with a radius of 80m is used. Other parameters of our method are
empirically set as follows: we equally weight the contribution of the local and
global Hough space (λ = 0.5 in Eq. 5), take the N = 105 best correspondences
to fill the Hough space, and set the thresholding values for the final inlier corre-
spondences in Eq. 4 to Tt = 100m and Tθ = 2π

36 .

4 Experiments

In this section we report quantitative results of our method on annotated test
data and compare it to other image matching and registration algorithms pro-
posed in literature.

Dataset and Evaluation Protocol: our dataset consists of 8 reference satel-
lite images from urban and non-urban areas in Austria. For each reference image,
3-11 historical aerial images are available, leading to a total of 42 image pairs. All
images have been scale-normalized to a spatial resolution of 1m prior to process-
ing. Manually selected ground truth correspondences are used to measure the
root mean squared error (RMSE) [2] of the image transformations determined
by the different evaluated algorithms.

Algorithms: we compare our method to the following algorithms:
SIFT+RANSAC: standard SIFT feature matching [14] with RANSAC [8] for
spatial verification serves as baseline performance for the comparison. For a fair
comparison, we again use a dense feature extraction with fixed scale, set to 360m
in this case for best performance. Putative matches are achieved by SIFT match-
ing with an inlier ratio threshold of 1.3 [14]. Additionally, RANSAC solutions
of the similarity transform are validated only if the scale difference ∆s is within
the bounds (1/T∆s) ≤ ∆s ≤ T∆s, with T∆s set to 1.4.
Locally Linear Transforming (LLT) [15]: similar to RANSAC, LLT is a method
for the simultaneous transformation estimation and outlier removal from a set of
putative matches, but embedded in a maximum-likelihood framework with a lo-
cally linear constraint. The method is included in the evaluation as it showed an
outstanding performance compared to other robust estimators on remote sensing
data [15]. In our evaluation, we applied the rigid transformation LLT version to
the same set of putative matches as for SIFT+RANSAC. We used the parameter
settings reported in [15], but changed the uniform distribution parameter from
10 to 5 due to a better performance (see [15] for details).
Position-Scale-Orientation-SIFT (PSO-SIFT) [16]: PSO-SIFT is another re-
cently proposed method for remote sensing image registration. Like our method,
it is also based on statistical evidences from the local geometry of correspon-
dences. However, transformation parameters are treated individually and their
modes are only used for an enhanced distance metric of local descriptors.
Progressive Graph Matching (PGM) [6]: PGM is a general image matching al-
gorithm based on graph matching. Starting with a set of initial matches, graph



matching results are iteratively enriched with correspondences and re-matched.
We use the SIFT matching results from SIFT+RANSAC to initialize PGM and
apply RANSAC to its final matching results for transformation estimation.

Additionally, we report results on various versions of our Hough voting (HV)
method in order to demonstrate the effects of the proposed improvements of
local-global feature combination and correspondence zoning: a version with local
Hough voting only (HVlocal), global Hough voting only (HVglobal), combined
Hough voting according to Eq. 5 (HVlocal+global), and the full method with
correspondence zoning (HVlocal+global,CZ).

Results and Discussion: in Fig. 3 the number of correct registration results
achieved with the various algorithms are plotted. Correctness of a result is deter-
mined by comparing its RMSE with the threshold on the logarithmically scaled
x-axis of the plot. It can be seen that the competing methods perform poorly
on the test data set compared to the proposed methods. SIFT+RANSAC and
LLT have a similar low correct registration rate which demonstrates the limits of
outlier removal methods when weak feature descriptions produce too low inlier
ratios in the set of putative matches. PGM has a slightly higher correct regis-
tration rate for higher acceptable errors due to its correspondence enrichment,
but still does not reach the performance of our method.

The results shown in Fig. 3 also verify the effectiveness of combining local and
global correspondences as well as zoning the local correspondences. HVlocal+global

shows a better performance than HVlocal and HVglobal, and the full method
HVlocal+global,CZ with correspondence zoning gives another significant perfor-
mance boost. Examples of correct registration results are shown in Fig. 4. For
these examples, HVlocal+global,CZ is the only method able to achieve a correct
registration. Nevertheless, it is evident from the results that correctly registering
images with such a high time distance is an enormously challenging problem, as
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Fig. 3: Number of correct registration results as a function of max. RMSE in
meters for the competing methods (left) and different versions of our method
(right).



(a) RMSE = 23.4m (b) RMSE = 121.7m (c) RMSE = 30.5m

Fig. 4: Example results of image registration with HVlocal+global,CZ; top: reference
satellite image; bottom: registration result (zoom of red area shown in reference
image).

even the best performing method HVlocal+global,CZ is only able to register around
45 % of the cases with an error of less than 350m.

The generally low precision of our Hough voting methods is primarily a re-
sult of the regular feature sampling with a step size of 40m. This is a necessary
compromise as feature detection has shown to have very unreliable repeatabil-
ity, but on the other hand regular sampling prevents a precise localization of
corresponding features. As part of future research, we plan to investigate fine
registration as postprocessing step with a flexible transformation model, also to
account for the actually non-linear spatial transformation between the images.

Runtime Analysis: in Table 1 we compare the average runtimes of our MAT-
LAB implementation of Hough voting to the runtimes of the competing methods
on the same machine. The tests for the competing methods have been performed
with the original MATLAB implementations provided by the authors. Due to
the high number of matches to be processed (N = 105), the better registration
performance of our method comes at the price of an considerably longer run-
time than the outlier removal methods SIFT+RANSAC and LLT. It can also
be seen that correspondence zoning does not only give a boost in registration
performance, but also saves around 8 % of computation time as not all of the N
matches have to be evaluated for their local transformation and included in the
Hough space.



Table 1: Comparison of average registration runtimes per image pair, including
feature extraction.
SIFT+RANSAC LLT PSO-SIFT PGM HVlocal+global HVlocal+global,CZ

12.7s 11.0s 55.7s 156.7s 32.8s 30.2s

5 Conclusions

Registration of aerial images from the times of WWII to modern satellite imagery
proves to be a challenging problem due to the severe changes between images.
Therefore, previously published approaches rely on strong initial assumptions
about the geometric relation of images or have to make use of a manual step in
the processing pipeline. In this paper, we introduced a Hough voting strategy
that allows for the fully automatic historical-to-modern aerial image registration
with a-priori unknown translation and orientation differences.

Although our method outperforms state-of-the-art methods for this kind of
problem, it offers much potential for further improving the performance. For
instance, our voting strategy can be easily extended to combined Hough spaces
leveraging multiple descriptors for matching. The encoded evidences about rel-
ative geometric relations between images can also be integrated to reason about
the overall geometric relations of images in a groupwise registration scenario.
Additionally, a final fine registration step can be used to obtain a more precise
solution. These issues, besides adapting the methodology to other domains, will
be investigated for future research.
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