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Abstract—Classification of ancient coins is a substantial part
of numismatic research which needs a large amount of expert
knowledge due to the high number of classes to be considered.
In this paper we propose an automatic image-based classification
method for ancient coins to support this time-consuming and dif-
ficult process. We demonstrate that previously proposed learning-
based methods suffer from the practical conditions of this
problem: a high number of classes, limited number of training
samples per class and complex intra-class variations. As a solution
we propose a similarity metric based on feature correspondence
which is designed to be robust against the possible intra-class
coin variations like degraded parts, non-rigid deformations and
illumination-induced appearance changes. The similarity metric
is used in an exemplar-based ancient coin classification scheme
which shows to outperform previously proposed methods for
ancient coin recognition. Experiments are conducted on a dataset
of 60 Roman Republican coin classes where the presented method
achieves classification rates ranging from 72.7% for the case of
one training sample per class up to 97.2% when nine training
samples per class are used.

I. INTRODUCTION

The aim of this paper is to automatically classify ancient
Roman coins from single query images of the reverse (back)
sides. Our motivation stems from the challenging nature of this
task, as even for trained experts this is a time-consuming pro-
cess, which can be speeded up and supported by an automatic
image-based classification [1]. Additionally, coin recognition
can be utilized for detecting illegal coin trade on the internet
by checking the images against a repository of stolen ones [2].

As illustrated in Fig. 1, the difficulty of ancient coin
recognition is caused by two main factors: the high number of
classes with low inter-class and high intra-class variations as
well as the suboptimal conditions of the coins. For instance,
for the gold and silver coins of the Roman Republican age
550 main types with over 1000 subtypes are defined [3]. The
coins of Fig. 1(a)-(b) all show the goddess Calliope and the
two classes can only be differentiated by the coin legend. On
the other hand, non-rigid intra-class deformations due to the
non-industrial manufacturing can be spotted within the classes
(e.g., Calliope’s hand and the legend structure in Fig. 1(b)).
The conditions of the coins lead to further challenges: missing
and worn parts due to the coins’ age (Fig. 1(c)) as well
as appearance variations due to lighting variations and the
metallic relief-like structures of the coins (e.g., the two coins
in Fig. 1(d) are illuminated from opposite directions).

In this work we build upon correspondence-based methods

(a) Crawford 410/3 (b) Crawford 442/1

(c) Crawford 346/1 (d) Crawford 393/1

Fig. 1: Reverse side of Roman Republican coins from four
different coin classes.

for image classification [4]–[8]. These methods have shown
superior performance in recognition scenarios with non-rigid
intra-class deformations and low number of training samples
like face recognition [6], [8]. This is also the case for rec-
ognizing ancient coin classes with different levels of rarity:
in the Museum of Fine Arts in Vienna around 3900 coins of
the Roman Republican age are available, but for only 237
of the 515 classes more than three coins are available [9].
Correspondence-based methods estimate image similarity by
means of optimizing a cost function with first-order (local fea-
ture similarity) and second-order (regularization) constraints.
Hence, the matching costs are robust against image clutter
and non-rigid deformations, and this methodology has been
successfully applied to exemplar-based coin classification [9].

In our method, instead of regularizing the matching process
by geometric constraints, we perform a data-driven first-order
matching and use geometric constraints afterwards to reason
about the geometric plausibility of the correspondences found.
This improves the reliability of the similarity measure while
reducing the computation time. The improved reliability comes
from the introduced potential of using stronger constraints with
higher computational complexity, as the constraints have to be
evaluated only once for the given correspondence configura-
tion. Second, in contrast to optimization-based approaches, the
“freedom” of data-driven matching contributes to a statistically
more meaningful way of using the matching costs as dis-



similarity measure: the geometric plausibility of the matched
features will be higher for similar coins than for dissimilar
coins, as statistically more correspondences are correct. In
contrast, in optimization-based approaches the correspondence
search is highly forced by the geometric constraints in case of
local appearance ambiguities, which consequently reduces the
similarity metric’s gap between similar and dissimilar image
pairs, and hence the discriminative power.

The remainder of this paper is organized as follows. In
Section II we give an overview of related work in image-
based ancient coin classification. Our proposed methodology
is explained in Section III and empirically evaluated and
compared to the state-of-the-art in Section IV. Conclusions
are finally drawn in Section V.

II. RELATED WORK

Due to the aforementioned challenging characteristics of
ancient coins, methods for present-day coins have shown to
be inappropriate for ancient coins [10]. The first approach
dedicated to ancient coins was presented by Kampel and
Zaharieva [11]. They define coin similarity by the number
of matched SIFT features [12] and achieve 90% classification
rate, although using only three coin classes in the experiments.
We extended this approach of local feature matching by
establishing dense matching costs similar to SIFT flow [8]. The
method [9] was incorporated into an exemplar-based coarse-
to-fine classification scheme and achieved a classification rate
of around 83% on 60 classes of Roman Republican coins.

Learning-based methods for ancient coin classification have
been proposed by Anwar et al. [13] and Arandjelović [14].
Both methods also rely on local SIFT features which are
quantized into a fixed vocabulary of visual words. In [13] the
image is tiled into spatial regions and the concatenated single
histograms of visual words of each region are used as image
feature. This approach is rather used for a coarse-grained
classification of coins based on the reverse-side symbols than
fine-grained classification and achieved a classification rate of
up to 90% for eight common Roman Republican symbols.
Arandjelović’s method [14] exploits the spatial configuration of
visual words in a different way: locally-biased directional his-
tograms (LBDHs) are introduced for encoding the distribution
of visual words around a detected keypoint in eight directions
relative to its canonical orientation. The LBDH features are
then again subject to vocabulary creation and the histogram
of LBDH words serves as final image feature. This method
achieves a classification rate of around 57% on 65 classes
of the Roman Imperial age. Learning-based methods have
also been exploited to support coin classification by means
of legend recognition [15], [16].

III. LOCAL FEATURE MATCHING AND GEOMETRIC
CONSISTENCY EVALUATION

The core of our proposed exemplar-based coin classi-
fication methodology is to estimate the similarity of two
coin images robustly against scale differences, illumination
conditions, image background and non-rigid deformations.
Robustness against scale differences and image background is
achieved by segmenting the coin region in the image (Section
III-A). Robustness against illumination conditions is accom-
plished by extracting illumination-insensitive local features for

matching (Section III-B). Coin similarity insensitive to non-
rigid deformations is finally enabled by first-order matching
followed by an evaluation of the geometric consistency of the
correspondences (Section III-C).

A. Segmentation and Scale Normalization

As a preprocessing step, we perform coin segmentation by
means of a shape-adaptive method [17] in order to mask out
local features outside of the coin region for further processing.
The second achievement of the segmentation step is the ability
of scale-normalizing the images. By selecting the coin area
from the images and resizing it to a standard size (150× 150
in our case) we are able to compute local features at a
constant scale and do not have to sacrifice a certain amount of
discriminative power and reliability by scale-invariant feature
detection [12].

B. Feature Extraction and First-Order Matching

In our work, we extract local features from the images at
positions pi = (xi, yi) on a regular grid with pixel interval
∆p = (∆x,∆y). We use this dense sampling scheme as we
found the repeatability of keypoint detection on ancient coins
to be unsatisfying. Furthermore, dense sampling gives us more
features and thus a statistically more valuable estimation of
the quality of feature correspondences. In contrast to other
works [9], [11], [13], [15], we also do not build upon SIFT
features but use the recently proposed LIDRIC features [18].
These features use locally normalized oriented even Gabor
filter responses and have shown to outperform SIFT and other
descriptors under illumination changes. As can be observed in
Fig. 1, illumination changes can induce effects like highlights
and edge polarity changes due to opposite lighting directions
which disturb the image gradients and thus the SIFT descriptor.
LIDRIC is more robust against these effects by using oriented
even Gabor filters. We use eight oriented filters at a single fixed
scale. In contrast to the original descriptor [18], we adapt the
local normalization of filter responses in order to make the
descriptor more appropriate for the problem at hand. Instead
of dividing each filter response by the pure L2-norm of all
eight responses (denoted as ‖F‖) for normalization, we take
the power ‖F‖c with c > 1 of it before division. This reduces
the relative influence of the highest responses in the image
which likely arise from highlights on the metallic surface of
the coin. Finally, by performing the same spatial pooling with
4 × 4 squared cells as in SIFT [12], we end up with a 128-
dimensional descriptor di for the image point pi.

After the local descriptors d′
i ∈ D′ and d′′

j ∈ D′′ have
been extracted from the two images I ′ and I ′′, we aim to find
robust matchings between them. An option would be to accept
only nearest neighbors with a certain distance to their second
nearest neighbors as proposed by Lowe [12], but in our case a
one-to-one symmetric search [19] turned out to be the better
choice. Two features d′

i and d′′
j are matched only if d′′

j is the
nearest neighbor of d′

i in D′′ and d′
i is in turn the nearest

neighbor of d′′
j in D′. The indices of the descriptors in D′

with a match in D′′ are stored in the set M and the function
φ(i) relates the indices of D′ to the corresponding indices of
D′′, i.e. φ(i) = j if d′

i corresponds to d′′
j . Fig. 2 shows the

result of the one-to-one symmetric correspondence search for
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Fig. 2: Result of one-to-one symmetric matching of a coin
image with (a) an image from the same class and (b) an
image from a different class. Only random 10% of the overall
correspondences are shown for better illustration.

two coins from the same class and two coins from different
classes.

C. Similarity Estimation from First-Order Correspondences

The basic assumption of our approach is that by first-order
matching more correct correspondences can be found for coins
from the same class than for coins from different classes.
By examining the matching results of similar and dissimilar
coins as shown in Fig. 2 we are able to identify three key
observations that lead to the definition of our final similarity
measure:

1) Number of Correspondences: The number of matched
features is likely to be higher for similar coins than for
dissimilar ones. We use this property for a similarity score
by

Θn =
|M|

min(|D′| , |D′′|)
(1)

2) Displacement of Corresponding Feature Points: The
displacement of correct correspondences is low which can be
used as a dissimilarity score by

Θd =
1

|M|
∑
i∈M
‖p′

i − p′′
φ(i)‖ (2)

with ‖·‖ being the L2-norm.

3) Geometrical Consistency of Correspondences: Pairs of
correct correspondences will not drastically change their rel-
ative position to each other. Hence, given two points p′

i and
p′
j and their corresponding points p′′

φ(i) and p′′
φ(j), the vector

Fig. 3: The geometric plausibility of the correspondences of
the points p′

i and p′
j in I ′ with the points p′′

φ(i) and p′′
φ(j) in

I ′′ is assessed by the comparing the vectors ~u and ~v in terms
of length (Eq. 4) and orientation (Eq. 5).

~u = p′
ip

′
j will be similar to the vector ~v = p′′

φ(i)p
′′
φ(j), as

illustrated in Fig. 3. We compute their difference by

Ω(p′
i
,p′
j
,p′′
φ(i)

,p′′
φ(j)

) =λ · η(p′
i
,p′
j
,p′′
φ(i)

,p′′
φ(j)

) +

(1− λ) · α(p′
i
,p′
j
,p′′
φ(i)

,p′′
φ(j)

)
(3)

η(p′
i
,p′
j
,p′′
φ(i)

,p′′
φ(j)

) =

∣∣∣‖p′
i − p′

j‖ − ‖p′′
φ(i) − p′′

φ(j)‖
∣∣∣

‖p′
i − p′

j‖+ ‖p′′
φ(i) − p′′

φ(j)‖
(4)

α(p′
i
,p′
j
,p′′
φ(i)

,p′′
φ(j)

) =

1

π
arccos

(
p′
i − p′

j

‖p′
i − p′

j‖
·

p′′
φ(i) − p′′

φ(j)

‖p′′
φ(i) − p′′

φ(j)‖

)
(5)

Intuitively, the terms η and α measure the vector difference
in terms of length and orientation, respectively, where λ serves
as weighting parameter. This or a similar vector difference
metric is typically used for regularization in optimization-
based matching approaches [4]–[8] in order to penalize match-
ing discontinuities and prefer smooth results. However, for
computational reasons only small neighborhoods can be con-
sidered (e.g., SIFT flow uses the L1-norm of the 4-connected
neighboring flow vectors [8]). In our case, these metrics have
to evaluated only once for the given first order matching,
which allows to use a larger neighborhood system N for the
geometric dissimilarity score:

Θg =
1

|M|
∑
i∈M

1

|Ni|
∑
j∈Ni

Ω(p′
i
,p′
j
,p′′
φ(i)

,p′′
φ(j)

) (6)

In general, one can define all other feature points as the
neighborhood Ni of a given feature point, but this unnecessar-
ily increases the computational burden without substantially
improving the quality of this similarity metric. Hence, in
practice it turns out to be sufficient to compare every feature
point to only a small subset of feature points. In our work
we have empirically chosen to compare every feature point
to its neighboring features at the six distances 1∆p, 2∆p,
4∆p, 8∆p, 12∆p and 16∆p, which on average leads to



Fig. 4: An exemplar image for each of the 60 classes in our dataset.

a comparison of a feature point with around 7.5% of the
remaining feature points.

The final overall similarity score is computed from the
three individual scores by

Θ = (1− g(Θn;σn)) + g(Θd;σd) + g(Θg;σg) (7)

where g(x;σ) = exp(−x2/(2σ2)) is a Gaussian member-
ship function that transforms the individual scores to the same
value range.

IV. EXPERIMENTS

In this section we report the results of our proposed coin
classification methodology and compare it to our previous
SIFT flow based method (SF) [9] as well as to the learning-
based methods using locally biased directional histograms
(LBDH) [14] and bag of visual words (BOVW) [20]. Our
dataset of Roman Republican coins is presented in Sec-
tion IV-A. Implementation details of our and the compared
methods are described in Section IV-B. In Section IV-C the
results are reported and discussed.

A. Roman Republican Coin Dataset

For the experiments we use a dataset of 60 Roman Republi-
can coin classes defined by their reference number given in [3].
For each class we collected 10 images of the reverse side as
this coin side shows more inter-class variation than the obverse
side and is thus the better choice for classification [3]. Different

image sources are exploited to increase the diversity among
the images and to mimic a more realistic scenario of coin
classification under uncontrolled image acquisition conditions.
Three images of each class were taken from the coin collection
of the Museum of Fine Arts, Vienna, another three images
from the collection of the British Museum, London1, and the
remaining four from free online ancient coin search engines2.
As described in Section III-A, prior to classification every
image is segmented and scale-normalized to 150 × 150 for
our method and SF or 250 × 250 for LBDH and BOVW (as
in [14]). This operation resulted in no error for all of our 600
coin images. An example image of each class is shown in Fig.
4.

We would like to note that in our dataset all images of a
class are consistently oriented. Generally speaking, we found
rotation differences between coin images to be an uncommon
situation, which has not been encountered during our coin
image search on the internet, as coins are typically imaged at
a canonical orientation based on their main motive. However,
as this can not be guaranteed in practice, we aim to consider
rotational invariance for improved robustness in the future.

B. Implementation Details

For all methods compared suitable parameter choices were
empirically determined. Local feature extraction is the first step
of all methods and is accomplished either by using SIFT [12]
or LIDRIC features [18] with c = 1.3 (see Section III-B).

1www.britishmuseum.org/research/publications/online research
catalogues/rrc.aspx

2www.acsearch.info and www.coinarchives.com
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Fig. 5: Bar plot of the classification results of all methods using
LIDRIC feature extraction and training set sizes of 1 to 9.

Dense sampling with ∆p = 3 for our method and ∆p =
1 for SF is performed at a feature scale of 24 × 24 pixels.
For LBDH and BOVW the standard Difference-of-Gaussian
interest point detection [12] is used. Features are only extracted
from the coin region in the image provided by the initial coin
segmentation step. As no rotation differences are present in our
image dataset, for a fair comparison all features are extracted
without rotation invariance, i.e. the canonical orientation of all
features is automatically set to the same fixed value.

For our coin similarity algorithm from one-to-one sym-
metric correspondences we use parameter values of λ = 0.7,
σn = 0.1, σd = 50 and σg = 0.25. For SF the SIFT flow
parameters of α = 200, d = 20000 and γ = 12 are used
(see [8] for details). For BOVW we quantize the descriptors
to 100 visual words and compute the visual word histogram
as image feature. As in the original experiments [14] we
use a vocabulary size of 500 for our LBDH implementation.
However, we set the bandwidth R of the directional kernels
to 200 instead of 1000, as this showed superior results on our
data.

For the final class decision a k-nearest neighbors classifier
with k = 5 is used for all methods compared. The distance
of test and training samples is thereby determined by our
proposed class similarity or the SIFT flow energy (SF). For
BOVW and LBDH the Euclidean distance of the visual word
or LBDH histograms is used.

C. Classification Results and Discussion

The goal of this paper is to achieve coin classification in
scenarios with low number of training samples. Therefore,
we aim to analyze the influence of the number of training
samples per class to the methods’ classification performances.
For this purpose, we conducted multiple classification runs for
each image in our dataset with increasing number of training

TABLE I: Numerical classification results of all methods using
SIFT/LIDRIC feature extraction.

Training images per class
1 5 9

BOVW [20] - SIFT 6.3% 11.2% 13.2%

BOVW [20] - LIDRIC 7.6% 12.3% 14.8%

LBDH [14] - SIFT 6.2% 11.9% 14.3%

LBDH [14] - LIDRIC 8.8% 13.1% 16.8%

SF [9] - SIFT 48.9% 81.0% 90.5%

SF [9] - LIDRIC 68.6% 90.2% 95.8%

Proposed method - SIFT 68.0% 93.7% 97.1%

Proposed method - LIDRIC (full) 72.7% 94.1% 97.2%

Proposed method - LIDRIC (Θn + Θg) 70.5% 93.8% 97.2%

Proposed method - LIDRIC (Θn + Θd) 69.4% 92.9% 97.0%

Proposed method - LIDRIC (Θn) 56.0% 84.5% 91.1%

samples n per class, i.e. n = 1 . . . 9. In each run, n randomly
chosen images per class served as training set. This process
was again repeated 10 times for each value of n and the overall
classification rate out of the 60 · 10 · 10 = 6000 classifications
was recorded.

The classification results for the different training set sizes
are shown in Fig. 5 for all methods with LIDRIC feature
extraction. Additionally, in Table I the numerical classification
results of all methods with SIFT or LIDRIC feature extraction
are listed. It can be seen that the correspondence-based meth-
ods dominate the learning-based ones and that our proposed
method outperforms all other methods for all training set sizes
with classification rates from 72.7% (n = 1) to 97.2% (n = 9).
The inclusion of spatial information provided by LBDH gives
only a slight improvement over the general BOVW model
and does not contribute to a performance comparable to the
ones achieved by the correspondence-based methods. Due
to the low number of training samples the learning-based
methods are not able to sufficiently generalize over the intra-
class variation. In the experiments presented in [14] LBDH
achieved a classification rate of 57.2% on a 65-class problem.
However, the dataset used shows a very uneven distribution of
training samples among the classes which are represented by
10 up to 160 exemplars. We conjecture that the classification
performance of LBDH on this dataset is mainly supported by
the classes with a high number of training samples. Another
reason for the low classification rate of LBDH is the erroneous
interest point detection.

From the results shown in Table I it can also be concluded
that LIDRIC represents a more powerful local descriptor for
coin classification under uncontrolled conditions as its use
improves the performance of each individual method. For our
proposed method the performance is increased from 68.0%
to 72.7% due to LIDRIC’s lower sensitivity to illumination
changes.

1) Influence of Individual Similarity Scores: As three sin-
gle similarity scores are combined in our method, we are
also interested in assessing their individual influence to the
classification performance. It is evidently shown in Table I
that all three scores have a contribution to the classification



power of our method. By using only data-driven matching as
similarity measure (Θn) and ignoring the geometric ones (Θd

and Θg) only 56.0% correct classifications are achieved for
n = 1, less than the SF method which also uses geometric
information for finding the optimal correspondences (68.6%).
Adding geometric information to our model either by the
displacement similarity Θd or neighboring vector consistency
Θg leads to classification rates that are higher than that of
SF. The full model with all three terms achieves the highest
classification rate of 72.7%.

2) Runtime Analysis: An important issue of exemplar-
based classification is the time it takes to compare two image
samples, as the query image has to be compared to all
images in the database. Without feature extraction, which
takes around 1s, our MATLAB implementation needs around
0.35s to compare two images whereas the C-implementation
of SF takes around 2.2s. In practice, this means that it takes
around 22s to classify a query image for our 60-class problem.
However, in [9] we have shown that the classification time of
exemplar-based coin classification in conjunction with feature
correspondence can be reduced to one-seventh without a loss of
classification accuracy by applying a hierarchical subselection
scheme. We believe that the same principle can be applied to
our similarity metric for speeding up the classification process,
although this will be part of future research.

V. CONCLUSIONS

In this paper, we have shown that learning-based methods
exhibit a poor classification performance for ancient coins
when the number of training samples is low. We deal with this
commonly encountered situation in ancient coin recognition by
means of an exemplar-based classification methodology. The
main contribution of our paper is a local correspondence-based
image similarity metric that is both accurate and fast to com-
pute. The superior classification performance of our method
results also from an illumination-insensitive feature extraction
that provides the needed robustness against uncontrolled image
acquisition conditions, but at the same time ensures enough
discriminative power to establish correct correspondences be-
tween coins without needing to guide the correspondence
search by regularization.

The main practical drawback of exemplar-based classifi-
cation is the long classification time which is theoretically
linear to the number of samples in the dataset. However, this
drawback can be mitigated by using hierarchical coarse-to-
fine strategies and by using other methods like legend [16]
or symbol recognition [13] for initial subselection. For future
research we also plan to investigate and adapt our image
similarity metric to wider class of problems as well as to
extend it to other kinds of geometric variations between
images. Our method allows to flexibly adapt the similarity
terms to account for other required geometric invariances. For
instance, rotation invariance can be achieved by using rotation-
invariant local features and a rotation-invariant evaluation of
correspondence consistency, e.g. by using only the distance of
pairs of correspondences or by using the length and angles
between triplets of correspondences.
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