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Abstract

We are developing an automated classification and re-
construction system for archaeological fragments. The goal
is to relate different fragments belonging to the same vessel
based on shape, material and color, thus the color informa-
tion is important in the pre-classification process. In this
work a color specification technique is proposed, which ex-
ploits the fact that the spectral reflectance of materials like
archaeological fragments vary slowly in the visible. We ex-
plain how the acquisition system is calibrated in order to
get accurate colorimetric information with respect to ar-
chaeological requirements. Experimental results are pre-
sented for archaeological objects and for a set of test color
patches.

1 Introduction

Ceramics are one of the most widespread archaeological
finds and are a short-lived material. This property helps
researchers to document changes of style and ornaments.
Especially ceramic vessels, where shape and decoration
are exposed to constantly changing fashion, not only
allow a basis for dating the archaeological strata, but also
provide evidence of local production and trade relations of
a community as well as the consumer behavior of the local
population. The purpose of ceramic classification is to get
a systematic view of the material found [2, 6] and is used to
relate a fragment to existing parts in the archive.

Archaeologists determine the specific color of a frag-
ment by matching it to the Munsell color patches [7]. Since
this process is done “manually” by different archaeologists
and under varying light conditions, results differ from each
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other. Archaeologists need digital color images of frag-
ments for archivation purposes, thus the color information
which is normally achieved with a color measurement
instrument can be gained directly from the digital image
for each pixel in the entire image.

We propose a solution to the color classification assum-
ing that the spectral reflectance of archaeological fragments
varies slowly in the visible spectrum. We present an ap-
proach for accurate colorimetric information on fragments,
performed on digital images containing archaeological
fragments under different illuminants. A characteristic
vector analysis [9] of the reference reflectance leads to
an algorithm that computes the colorimetrically accurate
reflectance out of a video digitizing system.

The paper is organized as follows: In Section 2 we de-
scribe the theoretical background, in Section 3 we explain
how we specify the colorimetric variables in order to cali-
brate the acquisition system with respect to archaeological
requirements. Experimental results are described in Sec-
tion 4 and we conclude with a summary and outline the fu-
ture work.

2. Theory and Notation

Much of human color-vision research focuses on color
constancy since it is the perceptual ability that permits us
to discount spectral variation in the ambient light and as-
sign stable colors: Maloney and Wandell [4] considered that
both lighting and spectral reflectance are unknown, whereas
Lee [3] simplified that problem by assuming that spectral
illumination is known. Color and reflectance based object
recognition was presented by [1, 8]. In order to provide
a device-independent color specification we use reference
colors from the MacBeth Color chart [5].

Our approach rests upon Lee‘s method assuming that
spectral illumination is known and that the spectral re-



flectance of our material varies slowly in the visible spec-
trum. This means that small changes of RGB values should
lead to small changes in reflectance. Prior knowledge about
the illuminant leads to chromaticity and luminance infor-
mation.

Each RGB pixel in a digitized image has a value propor-
tional to weighted integral over the visible spectrum. This
integral depends on three spectral variables. These are the
spectral irradiance E()), which describes the energy per
second at each wavelength A. The proportion of light of
wavelenght ) reflected from an object is determined by the
surface spectral reflectance S(A). We assume that there are
k distinct channels in the digitizing system, we use k = 3’
for red, green and blue. We denote the spectral response of
the kth channel as Ry, () and a pixel value for the kth color
channel as py.

p = [ SOVE) RN M

Eq 1 describes the relationship between pixel values
and spectral quantities. We approximate the three integrals
above as summations over wavelength, using values every
10nm in the visible spectrum from 400nm to 700nm. If
the proportionality factor in the Ry, () is subsumed, one can
construct the following matrix equation (Eq. 2). m denotes
the steps to be taken in the spectrum.

p=SER V)

p...1by 3 row vector (RGB pixel)

S ...1 by m row vector,(surface reflectance)

E ... m by m diagonal matrix, (spectral irradiance)
R...m by 3 matrix, (system spectral transfer function)

If we know elements of two of the arrays on the right
side of Eq. 2 and the corresponding RGB pixel values on
the left side, we can solve the unknown array. Since only
an approximated knowledge of the system function R is as-
sumed, the goal will be to:

e specify the system transfer function R more accurately
by analyzing color samples with known reflectance of
the MacBeth Color patches.

e use this new information to find the unknown spectral
reflectance of other samples illuminated by the same
light source.

The goal of the first step is to improve the transfer func-
tion R which leads to R,.., (Eq. 3).

Rpew = RRy 3

Therefore we digitize an image of the color chart, which
is illuminated by the same light source that will be used
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when we evaluate unknown color samples. The digitization
gives a ¢ by 3-matrix P containing RGB values, where ¢
denotes the number of patches of the color checker. Since
we know the illumination E and the set of ¢ reflectances
S, we can form the ¢-by-3 matrix SER,¢,,. This leads
to Eq. 4. For the unknown R; a least square solution is
used, which leads to an improved estimate of the system’s
spectral transfer function.

P = SERR, )

The goal of the second step is to calculate the re-
flectances of unknown color samples. We use the
RGB-values from the digitized color samples p, the im-
proved transfer function R, and the spectral irradience
E in order to calculate spectral reflectances S (See Eq. 2).

Since S(A) varies smoothly for fragments we can
accurately represent the spectral reflectance of a set of color
standards with the first few components of a characteristic
vector analysis [9]. In effect, this analysis allows us to
reduce the dimensionality of S and leads to an algorithm
that gives colorimetrically accurate spectral reflectance
from red-green-blue output of the video digitizing system.

Smean is defined as mean vector (1 by m) from the color
checker reflectances at m = 30 equaily-spaced wavelengths
across the spectrum. Sp,sis (0 by m matrix) denotes the
characteristic vectors used. We use n = 3 characteristic
vectors to represent the original data. A 1-by-n vector of
basis weights (denoted B) is calculated when solving Eq. 5
by inserting the digitized RGB values into p.

B= @ - SmeanER)(SbasisER)—l &)

When we multiply Spesis by the appropriate vector B
and add the result t0 Speqn, We can reconstruct any spec-
tral reflectance S in our set of colors (Eq. 6). For a more
detailed description of the algorithm see [3].

S= Smean + BSbasis (6)

The technique used is a method for examining a number
of sets of multivariate response data and determining linear
transformations of the data to a smaller number of param-
eters which contains essentially all the information in the
original data.

3 Color estimation process

First, the three spectral variables - irradiance of the
lightsource E(}), camera transfer function Ry (\) and re-
flectance S(A) of the MacBeth reference chart - have to be
initialized.



We use Tungsten Halogen Floodlamps 7700 (150W) and
TL-light as lightsources. In order to recover colorimetric
data from our samples under a variety of lightsources we
use different types of lightsources. The spectral distribution
was given by the manufacturer. Figure 1 shows the typical
spectral distribution of TL-82 and TL-95 with slight differ-
ences between these two lamps.
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Figure 1. Spectral irradiance of TL-82 and TL-
95

The video cameras used are a 3CCD DONPISHA XC-
003P and a CCD-IKEGAMY ICD-700P. The Ikegamy cam-
era is a single CCD-color CCTV camera, which is used to
give out Y/C (chrominance/ luminance) separation signals.
The Sony camera is a color video module, which uses a
CCD for the pick-up device. It has an RGB signal out-
put. Both cameras are one-chip-cameras. Figure 2 shows
the spectral response curve of the DONPISHA camera. The
data was provided by the manufacturer.
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Figure 2. Typical spectral response of a Sony-
camera

The spectral reflectance is scaled in equally-spaced
wavelengths (every 10nm) across the spectrum. 12 colors
of the MacBeth Color checker are used as a reference set
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and 12 are used for evaluation purposes. Their reflectance
is measured using a spectroradiometer. For our reference
set we choose colors which have a similar spectral distribu-
tion to the colors of our archaeological findings in order to
maximize the achievable accuracy of the vector analysis.

In the next step we grab an image of an archaeologi-
cal fragment, which leads to RGB values. Test regions are
specified manually, and their RGB-Values are used to re-
construct the reflectance. Figure 3 shows two different test
regions A and B.

Figure 3. Test regions A and B

4 Results

Two experiments are presented: the first example with

MacBeth Colors and the second with real fragments. In
a first experiment we use the measured reflectance of 12
MacBeth color patches as reference and try to estimate the
reflectance of the other 12 patches using the reference set.
The resulting reflectance is compared to previous measured
values.
Figure 4 shows the result for patch 1 (dark skin). In
that case, the correlation equals 0,98. The computed re-
flectances of the other 11 patches correlated between and
0, 85 and 0, 98 to their corresponding measured reflectances
with an average correlation of 0,92 (see Table 1). Lower
correlation may be caused by the purely statistical repre-
sentation of the underlying variables by the characteristic
vector analysis.

In the second experiment we grab an image of a fragment
and specify two test regions A and B (Figure 3). The refer-
ence set was chosen from the MacBeth color checker. The
spectral reflectances of A and B are computed and visual-
ized in Figure 5. For evaluation purposes we calculate CIE
tristimulus values using a linear transformation and com-
pare the achieved values with measured cromaticity coor-
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Figure 4. Measured and estimated spectral re-
flectance of a MacBeth Color Patch

patchnr | corr | patchnr | corr
1 0.98 7 0.97
2 0.97 8 0.95
3 0.93 9 0.96
4 0.98 10 0.91
5 0.86 11 0.85
6 0.92 12 0.89

Table 1. Correlation between measured and
calculated spectral reflectances of 12 Mac-
beth ColorChecker patches

dinates from a Chroma Meter CR-200b. Table 2 shows a
comparison between measured and computed chromaticity
coordinates. The final results are in the close neighborhood
of the measured values. Since these results are influenced
by the linear transformation we plan measurements using a
spectroradiometer in order to allow direct comparison be-
tween measured and computed reflectances.

| Comp. A | Meas. A | Comp. B | Meas.B

X 0.48 0.33 0.49 0.40
y 0.39 0.34 0.41 0.37
Y 17.9 11.1 32.3 21.0

Table 2. Measured and computed cromaticity
coordinates

5 Conclusion and Outlook

In this work we presented a technique for accurate color
estimation, which plays an important role in the classifica-
tion process for archaeological fragments. We proposed an
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Figure 5. Calculated spectral reflectance of
positions A and B

application using a straightforward approach based on a lin-
ear color calibration technique. Since the color specification
of a fragment is gained by different archaeologists and un-
der varying lightning conditions the results differ from each
other. The results obtained give a good initial estimate to
the archaeologists. Future work goes towards color cali-
bration without known illuminants in order to allow color
estimation outside laboratory conditions.
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