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Abstract
In this paper we present the recently granted tripleB-ID project
that aims to detect suspicious actions and criminal offences in
bank foyers. Based on the situation in Austria and on the actual
needs of our partner bank, we deduce scenarios of interest and
analyse the technical challenges. As a preliminary work, we
furthermore present a fully automated method for the mapping
between a static and a dynamic camera and show how this can
be used to easily and fast set up a master-slave camera system.

1 Introduction
CCTV cameras in bank foyers are a common view. Up to
now most of the surveillance is accomplished by recording and
monitoring systems based on analogous camera technology. In
case of an incident, the security staff has to browse through the
recorded material manually in order to get video material of the
crime scene.

It is well known that robbers are investigating the bank they
intend to rob in advance. Therefore it would make sense to sift
through the recorded videos in order to look for persons behav-
ing suspiciously. However, the huge amount of data renders
such a search practically impossible. State-of-the-art digital
video recorders (DVRs) support this cumbersome task by pro-
viding elementary functionality like basic motion detection and
camera tamper detection (i.e. the system detects if a camera is
vandalised). However, if the scene is explored by the criminals
during the regular business hours, these features are of little
help.

This paper presents the recently granted tripleB-ID project
which aims to improve this situation by a smart system able to
recognise abnormal behaviour and set the appropriate actions
(e.g. informing the responsible members of staff but also au-
tomatically operating a pan-tilt-zoom (PTZ) camera in order to
get higher resolution images of a suspicious activity). Further-
more, the event information will be archived, so that in case of
an incident the screening of the video data can be supported.

The use of a dynamic PTZ camera can support the task of
surveilling a bank foyer since the optical zoom makes it pos-

sible to yield higher quality images (e.g. face images) or to
get a better view of suspicious activity. For such a scenario,
it is necessary to know the relation between the static and the
dynamic camera. As a starting point, we review existing meth-
ods and present a fully automatic mapping algorithm capable
to construct this relationship for collocated cameras.

The remainder of this paper is organised as follows: Sec-
tion 2 analyses the current situation in Austria and gives an
overview of the project and its main objectives. In Section 3
we present an approach for a fully automatic mapping between
a static and a dynamic camera as preliminary work. Section 4
concludes this paper.

2 Project overview

In order to get an overview of the concrete requirements for
crime prevention and detection, the current situation was anal-
ysed with the project partners, namely the Erste Bank group,
the Department of Crime Prevention of the Austrian Federal
Criminal Police Office (Bundeskriminalamt) and the Institute
for Advanced Studies (IHS).

2.1 The situation in Austria

Austria, especially the Austrian capital Vienna with its 1.6 mil-
lion inhabitants, has become one of the hot spots of bank rob-
bery in Europe. In the last decade, the number of robberies has
increased by more then 100%, whereas in comparable cities
like Hamburg and Berlin the number of incidences decreased.
In the year 2007, the Viennese police documented 77 bank
robberies [1], whereas only 20 Berlin and 12 Hamburg banks
where robbed in the same period 1.

CCTV cameras and DVRs are part of the basic equipment
in Austrian bank branches. However, due to the Austrian pri-
vacy laws, the bank is required to delete any data within a cer-
tain amount of time unless it contains the recording of suspi-
cious activity or criminal offences.

Interviews with security experts of our partner bank addi-
tionally revealed the following information, which they gath-

1http://www.kripo-online.at/portal/0805-bankraub.asp



ered partly by internal statistics, partly by interviewing con-
victed felons:

• In over 95% of the robberies, a silent alarm was raised
by the staff.

• The average robbery lasts not more than one minute.

• Virtually all robbers explored the bank branch they
robbed beforehand.

• A majority of robbers stated that they would have chosen
another branch if a member of staff had addressed them
in person since they feared to be recognised more easily.

• The vast majority (94%) of the robbers are not detered by
the presence of CCTV cameras. The publication of low
quality images in newspapers even encouraged some of
the robbers to commit the felony.

Based on these facts, the main focus of the tripleB-ID
project was set on preventing bank robberies. However, also
other crimes committed in bank foyers will be investigated dur-
ing the course of the project. This includes detection of manip-
ulation of the foyer’s cash machines as well as the detection
of people spying out other people’s PIN numbers at these ma-
chines.

2.2 Main Objectives

The aforementioned provides the basis for the projects main
goals: to help preventing, to detect and to support the investi-
gation of crimes committed in bank foyers, where the special
focus of tripleB-ID lies on the prevention and on the support of
investigation.

Behaviours of interest Together with the project partners,
several scenarios were defined as suspicious. These scenarios
include amongst others:

• wandering around in the foyer without using a machine
(e.g. the ATM) or contacting a member of staff over an
extended period of time.

• operating a machine over an unusual long period of time.

• more than one person operating a machine at the same
time.

In addition to these suspicious activities, we are interested in
detecting aggressive behaviour. Beside these well defined sce-
narios, we also intend to detect unusual behaviour, i.e. be-
haviour that cannot be described by the data previously labelled
as normal.

The detection of suspicious behaviour may have several im-
plications, such as informing a member of staff to judge the
situation and take appropriate action or labelling the video data
as suspicious. Video sequences labelled as suspicious can sub-
sequently be stored for a longer period of time.

Forensics In case a crime cannot be prevented, the system
should be able to provide information usable by the police, such
as a detailed high-quality view of the face [17] and an accurate
estimation of the size of a suspect.

In order to collect higher quality facial images, standard
face detection as proposed by Viola and Jones [23] is per-
formed on the static camera. The dynamic camera is subse-
quently zoomed to the detected area and collects facial images.
The face detection is coupled to a pedestrian detector [20] to
reduce the number of false positives. The higher resolution fa-
cial images are then connected to the trajectory of the person
(see Figure 1).

The height of a person is estimated by applying visual
metrology [7]. The height measurement of a person is updated
and consolidated during the tracking. Furthermore, an interface
for performing manual measurements is provided as well.

Figure 1. Detected persons with the estimated height and the
higher quality facial images. The facial images were recorded
by the dynamic camera.

2.3 Technical Challenges

A computer vision system addressing the aforementioned high
level objectives faces several challenges.

Scalable multi-camera surveillance The data of several
statically mounted cameras, with partially overlapping as well
as non-overlapping views, has to be processed for the higher
level algorithms. Amongst other topics, this task includes:
Background maintenance and motion detection [4], pedestrian
detection [11], single and multi-camera tracking [25] and data
fusion in order to get a single representation of the current
scene.

Robust vision algorithms Visual surveillance in a bank
foyer is a 24/7 application and therefore it is inevitable to use
robust algorithms. This requirement has a severe impact on the
selection of algorithms. For example, the use of online learn-
ing algorithms is undeniable advantageous since the amount
of training data is reduced and the system is able to adapt to
changes over the time. However, if not taken care, classifiers



may drift over time due to wrong updates and end up in an unre-
liable state [11]. Classifier grids [20] and conservative learning
algorithms [19] have shown promising results in this area.

Action recognition Trajectory analysis is a simple way to de-
tect events of interest and for some of the depicted scenarios
this may be sufficient (e.g. for the detection of people wander-
ing around). However, for other scenarios such as the detec-
tion of aggressive behaviour (or unusual behaviour in general)
the analysis of trajectories is of little help. Here more sophis-
ticated models for action recognition - a very active research
area in computer vision [22] - have to be applied. A promis-
ing research direction in this field are spatio-temporal interest
points [15] and their use in a bag-of-words scheme [24].

2.4 Setup

In order to create a real-world testbed for bank surveillance, six
static cameras and a dynamic PTZ camera were installed in a
bank branch in Vienna, providing overlapping views of an area
of approximately 10×10 m. The dynamic camera has a 35x
optical zoom and is collocated with a static camera directed
towards the bank’s entrance area. These two cameras are in-
tended to be used in a master-slave scenario [3, 9] to acquire
high-resolution facial images of people entering the bank (see
Section 3).

The large overlap in the field-of-views of the cameras is es-
sential to allow for a robust long-term tracking of people in the
presence of occlusions. A major issue in multi-camera tracking
is to know the relationship between the cameras to obtain ge-
ometric information like object position [6] and camera fields-
of-view (FOVs) [14] in world coordinates. Therefore, we re-
covered the homographies between every single camera and
the ground plane by laying a calibration pattern on the floor
and manually matching points between camera views. As a
result, from every camera view image points assumed to lie on
the ground plane can be mapped to a common world coordinate
system.

Figure 2 shows the views of two cameras installed in the
bank branch. Figure 2(a) shows the bank’s entrance view of the
static camera collocated with the dynamic camera. The yellow
grid represents the established world coordinate system on the
ground plane whereas one square corresponds to 0.5×0.5 m.
In Figure 2(b) the view of a second camera, showing a large
part of the overall bank branch area, can be seen. Here addi-
tionally the FOVs of two other cameras are visualized (yellow
and red region, respectively) which were also computed from
the estimated homographies.

3 Automatic Mapping Between a Static and
Dynamic Camera

For a master-slave system composed of a static and dynamic
camera as described above, the relation between the two cam-
era views has to be known. Thus, for each point in the static
camera’s frame the pan and tilt angles to center the PTZ cam-
era’s frame on this point are established. To solve this problem,

(a)

(b)

Figure 2. View of (a) the bank branch’s entrance with superim-
posed world coordinate system, and (b) the overall branch with
superimposed FOVs of two other installed cameras.

in the past basically two groups of approaches have been pro-
posed. The first one derives the geometric relation between the
two cameras through a complete camera calibration, i.e. the
computation of the intrinsic and extrinsic camera parameters
[8]. Approaches of this kind were presented by Horaud et al.
[12] and Jain et al. [13] whereas the former uses a stereo cal-
ibration and the latter calibrates the cameras separately. How-
ever, although by these methods an accurate model for the cam-
era relation is obtained, a drawback of camera calibration is the
need for a skilled person handling the calibration patterns and
marks. The second group of approaches relies on the computa-
tion of a look-up-table (LUT) for the image points. The LUT
stores for every image point in the static camera’s frame the
pan and tilt parameters such that this point is in the center of
the dynamic camera’s frame. During the creation of the LUT,
only certain points are learned and the remaining LUT entries
are interpolated. One such approach was presented by Zhou et
al. [26]. It needs no calibration pattern but manual definition
of correspondences. The approach presented by Senior et al.
[21] aims at a more automatic solution by learning transforma-
tions from unlabelled training data. However, for a new scene
a considerable amount of training data is needed to learn the



new LUT, thus an immediate use after camera installation is
not possible.

In order to develop a fast, fully-automatic and simple ap-
proach that can be applied by a non-expert as well we follow
the method presented by Badri et al. [2]. The approach is based
on the matching of SIFT features [16] between the views of
two collocated cameras. However, our approach operates in the
other direction: instead of moving the dynamic camera to well-
defined points in the scene we are moving the dynamic camera
in regular rotation steps and obtain a LUT entry for each step.
Thus, no convergence criterion for aligning both views has to
be defined.

3.1 Feature-Based Mapping Method

In our method the dynamic camera is moved in regular steps
and for every step SIFT keypoints are matched between the
frames of the static and dynamic camera. SIFT features were
introduced by Lowe [16] as a method for extracting local im-
age descriptors that are highly discriminative for object recog-
nition. SIFT features are invariant to changes in image trans-
lation, scaling, and rotation and partially invariant to changes
in illumination and affine distortion and proofed to be very ro-
bust compared to other local image descriptors [18]. In the next
step, the matched keypoints are used for a robust homography
estimation between the two views by means of RANSAC [10].
Please note that the cameras are collocated, i.e. their centers
of projection are nearly identical, hence a homography is suf-
ficient to describe the transformation between the two camera
views. After a homography has been estimated, the center of
the dynamic camera’s frame can be transformed to the coordi-
nate system of the static camera’s frame. Finally, the current
pan and tilt angles are stored in the LUT at the transformed im-
age point. This is done for every view of the dynamic camera.
To keep the method simple, we neglect the aspect of having
more zoom levels. Usually, for different zoom levels differ-
ent LUTs are needed, although the discrepancies are low. We
leave this issue open for further research. The final step of
the method is to interpolate the empty entries in the LUT. For
this purpose we use Thin-Plate-Splines (TPS) interpolation [5]
which produces a smooth representation of the pan and tilt an-
gles in the LUT. The TPS interpolation is also essential for a ro-
bust LUT generation when homogeneous regions occur in the
scene which preclude the estimation of the homography due to
the absence of discriminative visual features.

In the following we give a more formal description of our
method. We have a static camera providing the image Is and a
dynamic camera providing the image Id(α, β) at pan angle α
and tilt angle β. The goal is to learn a LUT L which stores for
every point ps = (xs, ys) of Is the values α and β such that the
point ps is in the center of Id:

L(xs, ys) = (α, β) (1)

The algorithm is summarised in Alg. 1. To detect cases
where Id is outside of Is and a homography was estimated from
false matches, only homographies with an absolute value of the
determinant in the range of 0.2 to 5 are allowed.

Compute SIFT interest points in Is1

for α = αstart to αend with stepsize αstepsize do2

for β = βstart to βend with stepsize βstepsize do3

Compute SIFT interest points in Id4

Estimate homography H between Is and Id by5

applying RANSAC on matched interest points
if 0.2 ≤ |det(H)| ≤ 5 then6

Determine the point ps = (xs, ys, 1)T by7

transforming the center point pc of Id with
H: ps = Hpc
Store the current angles in the LUT:8

L(xs, ys) = (α, β)
end9

end10

end11

Interpolate L for all points using thin-plate-splines12

Algorithm 1: Algorithm for computing the LUT.

3.2 Experiments

For evaluation a AXIS 223M was used as static camera and a
Sony SNC-RZ50P served as dynamic camera. The static cam-
era provides images with a resolution up to 1600 × 1200. The
dynamic camera captures images with a resolution of 640×480
and has a 26x optical zoom. Its mechanical range of the pan
and tilt angle is between -170◦ and +170◦ and -25◦ and +90◦,
respectively. The step size for the mechanical positioning of
both the pan and tilt angle lies at 0.07◦.

Figure 3(a) shows the image Is of the static camera of the
scene used for the experiments. According to the terminology
introduced above, the values αstart = −40◦, αend = 40◦,
βstart = −20◦, βend = 30◦ and a stepsize of 5◦ was used, thus
in total 187 images were captured by the dynamic camera. The
zoom of the dynamic camera was set to 6.5x. As mentioned
before, the consideration of different zooms is part of future
research.

In order to evaluate the accuracy of our method in absence
of ground truth data from a calibrated scene, we placed five
targets in the scene after LUT generation, as shown in Figure
3(b). Targets 1, 2 and 3 were placed on the left wall, on the
right wall and on the floor, respectively. Targets 4 and 5 were
placed on chairs adding new geometry to the scene.

The obtained errors for the pan and tilt angles are shown
in Figure 4. Errors are reported for the static camera’s maxi-
mum resolution of 1600 × 1200 (red circles) as well as for a
resolution of 640 × 480 (blue asterisks) to examine the practi-
cability of our approach on cheap cameras with lower resolu-
tions. The dashed lines indicate the average errors for the five
targets. They lie in the range of 0.58◦ to 0.62◦ and 0.31◦ to
0.36◦. It can be also seen from Figure 4 that the maximum pan
and tilt error lies at 1.81◦ and 0.87◦, respectively. These errors
come from target 4, an object which was not apparent in the
scene during LUT generation. However, also target 5 adds new
geometry to scene and its errors lie between 0.17◦ and 0.27◦
which is lower than the average error. Figure 5 show the indi-



(a)

(b)

Figure 3. (a) The image Is of the static camera used for the
experiments, (b) targets newly placed in the scene.

vidual results of the method for targets 1 and 4 with a resolution
of 640 × 480. The targets have a diameter of 16cm and in the
worst result of the experiments (target 4) the target is missed
by ∼ 14cm.

3.3 Discussion

The results show that the proposed method is able to learn an
accurate LUT for a given scene. The whole process of image
acquisition and LUT generation takes about 10 minutes. The
main benefit is that it needs no camera calibration, correction
of lens distortion or any manual interaction by using a simple,
fast and easy-to-use method.

However, it must be noted that these initial experiments
serve only as a proof of concept. The main drawback of the
method is that it requires a certain amount of strong visual fea-
tures in the scene. Although the TPS interpolation is able to fill
the missing data the method might fail in the presence of large
homogeneous regions. Another problem of the method might
be a strong radial distortion of the static camera’s lens which
can corrupt the homography estimation if the zoom level of the
dynamic camera is too low.

A conclusion of the experiments is that, for the given setup,
the influence of the resolution is negligible and the lower reso-
lution of 640 × 480 does not deteriorate the results. However,
in practice the resolution needed depends on the zoom level

(a)

(b)

Figure 4. (a) Pan and (b) tilt error for the five targets shown in
Figure 3(b).

(a) (b)

Figure 5. Error of (a) target 1 and (b) target 4 with a resolution
of 640× 480.

of the dynamic camera and the distance of the visual features
from the camera. In the future, the impact of all factors (i.e.
presence of visual features, radial distortion, image resolution
and zoom level) will be part of a more comprehensive eval-
uation by means of a comparison to point mapping between
calibrated cameras.

4 Conclusion

In this paper an overview of the recently granted tripleB-ID
project was given. The aim of the project is to establish a multi-
camera surveillance system with a twofold intention: first,
crime prevention by the detection of suspicious behaviour of



people exploring the bank for robbery planning, and second,
supporting the crime solving by providing forensic data like
high-resolution facial images and person’s height.

In the second part of the paper a method for the automatic
mapping between a static camera and a collocated dynamic
camera has been proposed. The reported results show the gen-
eral ability of the method to compute an accurate LUT for a
given scene. However, in the future a more detailed evaluation
- including an evaluation of its applicability in the testbed - will
be conducted.
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