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Abstract— This paper presents landmark based self-
localization of a two-wheeled differential drive autonomous
mobile robot in a known but highly dynamic environment.
The robot is equipped with a pivoted stereo vision system, two
digital encoders, a gyro sensor, two 10g accelerometers and a
magnetic compass. Global position of the robot is estimated
using range measurements of distinct features such as color
transitions, corners, junctions and line intersections in the robot
environment. However, due to scarcity of distinct features, it
is not possible to extract the minimum required features for
global position estimation from everywhere in the state space.
Therefore, the robot position is tracked between intermittent
global localization to have an all time position estimate available
to the robot. The robot observation vector is composed of range
and bearing measurements of distinct features in the robot
environment which is merged with the current position estimate
to suppress the accumulating errors. Simulation results illustrate
the performance of the location tracker.

I. INTRODUCTION

Position estimation is a basic requirement of autonomous
navigation. One of the solutions to this problem is to start
at a known location and track the robot position locally
using methods such as odometry or inertial navigation [1].
These methods have proven to be efficient and provide good
short term position estimates but suffer from unbounded error
growth due to integration of minute measurements to obtain
the final estimate [2].

Another approach is to estimate the robot position globally
using external sensors [2]. The process of global position
estimation is simplified by engineering the robot environment
with active beacons or other artificial landmarks such as
bar code reflectors and visual patterns. Methods that do not
require modification of the environment are less accurate
and demand significantly more computational power. This
leads to techniques where local measurements are fused with
measurements from the robot environment [3], [4]. However,
the robot must be able to estimate its position from the very
beginning or when/if it loses track of its position during
navigation.

Extended Kalman filter [5], [6] has been extensively used
for information fusion in robot navigation problems. Leonard
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and Durrant-Whyte [7] have formulated the localization algo-
rithm as a tracking problem. They extract naturally occurring
geometric beacons from sonar data as landmarks and match
them to a known navigation map to maintain an estimate of
robot location. Matthies and Shafer [8] apply an extended
Kalman filter for motion estimation using a stereo vision
system. The robot position is tracked based on information
gathered from features between successive frames as the robot
moves from one point to another. The drawback of such an
approach is that without referencing features in the global
map, the uncertainty increases with the passage of time. A
system for RoboCup robots compute depth using calibrated
single camera images [9]. Uniquely colored regions in the
robot environment are used to help in correspondence analysis.
Information from features and odometry is combined using
Kalman filter.

Due to its unimodal nature, Kalman filter is not suitable
for global localization in environments where features are
not distinctive in the global space. To solve this problem
some researchers generate and track multiple hypothesis to
constitute a framework for global Kalman filter [10], [11].
With the passage of time correct hypothesis collects more
evidence and the wrong one disappears.

Other approaches to global self-localization include Markov
localization [12] and Monte Carlo localization [13] methods.
These methods are capable of recovering a robot from tracking
failures and can deal with multi-modal densities. The Markov
localization model can represent any probability density func-
tion over the robot position and is based on the assumption
that the robot position is the only state in the world. Special
extensions are required in dynamic environments to filter
the damaging effect of sensor data corrupted by external
dynamics [14].

A more efficient approach, Monte Carlo localization, repre-
sent probability density by a set of samples that are randomly
drawn from it. Fichtner and Grossmann [15] report a sensor
model and its use in a Monte Carlo frame work for camera
based pose estimation. Kraetzschmar and Enderle [16] evaluate
the Monte Carlo localization methods in an environment with
sporadic features. They use angle and distance information
of different features in the environment using single camera
images.

For position estimation and interaction with other objects
in an intelligent way, autonomous robots need to estimate
depth information of interesting objects in its environment.
This can be done with a wide range of sensors. The most
accurate sensor to compute depth is a laser-range-finder. The
drawback of this sensor is that it is too big to be integrated
in our robot and also the generation of a complete 3D map of
the environment would take too long. Depth estimation using
single image is too erroneous and the approach cannot be used
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all the time [17]. Therefore, a stereo vision system is used to
obtain 3D information from the robot environment as it can
be built small enough to fit the required dimensions.

The robot environment is assumed to be well known but
highly dynamic and cannot be modified. Two different types
of features are found in the environment: line based and
color transitions [18]. Line based features are extracted using
gradient based Hough transform which provides the strongest
groupings of collinear pixels having roughly the same edge
orientation. Corners, junctions and line intersections are de-
termined by semantic interpretation of detected line segments.
Color transitions between distinct colored patches are detected
using segmentation methods. We have two methods for global
position estimation that require as many landmarks at the
most [19], [20]. However, instantaneous acquisition of distinct
landmarks all the time is not possible as landmarks are few in
number and are frequently occluded. In order to have an all
time position estimate, this study aims at tracking the robot
position. The growing position error is suppressed by acquiring
features from the robot environment whenever possible.

We assume that there exist features that can be identified
globally. This helps us to avoid local minima traps and saves
us from tracking multiple hypothesis or to maintain a multi-
modal position belief. Keeping these requirement in view, the
extended Kalman filter is considered to be best suited for our
application. In addition to the stereo vision system, our robots
are equipped with two digital encoders, two 10g acceleration
sensors, a gyro sensor and a magnetic compass for determining
the absolute orientation of the robot [21].

The balance of the paper is structured as follows: Section II
explains the transition model in the framework of an extended
Kalman filter, derives control vector and presents its uncer-
tainty analysis. Section III illustrates the state update model,
talks about observation prediction and discusses robot obser-
vation and its uncertainty. Experimental results are presented
in Section IV and finally the paper is concluded in Section V.

II. STATE TRANSITION MODEL

We begin by assuming that we have a function f that models
the transition from robot’s state pk−1

1 to pk in the presence of
control vector uk at time k. The control vector is independent
of state pk−1 and is supposed to be corrupted by an additive
zero mean Gaussian noise ũk of covariance Uk. This model
is stated as follows:

pk = f(pk−1,uk, k) (1)

where uk = ûk + ũk. The quantities pk−1 and pk are the
desired (unknown) states of the robot. Given robot observa-
tions Zk−1, a minimum mean square estimate p̂k−1|k−1 of
the robot state pk−1 at time k− 1 is E{pk−1|Zk−1} [6]. The
uncertainty of this estimate is denoted by Pk−1|k−1 and is
evaluated as E{p̃k−1|k−1p̃T

k−1|k−1|Zk−1} where p̃k−1|k−1 is
the zero mean estimation error.

1The notation we use is a slightly changed version of [6]. In our case bpi|j
is the minimum mean square estimate of pi given observation until time j
i.e. Zj . Similarly, Pi|j is the uncertainty of the estimate bpi|j

Using multivariate Taylor series expansion pk is linearized
around p̂k−1|k−1 and ûk to derive p̂k|k−1, which is an
estimate of pk using all measurements but the one at time
k. This is called prediction and can be written as follows:

p̂k|k−1 ≈ f(p̂k−1|k−1, ûk, k) (2)

and its error estimate by:

p̃k|k−1 ≈ J1p̃k−1|k−1 + J2ũk (3)

where J1 and J2 are the jacobian of (1) w.r.t pk−1 and
uk evaluated at p̂k−1|k−1 and ûk respectively. Using (3)
prediction uncertainty Pk|k−1 is given as follows:

Pk|k−1 = J1Pk−1|k−1JT
1 + J2UkJT

2 (4)

Our two wheel differential drive robot is assumed to be
moving on flat surface with its pose having 3 degrees of
freedom. As shown in Fig. 1, the world coordinate system
is represented by XW and YW axis and the robot coordinate
system by XC0 and YC0 axis. Objects in the world coordinate
system have coordinates x, y, and z. The robot motion
is always assumed to be a flat surface therefore the robot
position is denoted by x, y, and θ. Rotation of the robot
coordinate system with respect to the world coordinate system
is represented by angle θ. Objects in the robot coordinate
system are represented by xC0, yC0, and zC0 coordinates. The
separation between the two wheels, wheel base, of the robot
is w. Movement of the robot center is considered as motion of
the whole robot. The type of trajectory followed by the robot
depends on the velocity of each wheel. If the two values are
equal the robot travels along a straight line. A curved path
is traversed if the two wheels rotate at different velocities,
whereas the robot rotates around its center of mass if the
velocities are equal in magnitude but opposite in direction.

Fig. 1. Representation of robot pose

Fig. 2 shows robot trajectory between time step k − 1 and
k. The distance covered (per unit time) by the left and right
wheels of the robot is denoted by vlk and vrk respectively.
During this time the robot pose changes from pk−1 to pk.
It is assumed that between the two time intervals the robot
moves with a constant velocity, which results in a trajectory
of constant radius of curvature ck. We also assume that at
time k − 1 we have an estimate p̂k−1|k−1 of the robot pose,
its uncertainty Pk−1|k−1 and a control vector ûk.

The control vector uk is defined as action taken by the robot
that causes a state change in the robot frame of reference. It is
based on distance covered by the two wheels of the robot and
can be derived by referring to Fig. 2 as given by the following
transformation:
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Fig. 2. Geometric construction of the differential drive robot

uk =

 δxk

δyk

δθk

 =


w(vrk+vlk)
2(vrk−vlk) sin( vrk−vlk

w )
w(vrk+vlk)
2(vrk−vlk) (1− cos( vrk−vlk

w ))
vrk−vlk

w

 (5)

A. Control vector’s uncertainty

For uncertainty analysis of the control vector we suppose
that the robot’s odometry is properly calibrated for systematic
errors [22]. For the non-systematic errors we start by making
a basic assumption about error in distance traveled by the
robot and propagate it to the robot control vector. Suppose
the deviation ṽk of the estimated velocity vector v̂k from its
true value vk is a random vector of zero mean and covariance
Σv. The two wheels of the robot have same diameter and
the distance covered by each wheel is measured by two
independent encoders, hence, it is reasonable to assume that
error in distance covered by the left wheel is independent
of the error in distance covered by the right wheel [1]. The
covariance matrix of this error is given as follows:

Σv = E{ṽkṽT
k } =

[
σ2

l 0
0 σ2

r

]
(6)

where σ2
l and σ2

r are the variances of vlk and vrk and are
proportional to their absolute values. This error is propagated
to uk using the transformation given by (5). Using first order
approximations of (5) we write the expression for Uk as
follows:

Uk = JuΣvJT
u

where Ju is the jacobian of uk with respect to vk evaluated
at v̂k and is given by (7) .

Chong and Kleeman [1] report a detailed analysis of uncer-
tainty in odometry of a differential drive robot. They divide
the curve traversed by the robot between two time intervals
into infinitely small steps with the assumption that the radius
of curvature for all the intermediate steps remains constant.
This way the uncertainty in final position of the robot stays
the same irrespective of the number of steps the distance is
covered in. Our observation is that if the radius of curvature is
assumed to be constant then there is no need of this division.
The problem that traveling the same distance with different
time steps results in different uncertainty is solved by making
the uncertainty proportional to the distance covered and if one
starts at the low level of wheels counts and distance covered.

B. Special cases and compounding of transformations

Robot trajectory approaches a straight line when the two
wheels start turning at the same velocities, whereas it rotates
about its center of mass when the two velocities are same
in magnitude but opposite in direction. For straight line
translation we have vrk − vlk → 0 which result in αk → 0
and ck →∞ and the control vector (5) becomes

[
vk 0 0

]T
.

Here vk is the velocity of the robot center. In case of rotation
around robot’s center of mass we have αk → 2vrk

w and ck → 0
when vrk → −vlk. The control vector in this case becomes[
0 0 2vrk/w

]T
.

From motion model of (1) we know that the robot state
changes from pk−1 to pk under the influence of control vector
uk. A simplified version of this transition is illustrated in
Fig. 3, which help us in incorporating the control vector with
the current state to arrive at a new state of the robot. Using
illustration of Fig. 3 we may write (1) as follows:

pk =

 xk

yk

θk

 =

 xk−1 + δxkcos(θk−1)− δyksin(θk−1)
yk−1 + δxksin(θk−1) + δykcos(θk−1)

θk−1 + αk


(8)

Fig. 3. Compounding of transformation

In Fig. 3 dx and dy represent the x and y components of
the total state change in the world coordinate system.

III. ROBOT OBSERVATION MODEL

The robot observation model links the current state of
the robot with its observation as given by the following
transformation:

zk = h(pk, k) + wk (9)

Robot observation is assumed to be corrupted by additive zero
mean Gaussian noise wk of strength R. Expanding (9) around
p̂k|k−1 we get

zk ≈ h(p̂k|k−1) + Jzp(p̂k|k−1 − pk) + wk (10)

where zk|k−1 = E{zk|Zk−1} = h(p̂k|k−1) is the predicted
observation and Jzp is the jacobian of (9) evaluated at p̂k|k−1.
The deviation of the actual observation from the predicted one
is called innovation and is having the following covariance
matrix:

S = JzpPk|k−1JT
zp + R (11)
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Ju =


−(v2rk−v2lk) cos(

vrk−vlk
w )+2wvrk sin(

vrk−vlk
w )

2(vrk−vlk)2
(v2rk−v2lk) cos(

vrk−vlk
w )−2wvlk sin(

vrk−vlk
w )

2(vrk−vlk)2

−(v2rk−v2lk) sin(
vrk−vlk

w )+2wvrk(1−cos(
vrk−vlk

w ))

2(vrk−vlk)2
(v2rk−v2lk) sin(

vrk−vlk
w )−2wvlk(1−cos(

vrk−vlk
w ))

2(vrk−vlk)2
−1
w

1
w

 (7)

Innovation is a measure of disagreement between the actual
and predicted state of the robot and is used to correct the
predicted state estimate as follows:

p̂k|k = p̂k|k−1 + K[zk − zk|k−1] (12)

The covariance of this estimate is evaluated as follows:

Pk|k = [I−KJzp]Pk|k−1[I−KJzp]T + KRKT(13)

where I is a 2 × 2 identity matrix. The value of K that
minimizes the mean square estimation error is called Kalman
gain and is given by the following expression [6]:

K = Pk|k−1JT
zpS

−1 (14)

To observe landmark features in its environment, our robot
is equipped with a stereo vision system. Assuming identical
cameras, parallel image planes and aligned epipolar lines, a
point pC0 =

[
xC0 yC0 zC0

]T
in robot coordinate system

and its projections
[
ul vl

]T
and

[
ur vr

]T
in the left and

right image can be related under perspective transformation as
follows [23]:

pC0 =

xC0

yC0

zC0

 = f
([

ul

vl

]
,

[
ur

vr

])
=

 xc + fb
ul−ur

−b
2

ul+ur−2ou
ul−ur

−b(vr−ov)
ul−ur

 (15)

where [ou ov]T is the image center, b is the baseline of the
stereo vision system, f focal length of both cameras and xc is
the distance from the center of the robot to the cameras. Image
coordinate system is represented by u and v. The u and v axes
of the image coordinate system are in opposite direction of
YC0 and ZC0 axes.

Location of landmark pl = [xl yl]T in robot coordinate
system is used to construct robot observation vector zk as
illustrated in Fig. 4 and given by the following expression:

Fig. 4. Illustration of the robot observation: the robot stereo vision system is
used to estimate range and bearing with respect to a landmark feature. Four
distinct landmark features are shown here

zk =
[

rk

ϕk

]
=

[ √
(xC0)2 + (yC0)2

atan2(yC0, xC0)

]
(16)

where The actual robot observation is compared with what the
robot should see from its predicted position. The observation
prediction is used in (12) and its derivation is illustrated in
Fig. 4 and given by the following expression:

zk|k−1 =
[ √

(xl − xk|k−1)2 + (yl − yk|k−1)2
atan2(yl − yk|k−1, xl − xk|k−1)− θk|k−1

]
(17)

where pl = [xl yl]T represent location of the landmark in
world coordinate system, while xk|k−1, yk|k−1 and θk|k−1 are
components of the robot’s predicted pose.

The types of features that are used for self-localization play
an important rule in the success or failure of a method. They
can broadly be divided into two groups; natural and artificial.
Artificial landmarks are specially designed and placed in
the environment as an aid in robot navigation. Panzieri et
al. [24] reduce accumulating error in the robot position by
extracting ceiling lights from vision data as natural landmarks.
Similarly, Howard and Kitchen [25] use walls and doorways as
landmarks. They maintain a probability distribution across all
possible robot positions and track them over time using Baye’s
rule. Libuda and Kraiss [26] extract natural environment
features using a stereo vision system for robot navigation.
They use high level interpretation of the scene to extract walls,
doors and floor to identify locations.

The drawback of using natural landmarks is that they are
difficult to detect with high accuracy. Therefore, the envi-
ronment is engineered by placing artificial landmarks at pre-
defined positions [27], [28].

For robot observation uncertainty we assume that errors in
estimating landmark location in the left and right cameras are
independent identically distributed Gaussian random variables
having zero mean and covariance matrix given by the follow-
ing expression:

Σi = σ2
uu

[
1 0
0 1

]
(18)

where σ2
uu is the variance of ul or ur. Error in ul and ur

is propagated to zk by the transformation (16) through (15).
These systems are nonlinear, however, it is assumed that
they can be adequately represented by the first two terms of
Taylor series expansion around estimated values of ul and ur.
Using this assumption we arrive at the following expression
of observation covariance:

R = JzΣiJT
z

where

Jz =
−b

rkd2

[
fxC0 − (ur − ou)yC0 −fxC0 + (ul − ou)yC0

−xC0(ur−ou)−yC0f
rk

xC0(ul−ou)+yC0f
rk

]
(19)
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is the jacobian of (16) with respect to
[
ul ur

]T
.

The error model discussed above adequately captures the
uncertainty due to image quantization, however, it fails to
handle gross segmentation problems [8]. Moreover, it involves
linearization of the perspective transformation which do not
hold for distant point correspondences as the disparity de-
creases and higher order terms will dominate [29].

IV. EXPERIMENTAL RESULTS

The performance of our algorithm was tested with a sim-
ulation as real-world implementations are in progress. The
robot wheel base is 75 mm. The stereo vision system is
mounted at a height of 70 mm. The separation between the
two cameras (stereo baseline) is 30 mm. Image resolution for
the experiment was set to be QVGA (320× 240 pixels). The
experiment was conducted with σ2

uu value of 0.9. Similarly, σ2
l

and σ2
r values were chosen to be

∣∣vlk

∣∣ (0.25)2 and
∣∣vrk

∣∣ (0.30)2

respectively. Image resolution and other simulation parameters
were set to satisfy the constraints of the real robots as close
as possible.

We group the experiment into three categories according to
the trajectory followed by the robot: circular motion, linear
motion and rotation about a single point. Thus the curved
trajectory and its two special cases are tested. In order to
improve the statistics regarding the growth of uncertainty and
robot position, different trials are conducted in each category
and every trial consists of 100 steps. In each of these trials,
the robot either follows a circular path of different diameters,
or the starting position of the robot and/or direction of motion
is changed. During each trial the robot does not necessarily
complete a full 360 rotation.

Fig. 5 shows a single trial of the first category. Here the
robot follows a circular path of radius 500 mm. As can be
seen from Fig. 5(a) the ideal path that robot is supposed to
follow is a perfect circle (the robot starts at ’A’ and moves in
counterclockwise direction. However, due to imperfections of
its sensors the robot deviates from the true path. In this trial the
true starting position of the robot is

[
1250 650 90 ◦]. The

robot observes its first landmark feature when it has covered
more than a quarter of its intended path marked as ’B’. As
can be seen in the figure, uncertainty of the robot position is
growing continuously and the pose drifts away from true value.
When the robot observes one of the two features on the left
side, its uncertainty is reduced and position adjusted. However,
as soon as the landmarks are out of sight, drift from the
true position starts and the uncertainty increases. Between ’C’
and ’D’ robot position uncertainty is increasing unbounded.
This drift is corrected when the landmarks are visible again
from ’D’ onward. Fig. 5(b) shows ±3σ error bound on each
component of the robot pose.

A single trial from the second category is shown in Fig. 6.
In this case the robot orientation is fixed at 180 ◦and it starts
at point ’A’ on the left side and moves in reverse direction
towards the right in small steps of 8.9 mm each. The end point
is marked as ’B’. The orientation of the robot is such that the
landmarks are always in sight. Fig 6(a) shows the actual and
ideal path of the robot. The true starting position of the robot

(a) (b)

Fig. 5. Robot desired trajectory is a circle of radius 500 mm (a) robot starts
at a known position with low uncertainty (b) ±3σ bound on error in x, y and
θ

is
[
322 450 180 ◦]. The error in each component of the

robot pose and their corresponding ±3σ uncertainty bounds
are shown in Fig. 6(b).

(a) (b)

Fig. 6. Robot desired path is a straight line (a) robot trajectory (b) position
error and the corresponding ±3σ bound on error in x, y and θ components
of the robot pose

Similarly, Fig. 7 shows a single trial from the last cat-
egory where the robot rotates around its center of mass.
Here the robot starts at

[
350 950 −90 ◦] and completes

a 360 ◦rotation in 100 steps in counter clockwise direction.
During the entire 100 steps the pose changes of the robot are
such that it observes the landmark features only between step 4
and step 8, at step 17, 18 and between 72 and 88. All features
observed during the last interval are at a far distance with high
uncertainty.

(a) (b)

Fig. 7. The robot is rotating about its center of mass. There is no translation
in this case (a) the robot trajectory with an approximately known starting
position (b) position error and its covariance (±3σ bound)

In the experimental results reported in this paper we initial-
ize the position tracker with a starting position and its corre-
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sponding uncertainty. The initial position is obtained by adding
random noise to the true position. This can be calculated using
landmark based global localization methods [19], [20]. If the
initial position is not provided, the robot does not initialize its
location tracker and actively searches landmark features until
it finds enough that are required for global localization. The
ellipses drawn in these figures, illustrate 50% uncertainty for
each estimate of the robot position.

Simulation results illustrate that the algorithm can success-
fully track the robot position despite of the fact that landmarks
are sparse. The linearization of the observation model intro-
duce problems for distant features. The robot position error is
perfectly bounded when its following a circular path as shown
in Fig. 5(b). However, the error is not always bounded in the
latter two categories. The reason for this is that in motion
along the circle, features are always observed from a short
distance whereas in the other cases features are observed from
a distance towards the end of the trials. The prominence of this
problem comes from the use of a narrow baseline stereo as the
construction of the robot does not allow the use of the wide
baseline.

V. CONCLUSION

In this paper we discussed tracking position of an au-
tonomous mobile robot. For this study we assumed that the
initial position and its uncertainty is given, however, this
can be calculated using global self-localization techniques
as reported in [19], [20]. The localization algorithm is not
dependent on the presence of artificial landmarks or special
structures such as rectangular walls in the robot environment.
Furthermore, it is not required that features lie on or close to
the ground plane.

A stereo vision system is used as an external sensor that
gathers information about features in the robot environment.
Features are line based and color transitions [18]. To illustrate
the effect of the method and eliminate false correspondences
we have used only four landmarks in this study. As a future
work we are planning to use all the features found in the
robot environment and to analyze the effect of error in feature
location in the world coordinate system and in correspondence
analysis.
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