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Abstract In image retrieval scenarios, many methods use
interest point detection at an early stage to find regions in
which descriptors are calculated. Finding salient locations
in image data is crucial for these tasks. Observing that most
current methods use only the luminance information of the
images, we investigate the use of colour information in in-
terest point detection. Based on the Harris corner detector,
a way to use multi-channel images is explored and different
colour spaces are evaluated. To determine the characteris-
tic scale of an interest point, a new colour scale selection
method is presented. We show that using colour informa-
tion and boosting salient colours results in improved perfor-
mance in retrieval tasks.

1 Introduction

Interest points in images are useful in a wide variety of ap-
plications, including stereo matching and object recognition.
Corners have long been considered as useful interest points.
Corner detection can be traced back to Moravec [15] who
measured the average change of intensity by shifting a lo-
cal window by a small amount in different directions. Har-
ris and Stephens [3] improved the repeatability of Moravec
detector under small image variations and near the edges.
The Harris detector, in combination with a rotational in-
variant descriptor, was also used by Schmid and Mohr [16]
when they extended local feature matching to general object
recognition.

Lindeberg [6] proposed an “interesting scale level” de-
tector which is based on determining maxima over scale
of a normalized blob measure. The Laplacian-of-Gaussian
(LoG) function is used for building the scale space. Miko-
lajczyk [11] showed that this function is very suitable for
automatic scale selection of structures. An efficient algo-
rithm for use in object recognition was proposed by Lowe
[8]. This algorithm constructs a scale space pyramid using
Difference-of-Gaussian (DoG) filters. The DoG are used to
obtain an efficient approximation of the LoG. From the lo-
cal 3D maxima a robust descriptor is built for matching pur-
poses. The disadvantage of using DoG or LoG is that the
repeatability of the extracted features is not optimal since
both DoG and LoG not only respond to blobs, but also to
high gradients in one direction. Because of this, the local-
ization of the features may not be very accurate.

An approach that intuitively arises from this observation
is the separation of the feature detector and the scale se-
lection. The original Harris detector [3] is robust to noise
and lighting variations, but only to a small extent to scale
changes [17]. To deal with this Dufournoud et al. [1] pro-
posed the scale adapted Harris operator. Given the scale
adapted Harris operator, a scale space can be created. Lo-
cal 3D maxima in this scale space can be taken as salient
points. Mikolajczyk points out that the scale adapted Harris
operator rarely attains a maximum over scales [11]. This re-
sults in very few points, which are not representative enough
for capturing the image content. To address this prob-
lem, Mikolajczyk [11] proposed the Harris-Laplace detector
that merges the scale-adapted Harris corner detector and the
Laplacian based scale selection.

All the approaches presented above are intensity based.
Since the luminance axis is the major axis of colour varia-
tion in the RGB colour cube, most interest points are found
using just intensity. The additional colour based interest
points might not dramatically increase the number of inter-
est points. The distinctiveness of these colour based interest
points is however much larger, and therefore colour can be
of great importance when matching images. Furthermore,
colour plays an important role in the pre-attentive stage in
which features are detected. This means that the saliency
value of a point also depends on the colour information that
is present. Very relevant to our work is the research of van
de Weijer and Gevers [19]. They aim at incorporating colour
distinctiveness into the design of interest point detectors. In
their work, the colour derivatives form the basis of a colour
saliency boosting function since they are used in both the
detection of the interest points, and the determination of
the information content of the points. Furthermore, the his-
tograms of colour image derivatives show distinctive statis-
tical properties which are used in a colour saliency boosting
function.

We propose a new method for the automatic determina-
1

mailto:stoettij@prip.tuwien.ac.at
mailto:hanbury@prip.tuwien.ac.at
mailto:nicu@science.uva.nl
mailto:gevers@science.uva.nl


Colour Interest Points for Image Retrieval [←]
tion of the characteristic scale of a region. Moreover, by
using colour information in different colour spaces, the in-
terest points gain distinctiveness and stability. The shifting
of interest points towards colour differences leads to a dif-
ferent focus of interest points, which can be very useful in
colorful images and natural, cluttered scenes.

We investigate different corner detection approaches and
we evaluate them under varying circumstances including ar-
tificial well defined conditions and complex natural scenes.

2 Colour Corner Detection
In this section, we discuss the extension of the Harris corner
detector to colour images, making use of colour spaces that
are quasi-invariant to some variations in imaging conditions.

2.1 Colour Harris Corner Detector
The Harris corner detector introduced in [3] provides a cor-
nerness measure for image data. It is calculated based on a
second moment matrix M describing the gradient distribu-
tion in the local neighbourhood of a point as

CH(M) = det(M)−αtrace2(M) (1)

where the constant α indicates the slope of the “zero line”.
A basic extension of the intensity based Harris detector

is proposed by Montesinos et al. [14]. The second moment
matrix they use is defined as

M = µ(x,y,σI ,σD) = σ
2
DG(σI)⊗ (2)[

R2
x +G2

x +B2
x RxRy +GxGy +BxBy

RxRy +GxGy +BxBy R2
y +G2

y +B2
y

]
where ⊗ indicates convolution and the subscripts x and y
indicate Gaussian derivatives at scale σD in these direc-
tions. Instead of using just the intensity gradient, the gra-
dient of each colour channel is determined. These values
are summed and averaged using a Gaussian kernel G with
size σI . The choice of the colour channels is very important
in extracting the Harris corners.

As already pointed out, the RGB colour space is highly
correlated and therefore prone to illumination changes.
However, in natural images, high contrast changes might
take place. Therefore, a colour Harris detector in RGB
colour space does not dramatically change the position
of the corners compared to a luminance based approach.
This is not the case for photos with low contrast changes
as usually encountered in studio photography, artificial
images, or highly postprocessed images. In Figures 1(a)
and 2(a) we show the Harris energy and the extracted RGB
corners. Note that the extracted points are spread all over
image and do not concentrate on the object of interest.

Going from RGB to normalised rgb, the cornerness mea-
surement (see Figure 1(b)) favours the colour changes be-
tween foreground and background and therefore, the silhou-
ette of the parrot can be recognized in the plot. The main
drawback of this colour space is that rgb is very unstable
near zero illumination and the approach therefore leads to
highly prominent corners extracted in the dark regions of
the image. This is encountered in the lower right part of the
image in Figure 1(b).
2

The second moment matrix can be computed using dif-
ferent colour models. The first step is to determine the gra-
dients of each component of the RGB colour system. This
is done using a convolution with the differentiation kernels
of size σD. The gradients are then transformed into the de-
sired colour system. By multiplication and summation of
the transformed gradients, all components of the second mo-
ment matrix are computed. The values are averaged by a
Gaussian integration kernel with size σI . Scale normaliza-
tion is done again using a factor σ2

D.
To write this procedure in symbolic form, we use a more

general notation not restricted to one colour space. Colour
space C is used with its components [c1, . . . ,cn]T , where n
is the number of colour system components. The second
moment matrix is then

M = µ(x,σI ,σD) =σ
2
Dg(σI)⊗ (3)[

L2
x(x,σD) LxLy(x,σD)

LxLy(x,σD) L2
y(x,σD)

]
with the components L2

x , LxLy and L2
y defined as:

L2
x(x,σD) =

n

∑
i=1

c2
i,x(x,σD) (4)

LxLy(x,σD) =
n

∑
i=1

ci,x(x,σD)ci,y(x,σD) (5)

L2
y(x,σD) =

n

∑
i=1

c2
i,y(x,σD) (6)

where ci,x and ci,y denote the components of the transformed
colour channel gradients, with i ∈ [1, . . . ,n], and where the
subscript x or y indicates the direction of the gradient.

2.2 Quasi Invariant Colour Spaces
Due to the common photometric variations in imaging con-
ditions such as shading, shadows, specularities and object
reflectance, the components of the RGB colour system are
correlated. By transforming the RGB colour coordinates to
other systems, photometric alterations of features in images
can be distinguished. For this purpose, we investigate dif-
ferent colour spaces: (1) the spherical colour space (Equa-
tion 7); (2) the opponent colour space OCS (Equation 8);
and (3) the HSI colour space (Equation 9). In these decorre-
lated colour spaces only the photometric axes are influenced
by the common photometric variations. In [19] the spatial
derivatives are separated into photometric variant and invari-
ant parts.
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ϕ

r
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(a) RGB (b) rgb (c) Spherical colour space

(d) OCS (e) HSI (f) colour boosted OCS

Figure 1: Harris energy in different colour spaces. From left to right, the energy gets more and more distinctive and salient colours are
favoured.

(a) RGB (b) rgb (c) Spherical colour
space

(d) OCS (e) HSI (f) colour boosted OCS

Figure 2: The 30 highest maxima extracted and visualized on the image for different colour spaces.
The spherical colour transformation (Equation (7)) has
the shadow-shading direction as the r coordinate. This over-
comes the instability of rgb and is prone to decreasing the
illumination of a colour. As shown in Figures 1(c) and 2(c),
dark regions are more stable and there are fewer corners
with shading changes involved. The orthonormal transfor-
mation into OCS (Equation (8)) provides specular variance.
In Figures 1(d) and 2(d), the prioritization of the yellow -
blue edge is shown. As this colour space is often described
as simulating a primate’s retinal processes, these opponent
colours are on one axis and have therefore a large distance.
The specular variance can also be seen at the left shoulder
of the parrot in Figure 2(d).

A polar transformation on the first two axes of the OCS
leads to the HSI colour space (Equation (9)). The derivative
of the hue component is both shading and specular quasi-
invariant [19]. The drawback is the ambiguity between
black and white. Further, small changes around the gray
axis result in large changes in the colour direction as can be
seen in the upper left corner of Figure 2(e). As shown in
Figure 1(e), colour changes between opponent colours are
highly favoured. This leads to stable results under varying
circumstances.
3 Scale Invariant Corner Detection
Using a fixed scale has one drawback: structures which are
“too small” or “too large” are not taken into account. The
goal is to develop a scale invariant description of corners in
an image. In our retrieval context, this idea gives us the same
locations, regardless of the size of the object in the image.

3.1 Scale Invariant Harris Corner Detection
The scale space of the Harris function is built by iteratively
calculating the cornerness measurement E under varying σD
and σI . As shown in several experiments [10, 11], the rela-
tion

σD = 3σI (10)

performs best.
Using scale steps s = 1,2, . . . determining the iterations

of the algorithm (typically between 8 and 20) with a factor
t of σD from 1.2 to

√
2, the cornerness measurement E is

calculated as

E(x,y,s) = (x,y,s)M(x,y, ts
σD,

ts

3
σI)

x
y
s

 (11)
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(a) Illumination (b) HSI

Figure 3: 30 extracted regions based on luminance and HSI infor-
mation with t = 1.2;s = 10;σI = 0.7. The regions shift towards
colour differences, specular, and shading changes are not regarded
anymore. The parrot is therefore highly prioritized.

The second moment matrix M is not changed at all. The
amount of scale change is chosen by the need for precise-
ness of the corner location. In reasonably large objects in a
retrieval context, t =

√
2 showed to be precise enough and

is therefore used in these experiments. For more precise re-
sults, a value of t ≈ 1.2 is recommended.

The number of steps is a crucial matter for the processing
time. Each step has to be calculated on its own (but indepen-
dently in parallel) and the processing time increases with the
size of the kernels. Building this scale space of the Harris
energy leads to a pyramid of the cornerness measurement E.
In several other implementations of a scale invariant corner
detector (e.g. [9, 18]) the Harris energy of scale levels is
scale normalized by the factor σ2

I because the values tend to
get lower as the scale gets higher.

The next step is to choose the characteristic structure. In
this research, the Laplacian of Gaussian function Λ is used
to select the characteristic structure automatically [7, 9]. Ex-
tending it to the scale space chosen previously, the scale de-
cision measurement Λ is defined as

Λ(x,y,σD) =− 1
π(tsσD)4

(
1− x2 + y2

1(tsσD)2

)
e
− x2+y2

2(tsσD)2 ⊗ cu,v

(12)

To make the maxima more stable, a raised cosine kernel
is used to smooth the resulting data

cu,v =
1+(( 1

2 − cos(πu))+( 1
2 − cos(πv)))

3
(13)

As suggested in [5], this kernel gives smoother borders than
the Gaussian Kernel for scale decision.

A characteristic scale of a possible region is found if both
the Harris Energy and the Laplacian of Gaussian are an ex-
tremum

∇Λ(x,y,s(σD)) = ∇M(x,y,σI ,σD) = 0 (14)
4

where 0 is the null vector. Results are shown in Figure 3.
With this non-maxima suppression, the majority of data is
discarded leaving Ê and Λ̂ for which Equation (14) holds.
Aiming for just one region per location and a reasonable
distribution of regions over the input image, the following
decision criterion was shown to perform best

R̂(x,y) =

(
max(Ê(x,y,∗))

3targmax(Λ̂(x,y,∗))σD

)
(15)

This leads to the function R̂(x,y) defining all interest point
candidates and the corresponding region size.

Within this step, there is not one location chosen, but a
region of interest with a centered interest point as visualized
in Figure 3. The information of this area is then used in the
calculation of the descriptor (e.g. the SIFT descriptor).

3.2 Colored Scale Invariant Harris Corner Detection
In this section, we propose a method for including colour
information in the scale decision. The input image is trans-
formed to the same colour space as is used for the extraction
of the Harris energy. After that, the image is globally ana-
lyzed: a principal component analysis (PCA) takes place to
reduce the 3 colour dimensions of the input image to a one
dimensional dataset Î(x,y), where

Î(x,y) =
√

3νλ I(x,y)T ⊗ cu,v (16)

by calculating the dot product of the colour information
I(x,y) and the corresponding eigenvector νλ . For implemen-
tation reasons, the result is scaled back by

√
3. The training

set is the whole image.
This analysis leads to a transformed one dimensional

function which includes many of the advantages of the cor-
responding colour space, as described in [18]. Based on
Î(x,y), Equation (12) can be applied and the characteristic
scale can be chosen using the procedure described in Sec-
tion 3.1.

Considering that the discrimination vector is chosen as
the maximum of the sum of the distances between the val-
ues, the PCA, as the basis for the scale decision criterion,
ensures that a trade-off between favouring rare colours and
retaining information on similar colours is realized. There-
fore, it can be seen as a relaxed colour boosting function
within the dimension reduction. If salient values have larger
distances than many others, less salient colours are disre-
garded and get similar values. If the distance to the rarest
colours is not large enough, the transformation favours com-
mon colours. This transformation tends to lose less distance
information than other transformations f : R3→R1 e.g. the
one usually used by the luminance transform.

3.3 Colour Statistics and Boosting
A form of a general saliency implies rarity [4] approach for
weighting colours is used for boosting interest points.

As proposed in [20], colours have different occurrence
probabilities p(v) and therefore different information con-
tent I(v)

I(v) =−log(p(v)) (17)

The idea is to boost rare colours to have higher saliency
in the cornerness measurement. When looking for rare
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colours, statistics made on the Corel Database containing
40 000 colour images showed that the three dimensional
colour distribution was remarkably significant. For all con-
sidered colour spaces, one coordinate coincides with the axis
of maximum variation (i.e., the luminance).

Traditionally, the derivatives of colour vectors with equal
vector norms have equal impact on the saliency function.
We wish to find a boosting function so that colour vectors
having equal information content have equal impact on the
saliency function. This is a colour saliency boosting trans-
formation g : R3→ R3 such that

p(fx) = p(f′x)↔‖g(fx)‖= ‖g(f′x)‖ (18)

where fx and f′x are the derivatives of two arbitrary colour
coordinate vectors f and f′. The transformation is obtained
by deriving a function describing the surface of the 3 dimen-
sional colour distribution, which can be approximated by an
ellipsoid. The third coordinate of the colour space is already
aligned with the luminance, which forms the longest axis of
the ellipsoid. The other two axes are rotated so that they are
aligned with the other two axes of the ellipsoid.

These derivative histograms can then be approximated by
ellipsoids having the definition

(αh1
x)

2 +(βh2
x)

2 +(γh3
x)

2 = R2 (19)

where h[1..3]
x is the transformation of a colour derivative to

one of the colour spaces given in Equations (7)–(9) followed
by the rotation to align the axes with those of the ellipsoid in
the corresponding colour space. To find the transformation
in Equation (18), the ellipsoid is transformed to a sphere, so
that vectors of equal saliency lead to vectors of equal length.
The function g is therefore defined as

g(fx) = Λh(fx) (20)

which leads to a saliency boosting factor for each compo-
nent of the corresponding colour space. For the opponent
colour space, the diagonal matrix Λ is given by

Λ =

0.850 0 0
0 0.524 0
0 0 0.065

 (21)

The idea is now that these factors not only hold for
the analyzed images, but for other natural images as well.
Figures 1(f) and 2(f) show the Harris energy and the cor-
responding corners obtained by using the colour boosting
transformation.

4 Results
In Section 4.1, visualizations of the performance of the dif-
ferent colour spaces are given. In Section 4.2, the repeata-
bility under viewpoint transformations is compared to the
existing state of the art implementations of [11] and the re-
sults are discussed. Finally, a retrieval scenario is studied in
Section 4.3.

The latter two experiments use the Amsterdam Library
of Object Images (ALOI)1, which provides images of 1000

1http://staff.science.uva.nl/˜aloi/
(a) front view (b) 25◦ turned (c) 50◦ turned.

Figure 5: ALOI object number 46 under viewpoint transforma-
tions.

objects under supervised, predefined conditions on a dark
background. Several transformations are precisely applied,
including viewpoint transformation and varying light condi-
tions [2].

4.1 Shifting Interest Points Towards Colour
Taking colour information into account leads to a different
definition of interest points. Every colour transformation
provides other properties. In the case of the quasi invari-
ant colour space, colour only is regarded. The colour only
interest points consider only changes in colour, not in illu-
mination, specular, or shadow changes. It is more likely to
describe meaningful objects in real circumstances that way,
as the results are not changed by different lighting condi-
tions. Working with natural cluttered animal images, this
helps to overcome one of the major problem: every nat-
ural image is taken in completely different circumstances,
and therefore under completely different lighting conditions.
Figures 4(a)–4(f) show the shifting of interest points towards
the colour edges as more colour specific interest point detec-
tors are used. Note that the background of Figure 4(f) is not
disregarded, but the colour edges have higher priority. As
the corner measurement expands heavily under the quasi in-
variant colour space, the Harris energy has a wider range of
data. Taking more maxima into account, a stable and mean-
ingful distribution of the interest points can be achieved.

4.2 Repeatability Experiment
The experimental setup is the following: a colorful, flat ob-
ject such as the one shown in Figure 5(a) is turned on a rota-
tion stage in steps of 5◦ . Rotations of 50◦ in both directions
are used. The images are captured at a distance of 124.5 cm
to the center of the rotational stage. Light is provided by
Halogen lights and a 48 mm camera lens is used. The input
images are full colour 24 bit at a resolution of 768×576 and
are in png format.

Mikolajczyk provides his interest point detectors in freely
available binaries2. He also provides software to estimate
the homography matrix and to evaluate repeatability per-
formance. We used these binaries in order to compare our
colour based system with the intensity based approaches.

The performance is measured by the repeatability rate,
which is the percentage of corresponding points detected in
two images. The higher the repeatability rate between two
images, the more points can potentially be matched and the
better are the matching and recognition results. A match
is counted if the transformation of one image to the other

2http://www.robots.ox.ac.uk/˜vgg/research/
affine/
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(a) Illumination (b) RGB (c) rgb

(d) OCS (e) colour boosted OCS (f) Quasi invariant HSI

Figure 4: Scale invariant interesting point extraction for different colour spaces. The background is highly structured with high illumination
changes. The parameters are t = 1.2;s = 10;σI = 0.7.
one using the provided homography matrix leads to interest
regions overlapping by more than 40%.

The experiments with these binaries are previously done
with a test set of images of natural scenes [13]. Compared to
the precise transformations of the ALOI database, the trans-
formations are done in larger and looser steps. Therefore,
the results of these experiments give higher repeatability
rates than those with other datasets (e.g [12, 10]). Having
simple, precise transformations on flat objects provides a
more stable repeatability rate than previous experiments.

The following algorithms are tested:

• the Quasi Invariant ScIv Harris uses the approach under
the quasi invariant HSI colour space.

• The Harris Laplacian corner detector is the scale invari-
ant approach from the Mikolajczyk implementation. It is
a Harris implementation using LoG for the scale determi-
nation.

• Harris Affine is the extension of this approach, using the
results of the Harris Laplacian algorithm to detect the
affine transformation of the region (Mikolajczyk’s imple-
mentation is used for this algorithm too).

• Colour boosted ScIv Harris uses our approach under the
opponent colour space and the colour statistics to boost
rare colours.

• RGB ScIv Harris uses RGB information only.

As shown in Figure 6, the Harris Laplacian detector per-
forms steadily about 5% better than the Harris Affine detec-
tor, a result which is explainable by the repeatability criteria.
Both approaches use the same locations, as the majority of
the algorithm is the same. Just the final stage of convert-
ing the scale invariant regions into affine invariant regions
6

diminishes the area of the region by the direction of the gra-
dients. These smaller, elliptic regions have smaller over-
lapping areas after transforming them back according to the
given homography matrix. However, the result remains rel-
atively stable beginning at over 70% and ending below 70%
after the 50◦ transformation.

Performing this experiment in the RGB colour space, the
results are quite similar to the luminance only approaches,
until the transformation reaches a level of 35◦. From this
point, all colour based approaches perform better than those
using only luminance information. Apparently, colour edges
remain more stable under these transformations.

Using colour statistics (Section 3.3) and the OCS colour
space, the salient colour differences become more distinct,
and therefore the results become better. A drawback of this
method is the instability to aliasing effects of the transfor-
mation, as seen in the 35◦ transformation.

The quasi invariant colour space performs best, as this
approach takes only colour differences into account. Many
parts of the image, like the blue shading, are disregarded
completely, and only the colour changes of stable objects
are taken as interest points. This leads to a 95% repeatability
rate at a 30◦ transformation and an 85% rate after the full 50◦

transformation.

4.3 Image Retrieval
For the retrieval experiment, the impact of the extraction of
interest points in a retrieval scenario is examined.

The retrieval scenario consists of 1000 objects captured
as described in Section 4.2. For every object, 9 images are
taken rotating the object 60◦ in both directions. From 5◦ to
30◦ and 355◦ to 330◦ rotation, the steps are taken in 5◦ incre-
ments. Up to 60◦ and 300◦, respectively, the steps are carried
out in 10◦ increments. This results in a database of 18000
images. Since the ALOI database delivers images of ob-
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Figure 6: Repeatability experiment with ALOI database on full size resolution. Colour information gains stability under viewpoint transfor-
mation on colorful, flat objects.
jects on a dark background and image masks to completely
disregard the background, the retrieval is obtained by object
characteristics only. Query images are captured from the
front view, the position which was omitted in the database.
Every query image is processed as described above, except
that no mask is applied to it. Therefore, it is possible that
descriptors located in the background can occur in the query
image.

We tested four algorithms for finding interest points:

• the Illuminance Harris indicates the scale invariant Har-
ris approach from the reference implementation by Miko-
lajczyk.

• DoG uses the original SIFT binaries from Lowe3 for the
interest point extraction.

• The OCS Harris defines our scale invariant approach in
the opponent colour space

• the cb OCS Harris boosts the opponent colour space with
the colour statistics and extracts scale invariant interest
points based on the weighted colours.

All these scale invariant interest points provide the loca-
tions for the calculation of the SIFT descriptors (also ob-
tained using the implementation by Mikolajczyk). There-
fore, the only difference between the four different retrieval
tests is in the interest point extraction stage.

The difference between two images is determined by first
calculating the Euclidean distances between each possible
pair of (normalised) descriptors. The mean of the N smallest
distances is then taken to be the distance between the images
(we use N = 100). As the retrieval performance measure-
ment, the precision and recall values are calculated for the
30 best matches to the query image.

3http://www.cs.ubc.ca/˜lowe/keypoints/
As shown in Figure 7, the overall performance of the ap-
proach based on the colour boosted OCS is better than the
two illumination based methods. The DoG in the original
SIFT implementation outperforms the illuminance Harris,
especially in low contrast, dark images. The applied colour
boosting factors improve the ability to describe an object un-
der heavy viewpoint changes, as the performance is steadily
better than in standard OCS.

The black background provides predominantly dark im-
ages with constant lighting. From this point of view, the
illumination only based methods should not have problems
in stability in changing contrast. In another context, the illu-
mination based methods suffer in great instability: when the
rotating object moves a surface away from the light source,
the illumination on this surface gets less and less as there is
almost no ambient light. In these cases, the colour boosted
OCS based method performs better, as the colours get more
distinctive, especially under dark circumstances. Illumina-
tion based approaches tend to lose meaningful locations un-
der these illumination changes.

5 Conclusion

Using colour distances for corner measurement can shift the
interest points to more meaningful, stable and distinct loca-
tions than luminance based methods. A colour scale selec-
tion leads to a better stability under transformations. Both
the corner measurement and the scale selection can be trans-
formed into various colour spaces, and we can take advan-
tage of different properties of these transformations. Us-
ing correlated colour, boosted colour or colour invariant in-
formation, the method gains performance over luminance
based methods. In retrieval scenarios, our approach was
shown to be more distinct and stable, which leads to a higher
and more precise retrieval rate than reference implementa-
tions.
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Figure 7: Precision recall graph of the retrieval experiment on the whole ALOI database. All SIFT descriptors are calculated by the Mikola-
jczyk binary, differences in performance are caused by different interesting regions only.
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