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Abstract—1In a smart home system, a camera-based fall
detector at elderly homes leads to immediate alarming and
helping. In this paper we propose an approach for the detection
of falls based on multiple cameras. Based on semantic driven
features, fall detection is done in 3D and fuzzy logic is used
to estimate confidence values for different human postures as
well as for the incidence of a fall/no fall. Emphasis is given
on simplicity, low computational effort and fast processing.
Therefore, based on an evaluation on 73 test sequences, we
show the applicability of the method for videos with low spatial
resolution and frame rate.

I. INTRODUCTION

Currently, in the European Union about 30 % of people
older than 65 live alone [1], with an upward trend. Smart
homes bear the potential to improve the life quality of elderly
and disabled by supporting them in their daily routines and
fulfilling their special needs. As part of a smart home system
for elderly, the permanent monitoring of the inhabitants is of
high value, e.g. to automatically detect cases of emergency.
Within the MuBisA project!, monitoring is achieved by a
network of digital cameras, providing both flexibility and
expandability: using just one sensor type, a vast amount of
events (e.g. falls, fire, flooding...) can be detected with the
appropriate computer vision techniques. Moreover, compared
to the prevalently used emergency system which includes
mobile devices worn by the elderly, camera-based monitoring
is completely passive and thus eliminates the shortcomings
of this system, e.g. the need for human activation in case of
an accident or the risk of forgetting to wear the device.

Falls at homes are one of the major risks for elderly and
an immediate alarming and helping is essential to reduce the
rate of morbidity and mortality [2]. In this paper we present
a fall detection system based on a network of cameras. The
system uses inexpensive low-resolution cameras, in order to
make the system flexible and affordable for the elderly in
the future.

Camera-based fall detection approaches proposed in the
past work either by modeling the temporal characteristics
of the fall action itself or by detecting falls explicitly from
human posture and motion speed on a frame-by-frame basis.
In the former type of methods, parametric models like
Hidden Markov Models are trained using simple features,
e.g. projection histograms[3] or the aspect ratio of the
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bounding box surrounding the detected human [4]. However,
the applicability of these methods in real-life scenarios is
limited due to the high diversity of fall actions and the high
number of different negative actions which the system should
not classify as fall. The second type of methods basically
measures two types of features: the human posture and the
motion speed. The underlying assumption is that a fall is
characterized by a transition from a vertical to a horizontal
posture with an unusually increased speed, i.e. to discern falls
from normal actions like sitting on a chair or lying on a bed.
In this manner, in the past various features have been used
for camera-based fall detection, including the aspect ratio of
the bounding box [5] or orientation of a fitted ellipse [6] for
posture recognition and head tracking [7] or change rate of
the human’s centroid [8] for motion speed. Apart from the
features used, the methods also differ in the way how the
final decision is derived from the features. Besides parametric
classifiers like Neural Networks [9], primarily empirically
determined rules are applied [7], [8], [10]. In order to reduce
false alarms, a final verification step can be performed which
measures if the person was able to move and stand up again
in a given period of time.

Our method basically follows the approach of Anderson
et al. [10]: initially, the human silhouette detected in the
different cameras is used to obtain a 3D reconstruction in
voxel space. Features extracted from this rough reconstruc-
tion of the human are then finally used to reason about a
fall. Although in our work we rely on a 3D reconstruction
as in [10], we partly use different kinds of features and a
substantially simpler decision process. We mainly contribute
to their work by thoroughly evaluating the method using a
comprehensive set of test sequences and by showing that
the method can be applied to videos with both low spatial
resolution and low frame rate. Using this setup, fall detection
can be achieved in real-time without the need for powerful
and expensive hardware.

II. METHODOLOGY

In our methodology we focus on simplicity, low com-
putational effort and therefore fast processing without the
need of high-end hardware. These design goals render, for
instance, sophisticated model-based approaches for posture
recognition infeasible. Therefore, posture recognition is kept
simple and estimates basically the general orientation of the
human body, i.e. standing/vertical or lying/horizontal. For
this purpose, detected motion in calibrated cameras is fused
to obtain a 3D voxel reconstruction of the human. Features
are extracted from voxel space and combined to confidence
values for different posture states and for the occurrence of



3D Reconstruction of Human

Input Videos Person Detection
Fall Feature
Detection | Extraction
Fig. 1. The workflow of the presented fall detection method.

a fall using fuzzy logic [11]. Fig. 1 exemplarily shows the
method’s workflow for a setup consisting of three cameras,
divided into the steps of person detection (Section II-A),
3D reconstruction (Section II-B), feature extraction (Section
II-C) and estimation of posture and fall confidence values
(Section II-D)

A. Person Detection

Segmentation of the person from the background is the
first step in our fall detection process. In the current state,
person detection is kept simple and a more sophisticated
person detection will be part of future work. We apply simple
background subtraction with a slowly adapting background
model to detect motion [12]. To remove noise from the mo-
tion image we make use of several morphological operations.
Since the system is designed for elderly living alone, we
simply choose the largest connected component to mark the
region representing the person. Detection of multiple persons
at the same time is not considered, as automatic fall detection
and alarming is assumed to be unnecessary when more than
one person is present. The result of the human detection
procedure is a mask with a rough silhouette of the human in
each camera frame, i.e. a set of silhouette pixels P, ;, where c
is the camera index and ¢ is the frame index. These silhouette
pixels serve as input for the 3D human reconstruction.

B. 3D Reconstruction of Human

For the 3D reconstruction Shape-from-Silhouette [13]
(also known as visual hull reconstruction) is used, since
we are able to apply this technique directly to the binary
motion images from calibrated cameras and the achieved
rough reconstruction is sufficient for our task of rough
posture estimation, i.e. to differentiate between a lying and
a standing posture. From all camera views ¢ we have to
find the intersection of the visual rays going through the
points in P, ;. In order to keep the processing time within
reasonable limits, a preprocessing step is applied which
constructs a voxel list L.(m,n) for all image points (m,n)
and all cameras c. The voxel list L.(m,n) stores all voxels
v(z,y, z) in the scene that are intersected by the visual ray
going through the image point (m,n) in the c-th camera.

Once this voxel list has been build, every camera c defines
a set of voxels V, ; = UL¢(m,n) for all (m,n) in P, ;. The
reconstruction V; is finally obtained by an intersection test,
ie. V; =NV, for all c.

C. Feature Extraction

We use a set of straightforward semantic driven features
which is inspired by previous works [5], [6], [8], [10] and
chosen based on empirical experiments. We discern between
the intra-frame features which are computed within each
frame and focus on describing the character of the object,
i.e. the posture, and an inter-frame feature which expresses
the character of the change that happens between consecutive
frames.

In particular, the following features are extracted at every
frame with index 7 from the set of voxels V; representing the
person:

« Intra-frame features

— Bounding Box Aspect Ratio (B5;): The height of
the bounding box surrounding the person divided
by the mean of both its widths.

— Orientation (O;): The orientation of the major axis
of the ellipse fitted to the person, specified as the
angle between the major axis and the groundplane.

— Axis Ratio (A;): The ratio between the lengths of
the longest axis and the second longest axis of the
ellipse fitted to the person.

o Inter-frame feature

— Motion Speed ()M;): The relative number of new
motion voxels in the current frame compared to the
previous frame: M; = [V,\(V; N V;_1)| / |Vil-

D. Fuzzy-Based Estimation of Posture and Fall Confidence
Values

In conformity with Anderson et al. [10], we define three
posture states in which the person may reside: “standing”,
“in between” and “lying”. Sets of primarily empirically
determined fuzzy thresholds in the form of trapezoidal func-
tions are assembled to interpret the intra-frame features and
relate them to the postures. Thus, each feature value results
in a confidence value in the range [0,1] on each posture,
where the confidences of one feature sum up to 1 for all
postures. These are then combined to assign a confidence
value for each posture which is determined by a weighted
sum of all feature confidences. The membership functions
for the orientation O; are exemplarily shown in Fig. 2.

From the computed confidence values for the different
postures, for every frame a confidence value for a fall event
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Fig. 2. Membership functions for the three postures and the intra-frame
feature O;.
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Fig. 3. Confidence values for the posture “lying” and a fall event plotted

over time for a test sequence showing a person falling from a chair.

is computed. Therefore, we combine the intra- and inter-
frame features with the assumption that a fall is defined by
a relatively high motion speed, followed by a period with
a “lying” posture. Thus, the confidence for a fall event at
frame ¢ is computed as the motion speed M; multiplied by
the confidence values for the posture “lying” for the next k
frames.

Fig. 3 shows the estimated confidences for the posture
“lying” and a fall over time for a given test sequence
acquired from four cameras. The particular sequence shows
a simulated fall from a chair. The fall occurs approximately
at frame number 540, thus a peak in the fall confidence can
be spotted at frame number 790, i.e. 250 frames later (please
note that this “delay” is caused by k& = 250).

E. Anonymization of Video Data

Since digital cameras serve as sensors for our system, the
protection of privacy is a major concern. As we detect falls in
real-time, no visual data has to be stored in general. However,
if a fall occurs, the system makes an anonymous snapshot
of the scene. The snapshot only shows the person silhouette
and an edge image of the environment. An example is shown
in Fig. 4.

III. EXPERIMENTS

In order to thoroughly evaluate our fall detection method,
test sequences were acquired that follow the scenarios de-

Fig. 4. Anonymized snapshot of a fall event.

TABLE I
ACQUIRED TEST SCENARIOS WITH CORRESPONDING NUMBER OF
VIDEOS IN THE TESTSET.

Category | Name Outcome | #
Ending sitting Positive 4
Backward | Ending lying Positive 4
fall Ending in lateral position Positive 3
With recovery Negative 4
Forward On Fhe knf:es Neg_a.tive 6
fall Eqdmg lying flat Pos1tlye 11
With recovery Negative 5
1| Ending lying flat Positive 13
Lateral fall With recovery Negative 1
Fall from | Ending lying flat Positive 8
a chair
Syncope Vertical slipping against a wall | Negative 2
finishing in sitting position
To sit down on a chair then to | Negative 4
stand up
Neutral To lie down then to rise up Negative 2
To walk around Negative 1
To bend down, catch something | Negative 2
up on the floor, then to rise up
To cough or sneeze Negative 3

scribed by Noury et al. [14]. Hence, a testset consisting of
various types of falls as well as various types of normal
actions was created. A complete list is given in Table I.
Four cameras with a resolution of 288%352 and frame rate
of 25 fps were placed in a room at a height of approx. 2.5
meters. The four camera views are shown in Fig. 3. Five
different actors simulated the scenarios resulting in a total
of 43 positive (falls) and 30 negative sequences (no falls).

In contrast to the definition given in [14], we consider
falls ending on the knees as negative instances which the
system should not detect as fall. The reason is that in this
case people are whether still able to move, i.e. they would
stand up, or would consequently lie down and thus the alarm
would be initiated.

For the given testset, the parameter k defining the consid-
ered time period of the “lying” posture for fall detection (see
Section II-D) was set to 10 seconds. Please note that in a real
scenario this parameter has to be set to a higher value. In
our simulated falls the lying periods are considerably shorter
than they would be in case of a real fall event, for obvious
reasons.

Since our method results in confidence values for a fall
event in every tested frame, we report its sensitivity and
specificity in the form of ROC curves. For generation of the
ROC curve, true positives and false positives were counted as
the number of positive and negative sequences, respectively,
where a fall confidence above the threshold could be found.
In order to evaluate the influence of the videos’ spatial and
temporal resolution, we successively reduced the resolutions
and tested each resolution on the whole dataset. Spatial
resolution was successively halved from 288352 down to
9x11. For temporal resolution, frame rates of 5, 2.5, 1.25
and 0.5 frames per second (fps) were tested. The results are
shown in Fig. 5.

It can be seen that the proposed method shows similar
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Fig. 5. ROC curves for different (a) spatial and (b) temporal resolutions
of the test sequences.

performance for spatial resolutions down to 18x22, and
significantly drops at a resolution of 9x11. The areas under
curve (AUCs) of the resolutions 288x352, 18x22 and 9x 11
are 0.956, 0.974 and 0.910, respectively. Temporal resolution
analysis reveals slightly better performance at a lower frame
rate of 1.25 fps (AUC= 0.974 ) compared to 5 fps (AUC=
0.953). The reason for this enhancement is that at a lower
frame rate the motion speed becomes a more robust feature,
since the motion speed measurements are more reliable for
longer time intervals.

The results show that the discriminative power of the
chosen features is high enough to correctly classify the
majority of the sequences and the extraction of features
is stable even at low spatial resolutions and frame rates.
Inspection of the results on particular sequences reveals
that false classifications are mainly caused by the imperfect
person detection. For instance, sitting actions are likely
classified as falls since the chair moved by the person heavily
interferes with the simple person detection. Reliable person
detection is essential and will be part of future work. False
negatives are primarily caused by a partially short lying
period of the test person after the simulated fall. As for this
evaluation the considered time period was set to 10 seconds,
rising up before this period leads to lower fall confidences.

Another conclusion from the tests is that the motion
speed during a fall is a helpful but limited feature. An
increased motion speed during a transition from a vertical to
a horizontal posture is a strong clue that a fall has happened.
However, a specific “minimum” motion speed for a fall can
not be identified, and therefore a fall detector can not rely
on motion speed only. According to caretakers, this is even
more critical for elderly who can possibly fall with very low
speed.

IV. CONCLUSIONS AND OUTLOOK

We have presented an approach for elderly fall detection
in a network of cameras with low spatial and temporal
resolutions. Due to the decreased amount of data to be
acquired and processed, the system is able to work on low-
cost cameras in real-time.

In the absence of real fall data, tests have to be performed
by actors simulating the falls in lab conditions in a preferably
realistic way. Although for this reason the evaluation data can
not be seen as “perfect”, we followed well-defined scenarios
and tried to capture the large diversity of fall actions and

normal activity at home. For this given test data, the exper-
imental results have shown the general applicability of the
approach. However, there is lot of space for improvements
in the future. As human silhouettes serve as input for our
fall detection system, robust person detection and tracking is
crucial and will be further investigated [15]. Our system can
also be extended towards a more sophisticated reasoning, e.g.
to detect falls that do not end in a characteristic lying posture.
Thus, more powerful rules will be defined in cooperation
with caretakers and health organizations which are able to
cope with fall events in real conditions.

In the future, prototype installations will show the real
challenges of the various environments and life styles of the
elderly (overfilled flats, pets, dementia, active life style (e.g.
exercising), visitors, etc.). Arguably, the manual or automatic
definition of inactivity zones [16] will be necessary to make
the system more robust against normal sitting and lying
actions. Since a conclusion from this paper is the possible
use of cheap cameras (low spatial and temporal resolution),
future research will also determine detailed hardware speci-
fications which allow a reliable fall detection at home. This
includes also the number of cameras needed and their optimal
positioning, in order to give an estimate of the overall costs
of the system.

REFERENCES

[1] The Life of Women and Men in Europe : A Statistical Portrait. Eurostat,
2008 edition, 2008.

[2] D. Wild, U.S. Nayak, and B. Isaacs. How dangerous are falls in old
people at home? Br Med J, 282(6260):266-268, 1981.

[3] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani. Probabilistic
posture classification for human-behavior analysis. SMC-A, 35(1):42—
54, 2005.

[4] D. Anderson, J.M. Keller, M. Skubic, X. Chen, and Z. He. Recognizing
falls from silhouettes. In Proc. of EMBS, pp. 6388-6391, 2006.

[5] J. Tao, M. Turjo, M.F. Wong, M. Wang, and Y.P. Tan. Fall incidents
detection for intelligent video surveillance. In Proc. of ICICS, pp.
1590-1594, 2005.

[6] N. Thome, S. Miguet, and S. Ambellouis. A Real-Time, Multiview
Fall Detection System: A LHMM-Based Approach. [EEE TCSVT,
18(11):1522-1532, 2008.

[7]1 C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau. Monocular
3D head tracking to detect falls of elderly people. In Proc. of EMBS,
pp. 6384-6387, 2006.

[8] C.W. Lin, Z.H. Ling, Y.C. Chang, and C.J. Kuo. Compressed-domain
Fall Incident Detection for Intelligent Homecare. VLSISP, 49(3):393—
408, 2007.

[9] C. Huang, E. Chen, and P. Chung. Fall detection using modular
neural networks with back-projected optical flow. BME, 19(6):415—
424, 2007.

[10] D. Anderson, R.H. Luke, J.M. Keller, M. Skubic, M. Rantz, and
M. Aud. Linguistic summarization of video for fall detection using
voxel person and fuzzy logic. CVIU, 113(1):80-89, 2009.

[11] L.A. Zadeh. Fuzzy sets. Information and control, 8(3):338-353, 1965.

[12] M. Piccardi. Background subtraction techniques: a review. Proc. of
IEEE SMC, pp. 3099-3104, 2004.

[13] C.R. Dyer. Volumetric scene reconstruction from multiple views.
Foundations of Image Understanding, pp. 469-489, 2001.

[14] N. Noury, A. Fleury, P. Rumeau, AK Bourke, GO Laighin, V. Rialle,
and JE Lundy. Fall detection—Principles and methods. In Proc. of
EMBS, pp. 1663-1666, 2007.

[15] R. Poppe. Vision-based human motion analysis: An overview. CVIU,
108(1-2):4-18, 2007.

[16] H. Nait-Charif and S.J. McKenna. Activity summarisation and fall
detection in a supportive home environment. In Proc. of ICPR,
volume 4, pp. 323-326, 2004.



