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Abstract. In the last decade, we observed a great interest in evaluation of local
visual features in the domain of images. The aim is to provide researchers guid-
ance when selecting the best approaches for new applications and data-sets. Most
of the state-of-the-art features have been extended to the temporal domain to al-
low for video retrieval and categorization using similar techniques to those used
for images. However, there is no comprehensive evaluation of these. We provide
the first comparative evaluation based on isolated and well defined alterations of
video data. We select the three most promising approaches, namely the Harris3D,
Hessian3D, and Gabor detectors and the HOG/HOF, SURF3D, and HOG3D de-
scriptors. For the evaluation of the detectors, we measure their repeatability on
the challenges treating the videos as 3D volumes. To evaluate the robustness of
spatio-temporal descriptors, we propose a principled classification pipeline where
the increasingly altered videos build a set of queries. This allows for an in-depth
analysis of local detectors and descriptors and their combinations.

1 Introduction

The bag-of-words approach, has been successfully adapted to the use of visual vocab-
ularies describing images [1]. One central question for this approach is the choice of
the right visual features. For set of local features the aim is to describe visual data
successfully in a discriminative and robust way. Additionally, the data to be processed
should be reduced as much as possible and should lead to a robust representation of the
video. Video features based on local 3D patches are a popular representation for videos
in tasks in retrieval, recognition and categorization (e.g. [2–5]). The most promising
approaches for spatio-temporal features are corner detectors [6], blob detectors [7], pe-
riodic spatio-temporal features [8], volumetric features [9], and spatio-temporal regions
of high entropy [10].

Recent work [11] points out that throughout the literature many experiments are not
comparable. As such, the justification of specific properties of detectors and descriptors
advocated in the literature is often insufficient. For example, results are frequently pre-
sented for different data-sets such as the KTH data-set [8, 12, 13, 4, 5, 7, 14], the Weiz-
mann data-set [15] or the aerobic actions data-set [10]. Nevertheless, in that evaluation
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Fig. 1. Experimental setup to test the description’s robustness against visual alterations.

paper, combinations of detectors and descriptors are only measured on their final clas-
sification accuracy on the mentioned data-sets. A principled evaluation of every step of
a matching framework, as is successfully done in “2D” images (e.g. [16]), is missing
for “3D” video matching so far.

Therefore, we propose a new way for the evaluation of video retrieval approaches:
We divide the evaluation of detectors and descriptors into two independent tasks. For
detection, we use a repeatability measurement in 3D similar to [7]. For the descriptions
we propose a pipeline to identify the robustness of local spatio-temporal descriptions
in a principled way. These two tasks are measured by their performance under alter-
ations of the visual input data. Therefore, we use a publicly available dedicated on-line
data-set1 providing 30 classes of videos [17]. Every video undergoes 8 types of trans-
formations denoted as challenges. Each challenge is applied at 7 levels of increasing
impact on the video leading to 1710 videos in total (compare Fig. 1). We use the orig-
inal videos as ground-truth and observe to what extent the features change under the
challenges. Example frames can be found in Fig. 2.

(a) HD movie (b) surveillance
video

(c) TV show

Fig. 2. Example videos and example transformations.

We follow [11] and use the best performing approaches Harris3D, Hessian3D and
the Gabor detector and HOG/HOF, SURF3D (also referred to as extended SURF) and
HOG3D for our evaluation on videos. We use the same parameters and the same imple-
mentations.

1 www.feeval.org
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The paper is organized as follows. The chosen features are described in more detail
in Section 2. The experimental setup is described in Section 3. Results are given in
Section 4. Section 5 gives a critical discussion and conclusions.

2 Spatio-temporal Features

An extension of the Harris corner detector [18] is the Harris3D detector [6]. The au-
thors compute a spatio-temporal second-moment structure tensor at each video point
using independent spatial and temporal scale values σ, τ , a separable Gaussian smooth-
ing function G, and space-time gradients L. Extending the scale space to the temporal
domain, we add the temporal variance τ2 to get Lx,σ2,τ2 = Gx,σ2,τ2 ∗ f tx and use the
image data of the corresponding video frame f t. The spatio-temporal Gaussian kernel
is defined as

Gx,σ2,τ2 =
1

2πσ4τ2
e−

x2+y2

2σ2
− t2

2τ2 (1)

It is separable and thus can be calculated for each dimension on its own and in parallel.
This extension gives then the structure tensor M for every location and scale. The final
locations are extracted by applying H = det(M) − k · trace2(M) and extracting the
positive maxima of the corner function H . Points are extracted at multiple scales based
on a regular sampling of the scale parameters s, t as suggested by the authors. We use
the original implementation3 and its settings k = 0.0005, s2 = 4, 8, 16, 32, 64, 128,
t2 = 2, 4 with a detection threshold of 10−9.

The Hessian3D detector [7] is the spatio-temporal extension of the Hessian blob
detector [19]. The saliency of a location is given by the determinant of the 3D Hessian
matrix. For efficiency, box-filter operations are applied on an integral video structure on
multiple scales. Each octave is divided into 5 scales, with a ratio between subsequent
scales in the range [1.2; 1.5] for the inner 3 scales. A non-maximum suppression algo-
rithm selects the common extrema over space, time and scales: (x,y, t,s, τ ). It is defined
by the structure tensor Γ

Γ =

 L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (2)

where the strength S of an interest point is given by its tensor determinant S = |det(Γ )|.
We use the authors’ implementation4 with the suggested parameters.

The Gabor detector is a set of spatial Gaussian convolutions and temporal Gabor fil-
ters [8]. The Gabor filters give a local measurement focusing not only on local changes
in the temporal domain, but prioritize repeated events of a fixed frequency. The function
gives Rxtστω = (f txσ ∗ Gxσ ∗ Hev

tτω)
2 + (f txσ ∗ Gxσ ∗ Hod

tτω)
2 where the 2D Gaussian

smoothing is only applied in the spatial domain, whereas the two filters Hev and Hov

are applied in the temporal domain only. Hev and Hov are the quadrature pair of 1D
Gabor filters. The set of functions is available on-line as a toolbox2. As suggested and
used in previous evaluations, we chose σ = 3 and τ = 4.

2 vision.ucsd.edu/˜pdollar/toolbox/doc/index.html
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To describe the detected patches by local motion and appearance, [4] compute his-
tograms of spatial gradients and optical flow accumulated in space-time neighborhoods
of detected interest points referred to as HOG/HOF. HOG results in a descriptor of
length 72, HOF in a descriptor of length 90. For proper performance they are simply
concatenated. The descriptor size is defined by Dx(σ) = Dy(σ) = 18σ, Dt(τ) = 8τ .
The approach is inspired by the SIFT descriptor. In the experiment, the grid parameters
nx, ny = 3, nt = 2 as suggested in [4]. The binaries are available online3.

Willems et al. [7] proposed the SURF3D (ESURF) descriptor which extends the
image SURF descriptor to videos. An image patch is represented by a 288 dimensional
vector of weighted sums of uniformly sampled responses of Haar-wavelets. The binaries
are also available4. 3D patches are divided into nx × ny × nt cells. The size of the 3D
patch is given by Dx(σ) = Dy(σ) = 3σ, Dt(τ) = 3τ . For the feature descriptor, each
cell is represented by a vector of weighted sums v = (

∑
dx,

∑
dy,

∑
dt) of uniformly

sampled responses of the Haar-wavelets dx, dy , dtalong the three axes.
For the third descriptor in the evaluation we use the HOG3D [13]. This is based

on histograms of 3D gradient orientations efficiently computed using an integral video
representation. It leads to a descriptor of length 960.

3 Experimental Setup

In this section, the experimental set-up used throughout the evaluation is described .
Section 3.1 presents an overview of the evaluation data-set used. In Section 3.2, the
methodology for the detector evaluation is given. The pipeline and the parameters of
the classification task for the descriptor evaluation is described in detail in Section 3.3.

3.1 Video Data-set and Features

Our experiments aim to quantify the robustness of the state-of-the-art spatio-temporal
features described in the previous section. We challenge the robustness of these ap-
proaches on the FeEval data-set [17]1, which consists of 1710 videos of about 20 sec-
onds each. Starting with 30 short clips from HDTV shows, Hollywood movies of a full
HD resolution of 1920×1080, and surveillance videos, the full FeEval dataset is created
as follows: (1) Every video undergoes 8 types of systematic alterations denoted as chal-
lenges. The challenges are noise, increasing lightness, decreasing lightness (darkness),
median filtering, compression, scale and rotation, and reduction in frames per second.
(2) Each challenge is applied at 7 levels of increasing impact, and encoded by a pa-
rameter (see Fig. 2). The parameters and the challenge abbreviations used throughout
the experiments are given in Tbl. 1. This leads to about 34 Gigabytes (GB) of H.264
compressed video material.

3 www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
4 homes.psat.kuleuven.be/˜gwillems/research/Hes-STIP/
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Transformation Abbreviation Range
Gaussian blur: σ in pixels blur 3 - 21
H.264 compression compr 60 - 0
Noise in % noise 5 - 35
Median Filter: σ in pixels median 2 - 8
Increasing lightness in % lighten +30% - +90%
Decreasing lightness in % darken -30% - -90%
Frames per Second fps 20 - 3
Scale + Rotation in degrees scalerot 90% & 10◦ - 30% & 70◦

Table 1. Video transformations for each of the 30 videos.

3.2 Detector Evaluation

To evaluate the robustness of the three detectors Harris3D, Hessian3D, and Gabor, we
measure their robustness or repeatability for each altered video with respect to its cor-
responding original video. Each of the 30 original video is regarded as a boolean 3D
volume Voi , i = 1, 30, sized according to the frame resolution and the total number of
frames. Voi = 1 if a voxel is being detected by a feature or 0 otherwise. Every of the
m detected feature ξc,1..m in an altered video is defining a cuboid in space. Per repeata-
bility test, we map the cuboid ξc,j to Vo to get its position and expanion in the original
video’s volume Vo denoted as ξ′c,j . This is done by applying its homography matrix Ω
to Vo ← Ω ∗ Vc For the challenge of scale and rotation, we use the provided “2D”
matrices defined by the parameters given in Tbl. 1, as the alteration is per frame only
and does not affect the temporal configuration. For the challenge of decreasing frames
per second, we regard it as a simple scaling in the temporal direction and apply it on the
t expansion of Vc only. Overlap % of feature j is then defined by

% =
Vo ∩ ξ′c,j
υ(ξt,i)

(3)

where υ(ξt,i) is the volume of the transformed feature’s cuboid. The final repeatability
score of a video is defined by the number of matched features divided by the total
number of features in the challenge video.

3.3 Descriptor Evaluation

We want to test the ability of state-of-the art spatio-temporal descriptors to what extent
they maintain their robustness under alteration of their input videos. We aim to test their
performance in a large scale video classification experiment where the training data
consists of 30 original videos forming 30 classes of challenges. For the three descriptors
HOG/HOF, SURF3D and HOG3D and the combination with the detectors we carry out
the following set-up:

We form a visual codebook of 10000 words by clustering all the features of the
data-set with the kshift [20]5 algorithm. In contrast to many other clustering implemen-
tations, the data-set can be larger than the memory. For every cluster center, it is only
necessary to have the next feature in the memory, not the whole data-set. It is feasible
to cluster 45 GB of 960 dimensional features within 20 hours using 2 X5560@2.8GHz
processors (4 cores each). A video’s signature is built by quantizing its features to the

5 www.cogvis.at



6 Stöttinger, Goras, Pönitz, Hanbury, Sebe and Gevers

codebook by the cluster center with the nearest Euclidean distance. For the training set,
we use the 30 original videos with their normalized signatures of a length of 10000 each
as ground truth classes. For every class, we train a linear one-against-all SVM model
equally weighting every class. For this setup, the model is similar to a nearest neighbor
classification. We are using the well known LibSVM library6 with default parameters.
For the 8 challenges with 7 levels, we build 56 test sets of equal size to be evaluated.
The experimental question is then until which alteration the description is still able to
discriminate against the other videos and under which circumstances it fails. When an
altered video is successfully classified as its original video, the description is regarded
as robust to the alteration. In this context, the classification performance according to
the alterations gives then the descriptor robustness in the challenge.

4 Results

Starting with the repeatability experiments in the following Section 4.1 we are able to
evaluate the robustness of the detections of state-of-the-art spatio-temporal features. In
Section 4.2 the three descriptors are evaluated in a classification experiment.

4.1 Detector Evaluation

Regarding the overall repeatability performance the Hessian3D detector outperforms
the Harris3D detector, whereas the Gabor detector shows to be significantly less robust.
The mean results on varying % are given in Fig. 3. The single-scale Gabor detector is
not much affected by the change of the overlap criterium, as the large number of small
features tends to be matched almost perfectly or not at all. This is of course different for
the multi-scale approaches Harris3D and Hessian3D, where different sizes of features
are matched.
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Fig. 3. Mean repeatability results for the whole data-set over varying overlap %.

Hessian3D has the best mean repeatability and performs best throughout the ex-
periments. However, it provides a richer representation as its coverage is almost 10

6 www.csie.ntu.edu.tw/˜cjlin/libsvm
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times larger than Harris3D, thus making the probability for a geometrical match higher.
Still, Harris3D performs comparably similar, which coincides closely to the evaluation
of their 2D counterparts in [16] As we observe in Fig. 4(a), Harris3D and Hessian3D
are almost equally robust to increasing blur. This also holds for increasing compres-
sion shown in Fig. 4(b). The two detectors are very robust to increasing compression,
showing similar results on 2D images [16]. This is an important observation, since the
spatio-temporal structure tensor has more degrees of freedom and a much bigger data-
set than it has been done for 2D repeatability. In contrast to 2D detectors, the Harris3D
and Hessian3D show to be very sensitive to change of lightness (see Fig. 4(e) and 4(f)).
The number of features decreases rapidly with the decrease of contrast. This is the only
challenge where the Gabor detector outperforms the other approaches in robustness at
level 7. The decrease of frames per second (see Fig. 4(g)) can be seen as scaling in the
temporal domain. As the approaches are not scale invariant, they perform worse than
their 2D counterparts. Hessian3D regarding the most scales of the approaches evaluated
remains rather stable until level 3, which is the reduction from 25fps to 13fps. Therefore
the standard sampling rate of 2 for the Hessian3D approach can be easily set to 4 with-
out a significant loss in performance, disregarding 50% of the data right away. For scale
and rotation, Gabor and Harris perform poorly compared to the Hessian3D which is
able to maintain a repeatability rate of 0,41 for a video scaled by a factor of 0.3 and ro-
tated by 70 degrees. Harris3d and Gabor are very sensitive to noise, Hessian3D remains
stable showing a repeatability of 0,62 with 35% of noise in the video. For increasing
median filtering, Harris3D is equally robust as the Hessian3D.

Following these results, the following for noisy video data is proposed: Gaussian
blur degrades the detections severely therefore it should not be used in pre-processing
videos. Hessian3D on noise performs more robust than on blurred data. Gabor detec-
tions are neither reliable on noisy or blurred data. When using the Harris3D detector, it
is recommended to use the median filter to remove the noise in advance.
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Fig. 4. Mean repeatability (% = 0.6) of 30 videos per challenge. Legend is found in (a).
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Fig. 5. Classification accuracy with increasing alterations of the query images with suggested
descriptor and detector combinations. Legend is found in (a).

4.2 Descriptor Evaluation

Summary results are shown in Tbl. 2 Results per challenge are shown in Fig. 5. In Fig. 6
results of the experiments using the HOG3D descriptor are given. The combination of
Harris3D and HOG3D outperforms other approaches.

Classification accuracy Mean precision Mean recall
Harris3D Hessian3D Gabor Harris3D Hessian3D Gabor Harris3D Hessian3D Gabor

HOG/HOF 23,57 - - 19,40 - - 23,57 - -
SURF3D - 39,52 - - 40,46 - - 44,80 -
HOG3D 49,76 37,96 34,75 42,40 38,80 28,15 49,76 42,20 35,30

Table 2. Overview experimental results descriptor evaluation.

As already argued in the previous section, Gaussian blur decreases the representa-
tion of the videos significantly. As seen in Fig. 5(a), the classification accuracy goes
towards the prior probability of 3%. This is different for the HOG3D descriptor. For
all detectors, there is a significant gain in classification performance, especially for the
Harris3D+HOG3D raising to a mean accuracy of 54,76%.

Similar behavior is observed for change of lightness: For HOG/HOF and SURF3D,
the classification accuracy goes down rapidly, whereas the HOG3D descriptor provides
a stable description on data of varying contrast. Gabor+HOG3D outperforms these ap-
proaches (see Fig. 5(e) and 6(e)). When combining the detectors with HOG3D, we
observe a correlation with the repeatability experiments of changing lightness. With a
more stable descriptor, the more repeatable representation influences the classification
performance. This does not hold for the fps challenge (see Fig. 5(g) and 6(g)). There
is no correlation between detector robustness and classification performance. This sug-
gests that none of the descriptors is scale invariant to a satisfying extent.We deduce that
for performance reasons, detectors can be applied on a reduced data-set but the local
description has to be performed on full resolution.

Descriptors revealed to be more robust to increasing noise than the local detec-
tors. Worst performing Harris3D+HOG/HOF reaches a mean accuracy of 51,43%. Hes-
sian3D + SURF3D remains almost stable throughout the challenge (see Fig. 5(c)).
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Fig. 6. Classification accuracy with increasing alterations of the query images with detectors and
HOG3D descriptor. Legend is found in (a).

HOG3D shows to be more robust than HOG/HOF (see Fig. 6(c)), but decreases the
performance for the Hessian3D. It is shown that SURF3D is more robust to noise than
HOG3D in this context. Regarding noise reduction using the median filter (see Fig. 5(d)
and 6(d)) performance decreases more than for the noise challenge. HOG/HOF and
HOG3d are sensitive to the filtering, SURF3D performs best coherent to the repeata-
bility rate of its detector. Increasing compression does not affect the description per-
formance of the HOG3D and the SURF3D descriptor. Even strong JPEG artifacts are
described in a stable and discriminative way (see Fig. 5(b) and 6(b)). For level 7 of the
challenge, the data is compressed up to 10% of the original file size.

To sum up the evaluation, we interpret the results categorizing them to simple votes
according to the challenges. ‘-’ denotes sensitivity, ‘+’ robustness to the challenge. ‘+/-’
refers to undecided decision or room for improvements in the algorithmic details of the
approach. Our final suggestions are given in Tbl. 4.2.

Detector Robustness Descriptor Robustness
Harris3D Hessian3D Gabor HOG/HOF SURF3D HOG3D

Gaussian blur +/- +/- - - - +/-
H.264 compression + + - - + +
Noise - + - +/- + +
Median Filter + + - - +/- +/-
Increasing lightness +/- +/- +/- - - +
Decreasing lightness +/- +/- +/- - - +
Frames per Second - + - +/- +/- +/-
Scale & Rotation - + - +/- +/- +/-

Table 3. Final suggestions based on the evaluation.

5 Conclusion

In this work, we perform the first principled evaluation of spatio-temporal features using
comparative challenges inspired by prior evaluation of local 2D image features. For
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detector robustness, we experienced comparable results for spatio-temporal features
with their image counterparts. Generally, it showed to be worse to reduce noise in input
data than to let the features take care of it on their own. For change of lightness, both the
Harris3D and the Hessian3D are more sensitive than their 2D counterparts. Description
is most stable using the HOG3D descriptor, outperformed by the SURF3D descriptor in
the challenges of compression, noise and median filtering. The high dimensionality of
the HOG3D descriptor of 960 compared to 288 of the SURF3D descriptor is a drawback
in terms of the complexity of all succeeding operations and should be considered when
choosing the most appropriate descriptor.
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