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Abstract
Falling and not being able to stand up is one of the major risks for elderly people who live alone.
Camera based fall detectors represent one of the solutions to this problem. In this paper we compare
two approaches for the detection of falls based on multiple cameras, the early fusion approach and the
late fusion approach. In the early fusion approach, multiple camera views are combined to reconstruct
the 3D voxel volume of the human. Based on semantic driven features fall detection is done on this 3D
volume, whereas in the late fusion fall detection is done in 2D and each camera decides on its own,
if a fall has occurred. These individual decisions are then combined into an overall decision. Fuzzy
logic is both used to estimate confidence values for a fall/no fall in the single cameras as well as in
the final voting step. We describe and evaluate both methods and give results on 73 video sequences.

1 Introduction

In the European Union about 30 % of people older than 65 live alone [1]. For these people, falls at
home are one of the major risks and an immediate alarming and helping is essential to reduce the
rate of morbidity and mortality [15]. Hence, there is a great need for reliable alarm systems. In
this context, camera-based fall detectors are well suited since video cameras are passive and flexible
sensors.

In the last five years a growing interest and number of publications for camera-based fall detection has
been shown [16]. A general classification of proposed methods can be made by whether a fall is de-
tected by modeling the fall action itself or by a frame-by-frame classification using different features
measuring human posture and motion velocity. In the former type of methods parametric models like
Hidden Markov Models (HMMs) are applied using simple features, e.g. projection histograms [5] or
the aspect ratio of the bounding box surrounding the detected human [3, 14]. However, the applica-
bility of these methods in real-life scenarios is limited due to the high diversity of fall actions and
the high number of different negative actions which the system should not classify as fall. As also
stated by Anderson et al. [4], such a model-based detection is able to detect different actions modeled
by different HMMs but is not capable of dealing with unknown actions. The latter type of methods
basically measures two types of features: the human posture and the motion velocity. The underlying
assumption is that a fall is characterized by a transition from a vertical to a horizontal posture with an
unusually increased velocity, i.e. to discern falls from normal actions like sitting on a chair or lying
on a bed. In this manner, in the past various features have been used for camera-based fall detection,
including the aspect ratio of the bounding box [13] or orientation of a fitted ellipse [12] for posture
recognition and head tracking [11] or change rate of the human’s centroid [8] for motion velocity.
Apart from the features used, the methods also differ in the way how the final decision is derived
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from the features. Besides parametric classifiers like Neural Networks [7], primarily empirically de-
termined rules are applied [4, 8, 11, 12]. In order to reduce false alarms, a final verification step can
be performed which measures if the person was able to move and stand up again in a given period of
time.

In the context of ambient assisted living, i.e. detecting falls at elderly homes, we argue that the use of
a multiple camera network is inevitable. Multiple cameras allow for the monitoring of multiple rooms
and the resolving of occlusions. Furthermore, we have to state that features for posture and motion
velocity used in the above papers are highly dependent on the viewpoint of the camera, e.g. consider
a fall along the optical axis of the camera versus a fall perpendicular to it. Therefore, in a real-life
scenario robustness is highly increased when multiple cameras are used.

When using multiple cameras, a key question is when the fusion of the video data streams is performed
in the overall detection process. In this paper we compare two basically different detection schemes
which we label as early fusion and late fusion. Both schemes are illustrated in Figure 1.

(a) (b)
Figure 1. Fall detection with (a) early and (b) late fusion of the detected motion in four camera views.

In the early fusion scheme, detected motion in calibrated cameras is fused to obtain a 3D reconstruc-
tion of the human. This scheme follows previous works where Shape-from-Silhouette [4] and Particle
Swarm Optimization [2] were used for reconstruction. These methods offer a robust estimation of
the human posture and thus view-invariant features for fall detection. However, the drawback of 3D
reconstruction is that it needs camera calibration and demands higher computational effort which
handicaps the required real-time processing of the data.

In the late fusion scheme, feature extraction and fall detection is performed individually in each
camera. In a final voting step the individual decisions are fused to an overall decision. This scheme
tries to overcome the drawback of view-dependence of the extracted features by a well-adapted fusion
strategy that needs no camera calibration and less computational effort.

In this paper we present two concrete approaches for fall detection which follow the early and late
fusion scheme, respectively. The contribution of the paper is not to propose an overall vision system
capable of detecting falls at home but rather to evaluate and discuss both fusion strategies as part of
such a system. Whereas the presented early fusion scheme is basically an adaptation of the work
proposed by Anderson et al. [4], we consider the late fusion scheme as a proposal to reduce its



computational efforts by exchanging the 3D reconstruction with a voting step.

The remainder of this paper is structured as follows. Section 2 describes the methodology of both
fall detection approaches in detail. Experiments on a dataset of 73 video sequences are reported in
Section 3. Conclusions are finally given in Section 4.

2 Methodology

In our methodology we focus on simplicity, low computational effort and therefore fast processing
without the need of high-end hardware since the system has to be as cheap as possible to be affordable
for the elderly. These design goals render, for instance, sophisticated model-based approaches for
posture recognition infeasible. For both the early and late fusion approach, posture recognition is
kept simple and estimates basically the general orientation of the human body, i.e. standing/vertical
or lying/horizontal. This is achieved by combining the extracted features to confidence values for
different posture states. Similar to [4], fuzzy logic [17] is used to compute the confidence values. In
the late fusion approach, fuzzy logic is also used to fuse the confidence values of the various cameras
to a final estimation of the state and for final fall detection.

In the following, the individual steps of our fall detection approaches are described. The steps of
person detection (Section 2.1), feature extraction (Section 2.2) and estimation of posture and fall
confidence values (Section 2.3) are nearly identical in both approaches. The only difference is on
which kind of motion information the feature extraction is performed (2D pixels for late fusion and
3D voxels for early fusion) and whether posture and fall confidence values are estimated once (early
fusion) or individually for each camera (late fusion).

2.1 Person Detection

Segmentation of the person from the background is the first step in our fall detection process. In
the current state, person detection is kept simple since it is not our major concern. We apply simple
background subtraction with a slowly adapting background model to detect motion. To remove noise
from the motion image we make use of several morphological operations. Since in our test videos
there is only one person in the room, we simply choose the largest connected component to mark the
region representing the person.

2.2 Feature Extraction

We use a set of straightforward semantic driven features which was inspired by previous works [4,
8, 12, 13] and chosen based on empirical experiments. We discern between the intra-frame features
which are computed within each frame and which focus on describing the character of the object,
i.e. the posture, and a inter-frame feature which expresses the character of the change that happens
between consecutive frames.

In particular, the following features are extracted at every frame with index i for early fusion (ef ) and
late fusion (lf ) from the set of pixels (Pi) or voxels (Vi) representing the person:

• Intra-frame features

– Bounding Box Aspect Ratio (Bef
i and Blf

i ): The height of the bounding box surrounding
the person divided by its width (for Blf

i ) or the mean of both its widths (for Bef
i ).



– Orientation (Oef
i and Olf

i ): The orientation of the major axis of the ellipse fitted to the
person, specified as the angle between the major axis and the x-axis (for Olf

i ) or the
groundplane (for Oef

i ).

– Axis Ratio (Aef
i and Alf

i ): The ratio between the lengths of the major axis and the minor
axis of the ellipse fitted to the person. For Aef

i , there are three axes and the ratio is
computed between the longest axis and second longest axis.

• Inter-frame feature

– Motion Speed (M ef
i and M lf

i ): The relative number of new motion pixels/voxels in the
current frame compared to the previous frame: M ef

i = |Vi\(Vi ∩ Vi−1)| / |Vi| and M lf
i =

|Pi\(Pi ∩ Pi−1)| / |Pi|.

2.3 Fuzzy-Based Estimation of Posture and Fall Confidence Values

In conformity with Anderson et al. [4], we define 3 posture states in which the person may reside:
“standing”, “in between” and “lying”. Sets of primarily empirically determined fuzzy thresholds in
the form of trapezoidal functions are assembled to interpret the intra-frame features and relate them to
the postures. Thus, each feature value results in a confidence value in the range [0, 1] on each posture,
where the confidences of one feature sum up to 1 for all postures. These are then combined to assign
a confidence value for each posture which is determined by a weighted sum of all feature confidences.
The membership functions for the orientation Oi are exemplarily shown in Figure 2.

Figure 2. Membership functions for the three postures and the intra-frame feature Oi.

From the computed confidence values for the different postures, for every frame a confidence value
for a fall event is computed. Therefore, we combine the intra- and inter-frame features with the
assumption that a fall is defined by a relatively high motion speed, followed by a period with a
“lying” posture. Thus, the confidence for a fall event at frame i is computed as the motion speed Mi

multiplied by the confidence values for the posture “lying” for the next k frames.

2.4 Early Fusion

In the early fusion approach, a 3D reconstruction is computed from the set of motion pixels Pc,i,
where c is the camera index and i is the frame index. For this purpose Shape-from-Silhouette [6] is
used, since we are able to apply this technique directly to the motion images from calibrated cameras
and the achieved rough reconstruction is sufficient for our task of rough posture estimation, i.e. to
differentiate between a lying and a standing posture. From all camera views c we have to find the
intersection of the visual rays going through the points in Pc,i. In order to keep the processing time
within reasonable limits, a preprocessing step is applied which constructs a voxel list Lc(m, n) for all
image points (m, n) and all cameras c. The voxel list Lc(m, n) stores all voxels v(x, y, z) in the scene



that are intersected by the visual ray going through the image point (m, n) in the c-th camera. Once
this voxel list has been build, every camera c defines a set of voxels Vc,i = ∪Lc(m, n) for all (m, n)
in Pc,i. The reconstruction Vi is finally obtained by an intersection test, i.e. Vi = ∩Vc,i for all c.

2.5 Late Fusion

In the late fusion approach, the outputs of all cameras are combined to generate an overall decision.
In our work, this is done by averaging the fall confidences from all the cameras. However, there is a
weakness of this democratic voting strategy. There are cases when only one camera actually “sees”
the fall. This can happen when the person falls in the direction of the optical axis of some of the
cameras. In such a case cameras that are positioned along that axis will not recognize the fall at all,
whereas a camera that is positioned in a perpendicular direction will have a clear view of the scene.
A similar situation could arise in the presence of occlusions. Our solution in such case is that if the
confidence of the alarm is very high (above a defined threshold) even in a single camera, this one
camera gets “the right to over-vote the other” and the overall fall confidence is determined by this
camera only.

3 Experiments

In order to thoroughly evaluate our fall detection methods, test sequences were acquired that follow
the scenarios described by Noury et al. [10]. Hence, a testset consisting of various types of falls
(forward and backward falls, falls from chairs etc.) as well as various types of normal actions (picking
something up, sitting down etc.) was created. Four cameras with a resolution of 288× 352 and frame
rate of 25 fps were placed in a room at a height of approx. 2.5 meters. The four camera views are
shown in Figure 3. Five different actors simulated the scenarios resulting in a total of 43 positive
(falls) and 30 negative sequences (no falls).

In contrast to the definition given in [10], we consider falls ending on the knees as negative instances
which the system should not detect as fall. The reason is that in this case people are whether still
able to move, i.e. they would stand up, or would consequently lie down and thus the alarm would be
initiated.

Figure 3 illustrates the process of fall detection for both fusion approaches and a given fall sequence.
The particular sequence consists of a person simulating a fall from a chair. The graphs on the left
show the confidence values for the posture “lying” and for a fall event over time. For the late fusion
approach, the confidence values of the individual cameras as well as the fused confidence values are
shown. For the early fusion approach, the confidence values extracted from the 3D reconstruction
are shown. The fall starts approximately at frame number 540, and thus a peak in the fall confidence
can be spotted at frame number 790, i.e. 250 frames later (please note that this “delay” is caused
by k = 250). On the right side of Figure 3 some of the features extracted at frame number 790
are visualized: the bounding box (green) and fitted ellipse (blue) on the individual cameras and the
bounding box on the 3D reconstruction of the person.

3.1 Results

Tests were performed on the overall dataset using the early fusion approach as well as the late fusion
approach. Initial tests turned out that the whole temporal resolution is not needed in our case, hence
a reduced frame rate of 5 fps was used. The parameter k defining the considered time period of the



Figure 3. (a) Left: Confidence values for “lying” posture and a fall event over time; right: extracted features from
the single cameras and 3D reconstruction of the person.

“lying” posture for fall detection (see Section 2.3) was set to 50 which corresponds to 10 seconds.
Please note that in a real scenario this parameter has to be set to a higher value. In our simulated falls
the lying periods are considerably shorter than they would be in case of a real fall event, for obvious
reasons.

Since our methods result in confidence values for a fall event in every tested frame, we report true
positive and false positive rate in the form of ROC curves in Figure 4. True positives and false
positives were counted as the number of positive and negative sequences, respectively, where a fall
confidence above the threshold could be found. It can be clearly seen that the early fusion approach
outperforms the late fusion approach for the given setup. More precisely, early fusion comes to an
area under curve of 0.935 whereas late fusion reaches only 0.876.

3.2 Discussion

The results show that the discriminative power of the chosen features is high enough to correctly clas-
sify the majority of the sequences using our fuzzy-based estimation of fall confidence values. Early
fusion provides a more robust estimation of the person’s posture than late fusion. The performance
of late fusion is more dependent on the positioning of the cameras and inspection of the results re-
veals that for the given data misclassifications could have been avoided by a more optimal camera



Figure 4. ROC curves for early and late fusion on the given data.

positioning. Another cause for misclassifications of both approaches is the limited overlap in the
field-of-view of the cameras, as actions which are not totally visible in all four cameras renders the
feature extraction and 3D reconstruction less robust.

4 Conclusions and Outlook

We have proposed and compared two methods for the detection of falls using multiple cameras in the
context of ambient assisted living. In the early fusion method a 3D reconstruction is obtained using
calibrated cameras, whereas in the late fusion method every camera detects falls individually and a
final voting step leads to the overall decision.

Despite the better results achieved by the early fusion approach, we finally consider the late fusion as
more appropriate for applying fall detection in multiple camera network at home. Late fusion needs
less computational power and is easier to handle and implement (no camera calibration, possibility of
parallel processing).

For this given test data, the experimental results have shown the general applicability of the proposed
features and fusion approaches. However, especially the late fusion approach still bears potential for
improvements. For instance, late fusion can be made more robust by considering the camera view
for the definition of the membership functions for posture recognition, e.g. an orientation of 45◦

should contribute more to “lying” than to “standing”. Also the rule for fall detection is rather simple
at the moment and there is large space for extending the fall detection towards a more sophisticated
reasoning.

In the future, prototype installations will show the real challenges of the very various environments
and life styles of the elderly (overfilled flats, pets, dementia, active life style (e.g. exercising), visitors,
etc.). Arguably, the manual or automatic definition of inactivity zones [9] will be necessary to make
the system more robust against normal sitting and lying actions. Special care has to be taken towards
the arrangement of the cameras in the rooms. Future research will also go into this direction, e.g. to



determine the necessary number of cameras and their optimal positioning.
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