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Kurzfassung

Automatische Textlokalisierung und Texterkennung in Fotos hat Anwendungen in Com-
puter Vision Systemen wie in der automatischen Erkennung von Nummernschildern, in der
automatischen Übersetzung von Straßenschildern, in der Bildsuche und kann Personen mit
Sehbeeiträchtigungen unterstützen. Das Erkennen von Text in Fotos ist allerdings aufgrund
von Bildunschärfe, verdeckten Text, unterschiedlichen Fonts, Bildrauschen und unebener
Beleuchtung ein schwieriges Computer Vision Problem. In dieser Arbeit wird sowohl das
Problem der Textlokalisierung als auch das Problem der Texterkennung behandelt. Für die
Textlokalisierung wird ein AdaBoost Klassifikator verwendet, der Text in unterschiedlichen
Größen erkennt. Für diesen Klassifikator wird der Einfluss verschiedener Featuresets ver-
glichen und evaluiert. Dabei stellt sich heraus, dass eine Adaptierung von Local Ternary
Patterns (LTP) die beste Performance erreicht. In einen Nachbearbeitungsschritt werden
Maximally Stable Extremal Regions (MSER) erkannt und als Text oder Nicht-Text klassi-
fiziert. Text-Regionen werden zu Textzeilen gruppiert. Diese werden anschließend mittels
k-means und einer linearen Support Vector Machine (SVM) in einzelne Wörter aufgeteilt.
Für die Erkennung von Text wird ein deep Convolutional Neural Network (CNN) mit Back-
propagation als Klassifikator verwendet. Um Überanpassung zu vermeiden wird das Net-
zwerk mit Dropout regularisiert. Das Netzwerk klassifiziert alle 30 × 30 Pixel Bildauss-
chnitte eines Wortes und weist eine Wahrscheinlichkeit zu mit der sich ein Buchstabe in
diesem Bildausschnitt befindet. Diese Ergebnisse werden anschließend von einem Viterbi
Algorithmus verwendet um das wahrscheinlichste Wort aus einem Dictionary zu finden, das
zu den von dem Klassifier gelieferten Ergebnissen passt. Der Einfluss von der Größe des
Trainingssets und die Größe des Netzwerks auf die End-Performance wird analysiert. Das
präsentierte System erreicht bessere Performance auf den ICDAR 2003 und 2011 Daten-
sätzen als andere Systeme. In der Textlokalisierungs-Aufgabenstellung erreicht das System
einen F-Score von 74.2% (76.7%), in der Wörtererkennungs-Aufgabenstellung mit Wörter-
buch einen F-Score von 87.1% (87.1%) und daher eine Gesamtperformance von 72.6%.
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Abstract

Text detection and recognition in natural scene images has applications in computer
vision systems such as license plate detection, automatic street sign translation, image re-
trieval and help for visually impaired people. Scene text, however, has complex background,
image blur, partially occluded text, variations in font-styles, image noise and varying illu-
mination. Hence scene text recognition is a challenging computer vision problem. This
work addresses the problem of dictionary driven end-to-end scene text recognition, which
is divided into a text detection problem and a text recognition problem. For text detec-
tion an AdaBoost sliding window classifier is used to detect text in multiple scales. The
effectiveness of several feature-sets for this classifier are compared and evaluated. A mod-
ified Local Ternary Pattern (LTP) feature-set is found as most effective for text detection.
In a post-processing stage Maximally Stable Extremal Regions (MSER) are detected and
labeled as text or non-text. Text regions are grouped to textlines. Textlines are split into
words by a word-splitting method build upon k-means and linear Support Vector Machines
(SVM). For text recognition a deep Convolutional Neural Network (CNN) trained with
backpropagation is used as one-dimensional sliding window classifier. To avoid overfitting
the network is regularized by Dropout. Recognition-responses are used in a Viterbi-style
algorithm to find the most plausible word in a dictionary. The influence of training set
size and size of convolutional layers is evaluated. The system presented outperforms state
of the art methods on the ICDAR 2003 and 2011 dataset in the text-detection (F-Score:
74.2% / 76.7%), dictionary-driven cropped-word recognition (F-Score: 87.1% / 87.1%)
and dictionary-driven end-to-end recognition (F-Score: 72.6%) tasks.
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CHAPTER 1
Introduction

In context of scanned machine written text text-detection and -recognition is considered a solved
problem. There are several commercial 1 and freely available systems 2, achieving recognition
performance of 99%.

Text detection and recognition in natural scene images is, however, a challenging, unsolved
computer vision problem. Scene text has complex background, image blur, partially occluded
text, variations in font-styles, image noise and varying illumination as illustrated in Figure 1.1.
Commercial systems do not work in these setting.

Hence, within the scope of the International Conference of Document Analysis and Recog-
nition (ICDAR) several competitions were organised to assess the state of the art in text detection
and recognition in natural scene images [84, 78]. To improve the state of the art, public datasets
[84, 78, 92] with labeled ground-truth data are available, on which different methods are com-
pared with each other.

The end-to-end scene text recognition problem is divided into a text-detection and text-
recognition task. Text-detection is a preprocessing step for the text-recognition task. The text-
detector has to locate words in natural scene images. Hence the detector has to distinguish text
locations from non-text locations in an image. The text-recognizer predicts a word shown in a
cropped image patch which is retrieved by the detector.

This work addresses the problem of end-to-end dictionary driven scene text recognition, in
which the word-recognizer uses a dictionary to predict the resulting word.

1.1 Motivation

Text detection and recognition in natural scene images has applications in computer vision sys-
tems such as image retrieval, automatic license plate recognition, automatic street sign transla-
tion or help for visually impaired people.

1e.g. ABBYY FineReader, http://www.abbyy.com/ - last checked on 22.09.2013
2Tesseract, https://code.google.com/p/tesseract-ocr/ - last checked on 22.09.2013
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Figure 1.1: Natural scene images containing text.

In image retrieval systems, end-to-end text recognition systems recognize text in images and
index them into a document-index, so that they can later be retrieved. For automatic street sign
translation systems, text recognition systems recognize text, which is processed by a machine
translation tool to translate text into another language. By recognizing license plates automatic
toll collection is possible. For visually impaired people text recognition systems can help to
recognize and read text on street signs with text-to-speech systems.

For several of these applications a near human performance is necessary. Recent ICDAR
competitions [84, 78] show, however, that state of the art methods achieve a performance, mea-
sured in F-score, of about 67% on ICDAR datasets on end-to-end scene text recognition. Hence,
there is still room for improvement for bridging the gap to human performance.

1.1.1 Scope of Work

The scope of this work is text detection and dictionary driven text recognition in natural scene
images. The scientific research question is: Can the combination of local features, region based
approaches and learned local features achieve competitive performance for text detection and
dictionary driven recognition in natural scene images?

To assess the performance the publicly available ICDAR 2003 [84] dataset is used, on which
several end-to-end systems proposed by other authors listed in Chapter 2 are evaluated. Hence,
the performance is compared to state of the art systems for end-to-end scene text recognition.
Furthermore, the performance of each of the proposed subsystems is evaluated in isolation on
the ICDAR dataset and compared to other methods.

Furthermore, in this work only the problem of dictionary driven scene text recognition is
discussed.

1.1.2 Aim of this Thesis

The main aim of this thesis is to propose a dictionary driven end-to-end scene text recognition
system, achieving competitive performance on the ICDAR datasets [84, 78].

Hence, a system is proposed consisting of a sliding window classifier which detects text
regions. In these regions Connected Components (CCs) are labeled by machine learning models
and grouped to textlines. Textlines are split into words, which are classified by the proposed text
recognition system to predict the word for the cropped patch.
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To answer the research question and achieve competitive performance, first several low-level
feature-sets proposed in the literature are adapted and evaluated. Region based techniques which
are proposed in the literature are combined for CC labeling. Finally, Dropout [40] is applied to
deep Convolutional Neural Networks (CNNs) [48] to learn low-level vision features useful for
cropped character recognition.

The main contributions of this work are as follows:

• The influence of different feature-sets for text-detection is evaluated.

• The Multilevel Color edge Local Binary Pattern (MACeLBP) proposed by Anthimopoulos
et al. [2] is combined with Local Ternary Pattern (LTP) [85] to improve text-detection
performance.

• Maximally Stable Extremal Regions (MSERs) adopted by Neumann et al. [62, 60, 61]
for text detection and Conditional Random Fields (CRFs) proposed by Pan et al. [67, 68,
69] are integrated with linear Support Vector Machines (SVMs), k-means and a sliding
window classifier to a competitive text labeling system for natural scene images.

• Supervised trained CNNs [48] with backpropagation [74], which are regularized by Dropout
[40], are applied for scene text recognition achieving state-of-the-art performance.

• Scene text detection and scene text recognition modules are integrated to achieve compet-
itive end-to-end results.

1.2 Definition of Terms

In this section a definition of terms used in this work is presented.

ANN Artificial Neural Network: is a family of biologically inspired machine learning mod-
els, which use a model of a neuron for classification [23] (see Section 2.2.

CC Connected Component: is a coherent region of pixels which are grouped due to ho-
mogeneity properties.

CNN Convolutional Neural Network: is a ANN which is inspired by the visual cortex. It
has layers with shared weights, which are convolution kernels. Predictions are com-
puted by applying convolution operations layer by layer [48] (see Section 4.1.1).

CRF Conditional Random Field: is a graphical model, which is used to label nodes on a
graph [43]. It combines unary features from nodes with pairwise features to minimize
an energy function.

HOG Histogram of Oriented Gradients: is a gradient based feature set proposed by Dalal
and Triggs [17] for pedestrian detection. Gradients are densely accumulated in cells
which are aggregated into overlapping blocks. (see Section 3.1.1)
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ICDAR International Conference of Document Analysis and Recognition: is an interna-
tional conference which is hold every two years. Within the scope of this conferences
datasets for text detection and recognition have been made publicly available.

LBP Local Binary Pattern: is a texture descriptor proposed by Ojala et al. [65]. Tex-
ture information for a pixel is summarized as 8 bit integer. From this information a
histogram of texture information in a local window is accumulated. (see Section 3.1.2)

LTP Local Ternary Pattern: is an extension of LBP to a ternary coding proposed by Tan
et al.[85]. The texture information for a pixel is summarized as 2 × 8 bit integers and
hence, are more discriminative than LBPs.

MSER Maximally Stable Extremal Region: is a region detector proposed by Matas et al.
[55] for robust wide-baseline stereo matching (see Section 3.2.1).

MACeLBP Multilevel Color edge Local Binary Pattern: is an LBP extension proposed by An-
thimopoulos et al. [2] for text detection (see Section 3.1.2).

MLP MLP: Multilayer Perceptron is a ANN consisting of several layers of neurons followed
by a non-linear activation function. By stacking several layers of neurons in this way,
the classifier can do non-linear classification (see Section 2.2).

OCR Object Character Recognition: is an automatic conversion of printed text in images
to machine readable text.

RBM Restricted Boltzmann Machine: is a generative ANN which encodes input data in a
high-level representation by learning the distribution of the data. It is used by Hinton
et al. [39] to train a deep belief network (see Section 2.2).

RF Random Forest: is a discriminative machine learning model proposed by Breiman et
al. [7]. It is a bagged tree ensemble, where each tree is trained on a random subset of
the feature vector.

SIFT Scale Invariant Feature Transform: is a keypoint detector proposed by David Lowe
[54]. The descriptor accumulates gradients in a local window on detected interest
points in cells.

SVM Support Vector Machine: is a discriminative machine learning model proposed by
Vapnik et al. [8], which maximizes the minimum margin to a separating hyperplane of
two classes. By applying a kernel trick the classifier can do non-linear classification.
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SVT Street View Text: is an annotated dataset with dictionaries proposed by Wang et al.
[92] for end-to-end text recognition.

SWT Stroke Width Transform: is an image operator proposed by Epshtein et al. [24]
which assigns to each pixel the width of the stroke.

1.3 Results

The proposed text detector achieves state-of-the-art performance of 74% (F-score) on the ICDAR
2003 dataset [84] and 76% (F-score) on the ICDAR 2011 dataset [78]. The proposed text rec-
ognizer achieves a state-of-the-art performance of 87.1% accuracy on the ICDAR 2003 [84]
cropped word recognition challenge. The end-to-end system proposed achieves a state-of-the-
art performance of 72.7% measured in F-score.

Further, it is shown that the influence of the feature-set of the sliding window classifier
used lies in a range of about 1.5% on detection performance measured in F-score. The detector
achieves a performance of 71.4% on the ICDAR 2003 [84] dataset without any feature set. The
maximum performance of the labeling stage given a perfect sliding window classifier is 77.0%.

Ceiling analysis shows that by improving the sliding window system, keeping the remaining
pipeline fixed a maximum improvement of 2.1% on end-to-end performance (F-score) can be
achieved. By replacing the CC labeling module a maximum improvement of 12.9% on end-
to-end performance (F-score) can be achieved and by improving the word recognition system a
maximum improvement of 12.3% on end-to-end performance (F-score) can be achieved.

1.4 Structure of this Work

The remainder of this work is structured as follows. In Chapter 2 an overview of state-of-the-art
methods for text detection and recognition is given. Furthermore segmentation methods, object
detection and recognition methods and Artificial Neural Network (ANN) are reviewed.

In Chapter 3 the text detection system is presented. The chapter is divided into several
sections. In Section 3.1 the choice of the sliding window classifier and the used feature-set is
discussed. In Section 3.2, feature-sets and classifiers used for CC labeling are discussed. Section
3.3 and Section 3.4 discuss the textline grouping and word-splitting steps in the system proposed.

In Chapter 4 the proposed recognition system is presented. It is divided into Section 4.1
which presents the method used for recognizing cropped characters and in Section 4.2 which
details about how the cropped character recognizer is used to predict words.

Results of this work are presented in Chapter 5. Finally, conclusions and directions for
further work are drawn in Chapter 6.
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CHAPTER 2
State of the Art

In this chapter an overview of state-of-the-art methods in text-detection and -recognition and an
overview of object recognition methods which are related to this work is given. Since the method
proposed relies on segmentation techniques, in Section 2.1 segmentation methods in context of
document analysis and scene text-detection and -recognition are reviewed. The text-recognition
system uses CNNs to recognize cropped characters. Hence, in Section 2.2 a historical overview
of ANN is given and recent work in this area is reviewed. In Section 2.3 an overview of object
detection and recognition methods in computer vision, which are relevant to this work, is given.

In Section 2.4 an overview of text-detection and -recognition in natural scene images is
presented. In Section 2.1 segmentation methods in context of document analysis and scene text-
detection and -recognition are reviewed. In Section 2.2 a historical overview of Artificial Neural
Networks (ANN) is given and recent work in this area is reviewed.

2.1 Segmentation Methods

Since the proposed method relies on segmentation methods, an overview of segmentation tech-
niques used in document analysis and text detection and recognition in natural scenes is given
in this section.

Traditional segmentation methods in Object Character Recognition (OCR) are divided into
adaptive and non-adaptive approaches. Non-adaptive approaches estimate a global threshold for
the whole document. Adaptive approaches use local thresholds which are estimated from a local
window.

One of the most prominent global segmentation methods is Otsu [66], which, however does
not work on images having varying illumination conditions.

Since natural scene images have varying illumination conditions, choosing a single threshold
for segmenting the image results in segmentation errors. Figure 2.1 shows a specular highlight
on a book cover, which results in several letters such as ’R’ and ’E’ segmented as a single
component. In the context of document analysis several adaptive methods are proposed, which
address the problem of varying illumination conditions in a document [71].
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Figure 2.1: Segmentation errors caused by binarizing the image with Otsu [66].

An example for an adaptive method is Niblack [64], which estimates a threshold T from the
mean m and standard deviation s in a local window as follows:

T = m+ k · s (2.1)

where k is a parameter of the method, m is the local mean and s the local standard deviation.
Extensions to this method are proposed by Sauvola et al. [75], which make binarization

more robust against noise. Furthermore, a Niblack variant is proposed by Pan et al. [67, 68, 69]
for binarization in natural scene images.

Traditional adaptive segmentation approaches for document analysis have limitations when
applied to scene text segmentation. Characters which are too near to each other are segmented to
a single CC, the shape of segmented blurred characters is distorted and characters which have the
same contrast compared to background noise are segmented to a single CC with the background
(see Figure 2.2). Hence, segmentation methods for text detection in natural scene images use
approaches like MSER to alleviate these problems.

Figure 2.2: Segmentation errors due to background noise, blur and narrow text.

In the context of text-detection in natural scenes, segmentation of a dense stroke width image
is proposed by Epshtein et al. [24]. The stroke width of pixels in the image is computed by the
Stroke Width Transform (SWT) which is an image operator operating on edges detected by
the Canny edge detector [9]. Pixels with similar stroke width are grouped to letters, which are
further grouped into words and textlines.

Recent methods, such as the winner of the ICDAR 2011 competition, use MSER [55] or
Extremal Region (ER) [55] to detect candidate regions and use machine learning techniques
or heuristics to label them as text or non-text [61, 60, 62, 10, 78]. MSER provide a multi-
segmentation of an image by thresholding the image several times. Compared to adaptive
thresholding approaches a higher number of candidate regions is generated. Due to the multi-
segmentation, narrow text, blurred characters and text with weak contrast are less likely to be
grouped together to a single CC. An overview of MSER is given in Section 3.2.1.

7



2.2 Artificial Neural Networks

ANNs are biologically inspired machine learning methods. The building block for these methods
is a model of a neuron. The first neuron model is proposed by McCulloch and Pitts in 1943 [23].
The neuron model which is used in ANNs is shown in Figure 2.3 [23]. The inputs xi for a neuron
are weighted by weights wi and summed together. If this sum exceeds a threshold the neuron is
active:

g(x) =

{
1,

∑n
i=0 xi · wi > 0

−1, otherwise
(2.2)

where g(x) is the activation function of the neuron.
In 1958 Frank Rosenblatt proposes a training algorithm for training a single neuron called

Perceptron [23]. The training algorithm updates the weight vector w for misclassified training
samples x of class t ∈ {1,−1} as follows: w = w + t · x. Rosenblatt et al. show that given
a training set where object-classes lie on opposite sides of a hyperplane, the training algorithm
terminates. Furthermore, the result of this algorithm is a hyperplane separating the two object
classes.

Figure 2.3: Single neuron “Perceptron” model which has several inputs xi which are multiplied
by weights wi (Source: Duda et al. [23]).

Rumelhart, Hinton and Williams [74] propose backpropagation for training Multilayer Per-
ceptrons (MLPs) in 1958. MLPs consist of several layers of Perceptrons which are organized in
a regular grid. A non-linear activation function is applied to responses from each layer. Hence,
this networks overcome several limitations of Perceptrons and are capable of learning more
complex functions such as the XOR function.

LeCun et al. [48, 49] propose CNNs for recognizing handwritten digits. CNNs have locally
shared weights in form of convolution kernels. Responses are sub-sampled over spatial regions.
Hence, neurons in upper layers have larger receptive fields than neurons in lower layers. Recent
methods propose an additional response normalization step after the sub-sampling step [41]. An
overview of CNNs in context with more recent research is given in Section 4.1.1.

Hinton et al. [39] propose in 2006 a greedy unsupervised pre-training method for training
deep Neural Networks. Restricted Boltzmann Machines (RBMs) are trained greedy, layer-by-
layer to minimize the Kullback-Leibler divergence of the distribution of the data and the dis-
tribution defined by the model. RBMs encode the input in a high-level representation. After

8



training a RBM, the output is used to train a RBM for a higher layer. Finally, the whole model is
finetuned by a supervised training method. This methodology makes it possible to train networks
with a larger number of layers, which outperform networks with a smaller number of layers.

Since then, further research is done to improve methods for training deep neural networks.
Regularized Autoencoders [89, 73, 72, 37] are proposed as an alternative to RBMs for pre-

training networks. GPU hardware is used to train deep networks faster [45, 13]. Deep CNNs
are applied on labeled datasets consisting of over one million samples [45], outperforming other
methods. Rectifier activation functions are proposed [58, 33], which are faster to train than
sigmoid units [45].

Training methods for deep neural networks can be categorized into several groups [41]:

• Supervised trained networks which are trained on labeled datasets with backpropagation.

• Unsupervised pre-trained networks which are finetuned with a supervised learning algo-
rithm.

• Unsupervised learned features which are used in a classifier like SVM. The feature layers
do not receive any supervised finetuning.

Jarrett et al. [41] show that unsupervised pre-trained networks with a supervised fine-tuning
stage perform best on the Caltech-101 [28] and NORB [51] datasets. The difference in per-
formance compared to supervised trained networks is, however, in several experiments under
1%.

Later, several regularization methods are proposed which improve the generalization capa-
bility of deep networks. Hinton et al. [40] propose the regularization technique Dropout, which
randomly sets inputs to zero in the training phase. A more complete overview of Dropout is
given in Section 4.1.1. Zeiler and Fergus [102] propose Stochastic Pooling, a pooling operator
for CNNs. In the training phase stochastic pooling samples responses from the local receptive
fields according to a probability distribution defined by the activations of the neurons in the re-
ceptive field. Goodfellow et al. [35] propose a novel convex activation function Maxout, which
is defined as the maximum over several linear units. Wan et al. [91] propose DropConnect,
which is a generalization of Dropout, where weights instead of inputs are set to zero during
training. Furthermore, Wang et al. [93] propose a fast method to train Dropout networks.

Recent deep learning methods set the state-of-the-art in several computer vision competi-
tions. Krizhevsky et al. [45], winner of the ImageNet competition, uses deep CNNs with
Rectified Linear Units (ReLUs), regularized by Dropout to classify 1.2 million images into 1000
different classes. Sermanet et al. [77] use unsupervised multi-stage features for a competitive
pedestrian detection system. Goodfellow et al. [35] use convolutional Maxout networks for
street view digit recognition. Cireşan et al. [12] [14] adopt CNNs for mitosis detection in breast
cancer histology images and street sign classification. Tang et al. [86] classify facial expressions
with deep CNNs, which are trained by minimizing the squared SVM hinge loss. Wang et al. [94]
achieve state-of-the-art performance for end-to-end scene text recognition with CNNs which use
unsupervised learned features. Farabet et al. [27] use CNNs for scene labeling. Le et al. [53]
propose Independent Subspace Analysis for learning hierarchical features for action recognition
in videos.
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2.3 Object Detection and Recognition

Since a comprehensive overview of object-detection and -recognition in images is beyond the
scope of this work, an overview of research relevant to this work is given.

For object detection in images sliding window classifiers are proposed [90, 11, 67, 17, 21,
96, 29, 53, 2, 77]. The approach of these methods is illustrated in Figure 2.4. First, to detect
objects of multiple sizes, the image is sub-sampled several times to create an image pyramid.
Each pyramid level is scanned by a local classification window which assigns a probability to a
window indicating the certainty with which an object is shown in the window.

Figure 2.4: Sliding window detection for pedestrians proposed by Dollar et al. [20]

For classification discriminative machine learning models such as Support Vector Machines
(SVMs) [8] or tree ensembles [31, 7] are used. The model is trained on cropped image patches
containing samples of the object-class. Negative samples are found by mining false positive
classifications on a set of training images containing no instance of the object-class being de-
tected.

Since the performance of these models depends on the feature set, research has been devoted
into developing and improving fast and discriminative low-level features.

Gabor filters are biologically inspired convolution filters. They are proposed for recognition
tasks such as iris recognition [18], face recognition [81] or text detection [53]. Furthermore, for
texture classification Gabor responses are clustered to a high level “Texton” dictionary represen-
tation. [88]. For classification the image is convolved with a Gabor filter bank. Each pixel is
assigned to the Texton-centroid having nearest distance to its responses. From this assignment a
histogram is built which is used as feature vector.

Lowe et al. [54] propose Scale Invariant Feature Transform (SIFT) as keypoint detector.
The descriptor is computed on stable interest points and rotated according to the most dominant
local gradient orientation. For object recognition the descriptor is used in bag-of-words models
to learn high level features with dictionary learning methods [30]. In more recent methods the
descriptors are computed on a regular grid, encoded as high-level representation and pooled
over spatial regions [6, 46, 98]. These models are computationally expensive and due to the
exhaustive search of sliding window detectors, over 100000 windows for images of size 1024×
768 are classified. Hence, for object detection with these features a combined top-down and
bottom-up approach is proposed [87]. A segmentation generates candidate locations, which are
verified by the classifier.
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Viola and Jones [90] propose Haar-like features for face detection which are shown in Figure
2.5. Grayscale values in the dark rectangular areas are summed and subtracted from grayscale
values in the bright rectangular areas. A pool of over 180000 of such features is used for training
an AdaBoost classifier consisting of decision stumps as weak learners. To compute these features
efficiently, integral images are proposed with which the sum of grayscale values in a rectangular
region can be computed in constant time.

Figure 2.5: Haar-like features proposed by Viola and Jones for face detection [90].

Dalal and Triggs [17] propose Histogram of Oriented Gradients (HOG), which is a SIFT-
like feature set for pedestrian detection. The feature-set is computed densely on the image. First,
the gradient magnitude and orientation is computed. Then the gradient orientation is discretized
in an orientation histogram. Each pixel votes with its gradient magnitude for an orientation
histogram bin. These features are pooled locally to regular cells and blocks which are then
concatenated to a feature vector. A more complete overview of HOG is given in Section 3.1.1.

Several extensions for HOG are proposed. Dollar et al. [21] integrate HOG with the integral
image framework and use similar to Viola et al. [90] a pool of rectangular regions as features
for training a tree ensemble. Watanabe et al. [96] propose Co-occurence HOG (CoHOG) which
is a combination of co-occurrence histograms [38] with HOG. A color extension of HOG which
incorporates color information is proposed by Kahn et al. [79].

Local Binary Patterns (LBPs) [1] is a feature set for encoding texture information, which is
proposed for several object recognition and detection tasks like face recognition [1], pedestrian
detection [95] or text detection [67, 2]. Several extensions are proposed to make this feature set
more discriminative [85, 2]. A more complete overview of this feature set is given in Section
3.1.2.

More recent methods improve the sliding window approach by integrating low-level features
with part-based models. Felzenszwalb et al. [29] propose a part-based model learned by a latent-
SVM and uses HOG features as low-level features. The main idea of these models is that several
object classes consist of parts like wheels on cars or motorbikes. The detector consists of a coarse
root-template detector and several part-based detectors. The coarse detector detects candidate
object locations. Within these locations part-based detectors detect object-parts such as wheels
for motorbikes. If the scores obtained from the parts-detectors is sufficiently large the window
is classified as containing the desired object-class. Hence, this detector is more robust against
deformations of objects than the original linear HOG-classifier. Variations of this model have
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won the Pascal Visual Object Class (VOC) challenge, which is hold to assess the state-of-the-art
in several computer vision tasks [26].

2.4 Related Work in Text-Detection and Text-Recognition

This section presents an overview of state-of-the-art scene text-detection and -recognition sys-
tems. Several competitions within the scope of the ICDAR have been organized to assess the
state-of-the-art. Hence, there are publicly available datasets like the ICDAR 2003 dataset [84]
or the Street View Text (SVT) dataset [92], on which objective comparisons of state-of-the-art
methods can be done.

2.4.1 Text Detection Methods

Existing text-detection methods can be divided into region based and texture based methods
[24, 2]. Region based methods rely on image segmentation. Pixels are grouped to CCs which
are character candidates. These candidates are further grouped to candidate words and textlines
based on geometric features. Texture based methods distinguish text from non-text based on
local features and machine learning techniques. Text confidence maps are created, which are
post-processed and converted into word level bounding boxes. Furthermore there exist hybrid
approaches which group connected components into word candidates and use a texture based
classifier to validate these candidates.

Since region based approaches rely on image segmentation they are subject to segmentation
errors. Natural scene text is exposed to varying illumination conditions, has blur and is partially
occluded by other objects [2]. With region based methods, however, pixel-accurate localization
of characters and words is possible. Furthermore the segmented characters can be directly used
as input to an OCR engine [24].

Texture based methods use sliding windows to detect text regions in images. If the sliding
window step size or the image scales are not estimated correctly regarding the text size, text
detection errors can occur. In comparison to other object categories like faces, textlines and
words have varying aspect ratio. Hence, detector-responses from a sliding window classifier
must be further post-processed which is detailed in Section 3.2.

Text detection competitions are hold on a regular basis within scope of the ICDAR. Winner
of the ICDAR 2011 competition is Chunghoon Kim 1 (F-score: 71.28%), which use a hybrid
detection method. Candidate textlines are generated by a MSER segmentation. Candidate letters
are segmented and grouped to textline hypotheses, which are verified by a texture based method.

Second entry is the text detector proposed by Yi et al. [100] (F-score: 62.32%). This
method generates candidate patches with a segmentation method presented in [100]. Based on
Canny edges and k-means color clustering text components are segmented. Candidate patches
are classified by an AdaBoost texture classifier based on gradient features in block-patterns
proposed by Chen et al. [11].

Third entry is TH-TextLoc [78], proposed by Cheng et al. (F-score: 61.98%). CCs are
extracted by an adaptive local segmentation method. Then, CCs are filtered by heuristics. In a

1Chunghoon Kim — Qualcomm Korea R&D Center, Seoul 443-749, South Korea — unpublished
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fine-grained classification step a SVM is used on geometric features, shape related features and
stroke width to classify text candidates into text/non-text.

Neumann et al. [60, 61] (F-score: 59.63%) comes on the fourth place of the ICDAR 2011
competition and based on MSER and geometrical features only.

The fifth entry is proposed by Shao et al. [80] (F-score: 58.09%), which is a region based
approach. For CC classification gradient based features are used. Text-CCs are grouped to text
regions.

In the following sections region based approaches, texture based approaches and hybrid
approaches are reviewed.

Region Based Methods

Epshtein et al. [24] propose the SWT for text detection. The SWT is an image operator which
assigns a stroke width to each pixel of an image (see Figure 2.6). The stroke width is determined
by shooting rays on edges in the direction of the gradient. If the ray hits an edge with the same
gradient direction modulo 180 degrees, the length of the ray determines the stroke width of the
underlying pixels. Pixels which are adjacent to each other belong to the same character if their
stroke width is similar. Hence, CCs are formed by segmenting the stroke width map. Adjacent
CCs are grouped to words if the median stroke width ratio of two CCs does not exceed 2.0, the
height ratio of the two components is smaller than 2.0 and distance and average color difference
are within Thresholds learned from the training set.

Figure 2.6: The SWT for a stroke shown in (a) is computed by shooting a ray from the edges
in the gradient direction (b). If another edge with the same gradient direction is found along
the ray, the width between the start- and end-point is assigned as stroke width to the underlying
pixels (c). (Source: Epshtein et al. [24])

Chen et al. [10] propose a text detection method using MSER. The outlines of MSER are
enhanced by Canny edges. This makes MSER less sensitive to blur. Based on geometric cues
these candidate character regions are then grouped to words and textlines.
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Neumann et al. [61, 60, 62] propose ERs for segmenting regions. ERs are extracted on
the RGB, HSI and gradient images to retrieve character candidate regions. Instead of using
heuristics as Epshtein et al. [24] for labeling text, an AdaBoost classifier based on geometric
features is used. Text-CCs are then grouped to words.

Yao et al. [99] generalizes the SWT proposed by Epshtein et al. [24] for arbitrary oriented
text. Camshift is used to find character orientation, length of major and minor axis and barycen-
ter. CCs are filtered and grouped to chains. False positive chains are eliminated by a Random
Forest (RF) classifier.

Texture Based Methods

Chen et al. [11] propose an AdaBoost classifier based on x- and y-derivative features, inten-
sity features and edge-linking features computed in block-patterns of the detector-window (see
Figure 2.7). Text-patches have low-entropy in this block-patterns.

Figure 2.7: Block-patterns proposed from Chen et al. [11].

Pan et al. [67, 68, 69] propose an AdaBoost detector based on HOG and multiscale LBP
(msLBP) features computed in blocks as proposed by Chen et al. [11]. The detected regions are
post-processed with a CC-labeling stage. The image is segmented with Niblack. CCs are then
grouped to a graph and labeled by a CRF. Textlines are formed by minimizing energy functions
of a learned distance-metric.

Lee et al. [53] adopt an AdaBoost classifier and use gradient, histogram, CC, color gradient,
Gabor and wavelet coefficient features for text detection. Confidence maps are processed by
heuristics to find word-level bounding boxes.

Anthimopoulos et al. [2] compute 8 LBP feature maps with 8 different thresholds. The
featureset is used in a RF ensemble to create text confidence maps. These confidence maps are
then post-processed by smearing techniques on the gradient image and a segmentation to find
word-level bounding boxes.

Coates et al. [15] detects text with unsupervised learned features. A k-means variant is used
to cluster whitened 8 × 8 patches to convolution filters. Responses are average-pooled over a
local 5× 5 field and used as features for a SVM classifier.
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Hybrid approaches

Minetto et al. [56] propose a hybrid approach where CCs are labeled with shape descriptors like
zernike moments as text or non-text regions. CCs are then grouped to textline candidates. This
candidates are then verified by discriminative classifiers using a novel Fuzzy HOG (F-HOG)
feature set.

The winner of the recent ICDAR 2011 competition [78] Chunghoon Kim et al. 2 uses
MSER to extract candidate letters, which are grouped to candidate textlines and then verified by
a texture-based system.

Gonzalez et al. [34] propose a hybrid localization method based on a combination of MSER
and local adaptive thresholding for segmentation. CCs are filtered based on geometric features
such as aspect ratio or occupy ratio. Hypotheses are created which are verified by a texture based
classifier.

2.4.2 Text Recognition

Similar to text-detection systems, recognition systems can be divided into region-based and
texture-based approaches. Texture-based approaches use low-level vision features to assign can-
didate labels to text-windows. These candidate labels are then post-processed by models which
incorporate language information to predict the final word. On the contrary, region-based meth-
ods assign a candidate label to segmented CCs. Similar to texture-based methods, a language
model is then used to predict the final word.

Region Based Methods

Neumann et al. [61, 60, 62] propose a recognition system which classifies MSER regions which
are detected by a text-detection system as text-components. Boundaries of normalized MSER
regions are inserted into separate images based on their orientation. In total 8 orientations are
used. Each orientation image is filtered with a Gaussian and sub-sampled in a 5 × 5 image.
Hence, a 5× 5× 8 = 200 dimensional feature vector is used for classifying MSER regions. To
improve the prediction, a language model based on bigrams is used.

Texture Based Methods

Wang et al. [92] propose HOG features with a Random Ferns classifier to detect and classify text
in an end-to-end setting. The multiclass-detector is trained on cropped synthetic and real-world
letters. Non-maxima of the detector responses are suppressed. The remaining letters are then
combined in a Pictorial Structure framework, where letters are parts of words. For each word in
a dictionary, the most plausible character responses are found in the image. Detected words are
then rescored based on geometric information and non-maxima suppression is done to remove
overlapping word-responses.

Mishra et al. [57] propose, similar to Wang et al. [92], HOG features with SVMs to de-
tect and classify text. Instead of using Pictorial Structures, CRFs are used to predict the final

2Chunghoon Kim — Qualcomm Korea R&D Center, Seoul 443-749, South Korea
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word. The model penalizes overlapping candidate-windows, incorporates language information,
geometric information and classifier information to predict a candidate word. The final word-
prediction is done by retrieving the word in a dictionary with the shortest edit distance.

Yildirim et al. [101] propose Hough Forest (HF) for text recognition. Cross-scale binary
features, which are thresholded differences of regions across different scales are proposed for
word recognition. For predicting the final word from candidate-responses a CRF energy function
is minimized, which incorporates geometrical information and lexicon priors.

Wang et al. [94] propose deep CNNs with a fixed unsupervised feature layer, which is trained
by the method Coates et al. [15] propose. 8× 8 whitened patches, which are randomly cropped
from text-samples, are clustered with a k-means variant to learn a dictionary of convolution-
filters. This features are used for training a two layer CNN with backpropagation, where the first
layer is fixed. For post-processing a simple dynamic programming algorithm is proposed, which
computes a matching score given the responses of the classifier and a dictionary word. The final
word prediction is then done by retrieving the word in a dictionary with the highest matching
score.
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CHAPTER 3
Text Detection

An overview of the proposed end-to-end system is given in Figure 3.1. It is divided into a text-
detection module (top) and a text-recognition (bottom), each consisting of several steps. In this
chapter the text-detection system is presented.

Text Con�dence Maps CC Labeling Textline Grouping World Splitting

1D Sliding Window Recognition Word Inference

ESSEX

Text Detection

Text Recognition

Figure 3.1: The proposed system is divided into a text detection (top) and text recognition mod-
ule (bottom).

The text-detection module is responsible for creating word-level bounding boxes around
words in natural scene images. This task is divided into several steps. First, an AdaBoost
classifier detects text in a 24 × 12 window. The classifier is shifted over an image in multiple
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scales. Detection responses are accumulated into a text confidence map. Next, within detected
regions CCs are extracted and labeled as either text or non-text. From text CCs textlines are
formed, which are then split into word-level bounding boxes.

Due to varying illumination, blur, partial occlusions, varying font-sizes and complex back-
ground in images [2], the text detection problem is posed as object detection problem. Hence, a
sliding window classifier is used to detect textlines in multiple scales in an image. Compared to
object detection tasks such as pedestrian detection [17] or face detection [90], text detection has
several unique challenges. First, the aspect ratio of a textline varies, which is different from other
object classes such as pedestrians or faces, where a fixed aspect ratio or a finite number of differ-
ent aspect ratios is assumed [29]. Second, textlines have different shapes since textlines consist
of different characters. Next, the ICDAR evaluation criteria requires bounding boxes which are
pixel-accurate. Hence, approaches such as non-maxima suppression are not sufficient to retrieve
bounding boxes. Furthermore, for evaluation word-level bounding boxes and no textline-level
bounding boxes are required.

Hence, the text detection system is divided into the following parts:

• Text Confidence Maps are created by a sliding window detector.

• Connected Component Labeling is done on MSER which are pruned by the text confi-
dence maps.

• Textline Grouping is done by linear SVMs to group CCs to textlines. Low-confidence
textlines are then removed.

• Word Splitting is done to split textlines into words, obtaining the final bounding boxes.

The remainder of this chapter is divided as follows: in Section 3.1 the AdaBoost sliding
window classifier is discussed. In Section 3.2 CCs labeling is discussed. In Section 3.3 the
textline grouping stage is explained. In Section 3.4 the word-splitting method is detailed. Finally,
in Section 3.5 a summary of the detection system is given.

3.1 Text Confidence Maps

Text confidence maps are created by a sliding window classifier. Since for detection tasks about
100000 classifications in a 1024 × 768 image are done a fast classifier and a fast to compute
feature set is needed. Furthermore, since the dimensionality of the feature-sets considered is
high (5000-28000), it is desirable to have a classifier which performs feature selection. Features
used by the classifier are then computed as needed for the decision making. Further, AdaBoost
is used in cascades [90] and soft-cascades [?] with which fewer features have to be computed for
non-text regions. Hence, the AdaBoost variant GentleBoost [32] is used for simplicity reasons,
and trained in a softcascade as proposed by Dollar et al. [21]. A sigmoid function is used
to bound raw-responses of the classifier between [−1, 1]. Each window classified as text is
accumulated with its response on a response map as illustrated in Figure 3.2. Response maps
having a maximum response lower than 1.0 contain mostly non-text and are discarded. This
threshold is chosen as the 0.95 quartile of responses on non-text images.
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Figure 3.2: For each scale a response map is generated, which are then accumulated into a single
map for further processing.

Since several individual characters such as ’I’ or ’O’ have similar shape to natural scene ob-
jects such as vertical edges, fences or street-signs, the detector is trained on random horizontally
translated and scaled textline patches as shown in Figure 3.3. The window size is set to 24× 12
such that it contains several characters and patches from the smallest textline in the training set
fit into the window. The image is resized at most 10 times by 2

3 for each scale as proposed by
Marios Anthimopoulos et al. [2] and a step-size of 4 pixel is used due to computational rea-
sons. Since the following CC-labeling step of this pipeline is not using an image pyramid, the
responses are accumulated in a single response map.

Figure 3.3: 100 sampled training patches.

Most patches in images are negative samples. Hence, Object detection tasks are unbalanced
classification tasks. Furthermore, it is impossible to sample a sufficiently large negative training
set. Therefore, bootstrap training [90] is performed. An initial working set of positives is created
and an equally amount of negatives is sampled from non-text image regions. An AdaBoost
classifier is trained which mines false positive patches over a set of non-text images. These
“hard” negatives are added to the pool of negative samples and the classifier is retrained.

The number of initial positive samples is set to 5000. 5000 sampled non-text patches are
added to the training set. One bootstrapping iteration over about 1000 images is performed in
which 5000 hard negatives are sampled. The influence of the number of negatives, the AdaBoost
hyperparameters, the number of bootstrapping iterations is discussed in the following sections.

The most critical part for the performance of the detector is the feature-set which is used for
the detector, which is shown in the following sections. The requirements of such feature-sets for
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a detector are low computational time and discriminativeness. Hence the following feature sets
are evaluated:

• HOG [17] as proposed by Pan et al. [67], since it has a low computational cost, dis-
criminative and several variations are used in state-of-the-art models in object detection
[25].

• HOG as proposed by Dollar et al. [21] in the framework of Integral Channel Features,
which is one of the state-of-the-art feature sets used for pedestrian detection [22].

• MACeLBP proposed by Anthimopoulos et al. [2], which achieves state-of-the-art perfor-
mance in text detection.

• A combination of MACeLBP [2] and LTP [85].

3.1.1 Histogram of Oriented Gradients

HOG [17] is a SIFT-like [54] gradient based feature set which is computed densely on the image.
The descriptor as proposed by Dalal and Triggs [17] is illustrated in Figure 3.4. First, the input
image is normalized. Then the x-derivatives and y-derivatives of the image are computed. From
x- and y-derivatives the gradient magnitude and orientation for a pixel (x, y) is computed as
follows:

θ(x, y) = atan2(Gy(x, y), Gx(x, y))

m(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 (3.1)

where m(x, y) is the gradient magnitude, θ(x, y) is the gradient orientation and Gx(x, y)
and Gy(x, y) are the x- and y-derivatives at pixel-position (x, y). The gradient responses are
accumulated over local cells into local gradient orientation histograms. The orientations are
quantized into discrete bins modulo 180 degrees. Each pixel votes with its gradient magnitude
for the entry in the histogram corresponding to its gradient orientation. Cells are then further
grouped into overlapping blocks. To achieve robustness against illumination changes each block
is normalized. The final feature vector is built by concatenating all normalized blocks in the
detection window.

For text detection Pan et al. [67] integrates HOG with a block structure proposed by Chen
et al. [11] (see Figure 3.5). For each block the gradients are binned in a 4-orientation gradient
histogram. Each histogram is normalized by the standard-deviation of the gradient magnitude
of the whole detector window. For the experiments in this work, the number of orientations of
this feature set is extended to 8 and for normalization the L1-sqrt norm proposed by Dalal and
Triggs is used [17], since this norm is faster to compute than the L2-hys [17] norm and with this
configuration the feature set achieves better results on the validation set than the L1-norm [21]
and normalization by standard deviation [67].

Dollar et al. [21] extend HOG by computing the gradient histogram in a pool of about 30000
non-regular random blocks as opposed to a regular grid. An AdaBoost classifier selects blocks
which minimize the misclassification error. To compute the feature responses in blocks effi-
ciently, Integral Images [90] on the oriented gradient images are adopted. For the experiments
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Figure 3.4: An overview of HOG [17]. (Source: [16])

Figure 3.5: Block patterns adopted by Pan et al. [67] for text detection.

in this work, this feature set is called ChnFtrs. Furthermore, 8 directional histograms are used
and the blocks are normalized by the L1-sqrt norm proposed by Dalal and Triggs [17], which
performs better than the L1-norm the authors propose. The pool size is reduced to 5000 fea-
tures, which perform not worse than the proposed 30000 features since the window size for the
proposed text-detection system (24× 12) is several times smaller than the window size used on
pedestrian datasets (64× 128).

3.1.2 Local Binary Patterns

LBPs [65] are texture descriptors which are computed densely on the image. Features in a
window are accumulated and classified subsequently. Formally, the LBP-operator centered on
pixel (xc, yc) is defined by:

LBP (xc, yc) =

7∑
n=0

2ns(in − ic) (3.2)
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where in is the grayscale intensity of a pixel in the 8-neighborhood of the pixel positioned
on (xc, yc), ic is the grayscale intensity of the pixel (xc, yc) and s(x) is defined as:

s(x) =

{
1, x > 0
0, otherwise

(3.3)

This operator is visualized in Figure 3.6. Each 3 × 3 window is thresholded by the central
pixel. From the thresholded boundary pixels of the 3 × 3 window a binary code is computed.
Binary codes in the detector-window are then accumulated into histograms and used as a 256
dimensional feature vector for classification.
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Figure 3.6: LBPs threshold a 3× 3 window by the central pixel intensity. The binary pattern of
the boundary pixels are then encoded as number between 0 and 255 [85].

MACeLBP proposed by Anthimopoulos et al. [2] is an extension for LBPs designed for
detection of text in natural scene images. The proposed feature set encodes texture information
in multiple contrast levels. Formally, the coding between central pixel and adjacent pixels in a
3× 3 window is defined as follows:

se(x) =

{
1, |x| > e
0, otherwise

(3.4)

where e is a threshold which is estimated locally from the oriented absolute value gradient
image, which is shown in Figure 3.7. The gradient of a pixel is defined as maximum absolute
difference of the RGB channels. The local mean of the horizontal, vertical, diagonal and anti-
diagonal gradient images is computed in a 9×9 window. From these local means thresholds are
computed which are used for the LBP encoding.

Figure 3.7: Local means of the horizontal absolute gradient images are computed and used to
determine the threshold e for the horizontally adjacent neighbors of a center pixel. (Source: [2])

Since the feature set encodes texture information in multiple contrast levels, several thresh-
olds for e are used and the resulting LBP histograms are concatenated to a single feature vector.
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Absolute gradient responses are assumed to have a Laplacian distribution. Hence, thresholds
for e cluster the Probability Density Function (PDF) . It is desirable to cluster the PDF into
clusters of equal probability. Hence, the parameters of the PDF are estimated in a local 9 × 9
window by computing the mean absolute gradient responses. For the Laplacian distribution a
quantile function is defined as follows:

Fexp(l) = −λ−1 · ln(1− l) (3.5)

where λ−1 is the local mean and 0 ≤ l < 1 is a probability. The function returns a threshold
e for which gradient responses smaller than e fall with probability l.

Anthimopoulos et al. [2] use 8 thresholds which cluster the PDF into clusters of equal
probability and compute 8 LBP histograms which are used as feature for classification.

3.1.3 Proposed

The proposed feature set is a combination of LTPs [85] and MACeLBPs. LTPs extend the binary
coding of the patterns to a ternary pattern. The coding is defined as follows:

se(x) =


1, x > e
−1, x < −e

0, otherwise
(3.6)

where e is a user-defined threshold. This coding is illustrated in Figure 3.8 for e = 10.
Neighbors which are within radius e of the central pixel are encoded as 0, neighbors bigger than
the central pixel are encoded as 1 and neighbors smaller than the central pixel as -1. Furthermore,
for encoding the patterns as feature vector, the LTPs are split up into two LBP histograms. Each
LBP histogram is then accumulated into a 256 dimensional histogram, which results in a 512
dimensional feature vector.

128

140 142

134

110128123

108

120 1 1

0

-100

-1

0

1 1

0

000

0

0

0 0

0

100

1

0

Figure 3.8: LTP encoding of a 3× 3 window with threshold e = 10 [85].

The LTP pattern is extended by choosing 8 thresholds for e which are estimated as proposed
by Marios Anthimopoulos et al. [2] on the oriented gradient image. Instead of accumulating
feature responses over the whole detector window, the responses are accumulated in 5 additional
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blocks inspired by blocks proposed by Chen et al. [11] (see Figure 3.9). Since a single LTP
histogram has a dimensionality of 2× 256, the feature vector proposed has a dimensionality of
2× 256× 8× 6 = 24576.
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Figure 3.9: Proposed sub-blocks in which the features are extracted.

3.1.4 Comparison of Feature Sets

In this section an overview of the classification performance of feature sets on validation images
is given. For each experiment, the number of positive and negative samples is fixed to 5000
cases which are randomly sampled from the ICDAR 2003 training images. Furthermore 5000
positive and negative holdout samples are sampled for calibrating the AdaBoost soft-cascade.
The number of weak learners is fixed to 200 and the maximum depth of the trees is fixed at 5.
As it is later shown, performance for the feature set with the highest dimensionality saturates at
about 5000-10000 positive samples and an AdaBoost ensemble with these hyperparameters is
for the given task optimal.

For each feature set false positives are mined over a set consisting of about 1000 non-text
images. In each bootstrapping iteration 10000 sampled hard negatives are added to the pool of
training samples and the AdaBoost classifier for the feature set is trained from scratch with this
bigger pool of training samples.

For evaluating the classifier in isolation from the remaining system, an evaluation method
proposed by Coates et al. [15] is used. Each pixel inside a text bounding box is assigned a
positive label, and each pixel outside a text bounding box is assigned a negative label. From
the response maps a precision-recall curve is then swept out by thresholding the responses with
several thresholds. For images having no responses 100% precision is assumed and 0% recall.

For each feature set several bootstrapping iterations are done. After each iteration the feature
set is evaluated on the validation set and precision, recall, F-score and Area Under Curve (AUC)
are recorded for the best threshold.

The performance of each feature set in question and the influence of the number of boot-
strapping iteration is shown in Table 3.1. The precision recall curves are shown in Figure 3.10.
The proposed feature set outperforms the MACeLBP and HOG feature sets. Furthermore 1-2
bootstrapping iterations are sufficient for reaching optimal performance. Sampling more hard
negatives reduces recall and improves precision. Mining no hard negatives in images results in
insufficient performance. It can be seen that texture based features outperform gradient based
features.
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Feature Set # FP AUC Precision Recall F-Score
Proposed 5000 0.489 0.429 0.630 0.511
Proposed 15000 0.701 0.671 0.655 0.663
Proposed 25000 0.651 0.739 0.592 0.657
MACeLBP 5000 0.494 0.463 0.602 0.524
MACeLBP 15000 0.651 0.628 0.600 0.613
MACeLBP 25000 0.650 0.623 0.601 0.612
MACeLBP 35000 0.638 0.632 0.588 0.609
ChnFtrs 5000 0.382 0.356 0.550 0.432
ChnFtrs 15000 0.596 0.661 0.545 0.597
ChnFtrs 25000 0.594 0.644 0.577 0.609
ChnFtrs 35000 0.576 0.665 0.547 0.600
ChnFtrs 45000 0.561 0.632 0.530 0.577
HOG 5000 0.368 0.380 0.489 0.428
HOG 15000 0.588 0.573 0.596 0.584
HOG 25000 0.587 0.605 0.565 0.584
HOG 35000 0.567 0.595 0.539 0.565

Table 3.1: Validation image results on the best two feature sets.

Figure 3.10: Precision and recall curves of several feature sets.
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3.1.5 Experiments on the Number of Initial Positive Samples

For the best performing feature set experiments for choosing the number of initial positive sam-
ples are conducted. Similar to the experiments in the previous section, the classifier is trained
from an initial working set of an equal number of positive and negative samples. The initial size
of the positive samples in this experiments are 2500, 5000, 10000 and 20000.

Several bootstrapping iterations over a set of images containing no text patches are done
until the F-Score on the holdout validation images decreases. Results are shown in Table 3.2 and
Figure 3.11. The performance increases with a bigger set of positive samples until it saturates
between 5000 and 10000 positive samples. Furthermore, for bigger initial training set sizes more
hard negatives are mined in training images. Since there are only about 700 different textlines
from which the classifier learns to detect different shaped text, the performance saturates. Due to
this limitation, at about 20000 positive samples the performance slightly decreases, since there
are more hard negatives in the training set, compared to the experiment with 10000 samples.

Positive Samples # False Positives F-Score
2500 12500 0.647
5000 15000 0.663
10000 30000 0.676
20000 40000 0.669

Table 3.2: Influence of the number of positive training samples on the validation set perfor-
mance.
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Figure 3.11: Precision and recall curves for training set sizes of 2500, 5000, 10000 and 20000
positive samples.

3.1.6 Experiments on the Classifier Hyperparameters

The proposed AdaBoost algorithm has two hyperparameters to tune: the number of weak learn-
ers and the maximum depth of the decision trees. In previous work decision trees are proposed
as weak learners. Depth of trees is set to 1 (decision stumps) [90], 2 [67] or 5 [53]. Therefore
experiments with this 2 hyperparameter configurations are conducted. For the number of weak
learners, a logarithmical grid of 100, 200, 400, 800 and 1600 learners is chosen. As training set
a bootstrapped training set mined with an AdaBoost classifier consisting of 200 weak learners is
chosen. The set consists of 5000 positive samples and 15000 negative samples.

The results are shown in Table 3.3 and Figure 3.12. The performance of the feature set
is stable across a variety of different hyperparameters. For deeper trees a lower number of
weak learners is required to get comparable performance to shallower trees. Furthermore, the
AdaBoost learning algorithm does not overfit on the parameter grid analyzed. Since more weak
learners require higher computational effort at classification and training time, a compromise of
200 weak learners and depth 5 decision trees is chosen as hyperparameters for the final system.

3.2 Connected Component Labeling

Text confidence maps provide an approximate location of the textline which is shown in Figure
3.13. The responses overlap with background noise in the top and bottom part of the image.
When the accumulated responses are processed by smearing techniques on the gradient magni-
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Depth # Trees AUC Precision Recall F-Score
2 1600 0.70 0.67 0.66 0.66
2 800 0.71 0.65 0.67 0.66
5 800 0.69 0.69 0.63 0.66
5 200 0.70 0.69 0.63 0.66
5 1600 0.68 0.69 0.63 0.66
2 400 0.70 0.66 0.65 0.66
5 400 0.70 0.67 0.64 0.66
5 100 0.69 0.67 0.64 0.65
1 800 0.68 0.68 0.63 0.65
1 1600 0.68 0.64 0.67 0.65
2 200 0.69 0.66 0.63 0.65
1 400 0.68 0.64 0.65 0.65
1 200 0.66 0.64 0.62 0.63
2 100 0.67 0.60 0.65 0.63
1 100 0.63 0.63 0.59 0.61

Table 3.3: Performance of different Hyperparameters on the validation set.
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Figure 3.12: Performance of different Hyperparameters on the validation set.
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tude image as proposed by Anthimopoulos et al. [2], a box for a horizontal edge above “PostPak”
and a enlarged box for the text “Office” is retrieved.

(a) Input image. (b) Accumulated responses. (c) Thresholded responses.

(d) Boxes retrieved by a smearing tech-
nique on gradient magnitude image.

(e) Boxes retrieved by the method pro-
posed.

Figure 3.13: Exact localization issues response-maps.

Since the evaluation criteria requires pixel-accurate word-level bounding boxes, a segmen-
tation is performed However, regions overlapping with confidence maps contain background
noise. Hence, machine learning techniques are used to label CCs as either text or non-text.

For segmentation MSER [55] are used, which are proposed in several text detection systems
[62, 78, 10]. As opposed to segmentation approaches in document analysis such as Otsu [66] or
Niblack [64], MSER provide a multi-segmentation of the image. Hence, more candidate regions
are extracted which are classified by a machine learning pipeline as either text or non-text. Fur-
thermore, Neumann et al. [62] shows that extracting ERs on color-channels (RGB and HSI) and
intensity gradient-image increases the character detection rate of ERs to 94.8%. The intensity
gradient-image is defined as maximum difference of a pixel and its neighbors on the I-channel of
the HSI color representation. Since the proposed labeling-pipeline is computationally expensive,
MSER on the grayscale image and the U, V channels of the LUV colorspace representation of
the image are extracted. The reason for this is shown in Figure 3.14. The image has a luminance
gradient in the grayscale image and thus cannot be segmented with MSER on the grayscale
image. On the L and U channel of the LUV representation, however, the text does not have a
gradient and hence can be segmented.

MSER are first pruned against thresholded text confidence maps by 0.1 ×MV where MV
is the maximum value of the response map. Next, several features are extracted for each region,
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(a) Color image. (b) Grayscale Image. (c) U channel of the
LUV representation.

(d) V channel of the
LUV representation.

Figure 3.14: Different color-channels of an image with a luminance gradient.

which are used by a Random Forest [7] and SVM [8] ensemble to predict a confidence with
which the region is a text-region. Overlapping MSER are removed by using the component-tree
provided by the algorithm. From the remaining regions a graph is constructed by linking com-
ponents close to each other. Two components are close to each other if the following condition
is met [67]:

dist(i, j) < 2 ·min(max(wi, hi),max(wj , hj)) (3.7)

where wi, hi are width and height of component i and dist(i, j) is the euclidean distance
between centroids of components i and j.

A CRF is used to label the nodes of the graph by combining text-confidences with geometric
information about the neighboring CCs. Pan et al. [67, 68, 69] shows the effectiveness of
CRFs for CCs labeling in scene text. Furthermore, CRFs combine unary and, in this method,
pairwise features to make a decision. Since adjacent text has similar properties like color, bottom
alignment, . . . , these neighboring information helps to distinguish text from non-text.

3.2.1 Maximally Stable Extremal Regions

Matas et al. [55] propose MSER for stereo matching. MSER is a region detection method,
which detects regions invariant to monotonic illumination changes and affine transformations.
The MSER algorithm works as follows: The grayscale image is thresholded several times with
increasing thresholds t. Each thresholded image consists of several CCs which are called ER.
ERs in images of different thresholds form a parent-child relationship where child-regions are
nested in parent regions. Hence, a component-tree is build. LetQ1,Q2, . . .Qn be a sequence of
nested ERs. For each ER Qi a stability measure q(i) is defined as follows:

q(i) =
|Qi+∆\Qi−∆|

|Qi|
where | · | denotes the area of a region, A\B denotes the set of pixels in A which are not

in B, and ∆ is a parameter of the method. A larger ∆ results in less regions retrieved, because
a region i has to be stable over a larger grayscale range. Hence, ∆ is set to 1 for the proposed
system. q(i) measures the area of change of the regions Qi−∆ and Qi+∆, normalized by the
region Qi. Hence, ERs having a local minima of q(i) are defined as MSER.
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The algorithm as explained above detects MSER which are local minima in the grayscale
image. To detect local maxima, the grayscale image is inverted and the algorithm is applied
again.

In the system proposed MSER are extracted from the grayscale, U and V image. To effi-
ciently prune overlapping MSER the component-tree is used. Leaf nodes are propagated up the
hierarchy, replacing their parents if the maximum of their confidence is bigger than the confi-
dence of the parent. Since the MSER algorithm detects one component tree for each pass, the
components of 3×2 = 6 component trees are pruned against each other. Hence, components Ci

andCj are replaced by the one with the one with the bigger confidence if the following condition
is holds:

|CCi ∩ CCj |
|CCi ∪ CCj |

> 0.4

where ∩ is the intersection of the components and ∪ the union of the components. The
threshold of 0.4 is found experimentally by optimizing the F-score on the ICDAR sample set.

3.2.2 Feature-Set

Since the system proposed uses discriminative models and graphical models for CC labeling, the
feature-set consists of unary features computed for single CCs and pairwise features for pairs of
CCs. The feature-pool is a combination of features proposed by Neumann et al. [62], Pan et
al. [67, 68, 69] and Epshtein et al. [24], extended with 3 features derived from the minimum
area rectangle: area over minimum area rectangle area, minimum area rectangle compactness
and minimum area aspect ratio. The list of the 14 features used is shown in Table 3.4, where C
denotes a set of pixels corresponding to a CC and | · | denotes the area of the CC. w and h are the
width and height of the component. Furthermore, P (C) denotes the set of pixels on the contour
of C, H(C) denotes the convex hull of C and SW (C) the mean stroke width of C. For features
fitting a minimum area rectangle, wmr and hmr denotes the width and height of this rectangle.

The stroke width of a MSER is estimated with the SWT operator proposed by Epshtein et al.
[24]. The SWT is performed on Canny-edges and the gradient image. Hence, SWT-computation
is fast and does not need to be repeated for every MSER, which is desirable for images consisting
of several thousands of regions. Since the SWT is performed on Canny-edges and the gradient
image, regions detected by Canny-edges differ from MSERs. This is illustrated in Figure 3.15.
The smaller ’A’ is detected by the MSER-detector and edges of the bigger ’A’ are detected by
the Canny edge detector. Non-negative stroke-entries of the SWT image are used to compute
the proposed stroke width features. Since the SWT is computed in two passes, the stroke width
image with the most non-negative overlapping entries is used for feature computation.

For the pairwise features a combination of features proposed by Pan et al. [67, 68, 69]
and Epshtein et al. [24] is used. Let wi, hi denote the width and height, xi, yi the centroid
coordinates, ti, bi the y-coordinate of the upper boundary and the lower boundary and ci the
RGB-color vector of a CC Ci. The proposed feature-set is shown in Table 3.5.

MSER regions on the ICDAR 2003 training set are labeled as either text or non-text. Unary
and pairwise features are extracted. On the unary features a discriminative model is trained to
classify a CC as either text or non-text. On pairwise features three one-vs-all RF models are
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aspect ratio a = w
h

contour gradient
1

|P (C)| ·
∑

(x,y)∈P (C)G(x, y) where G(x, y)

denotes the gradient magnitude at position (x, y)

area over bounding box
area

|C|
w·h

area over convex hull area |C|
|H(C)|

compactness |C|
|P (C)|2

bounding-box compact-
ness

w·h
|P (C)|2

euler number

three horizontal crossings as proposed by Neumann et al. [62]

stroke width standard de-
viation

mean stroke width SW (C)
max(w,h)

area over minimum area
rectangle area

|C|
wmr·hmr

minimum area rectangle
compactness

wmr·hmr
|P (C)|2

minimum area rectangle
aspect ratio

wmr
hmr

Table 3.4: Proposed unary feature-set.

trained, since two adjacent CCs are either labeled as both text, text and non-text, or both as
non-text. The predictions of these models are combined with a CRF which combines unary and
pairwise information to label a component as either text or non-text. The CRF is trained with
dlib [42].

For MSER labeling in context of text detection a high recall of about 95% [62] is desired.
Hence, models are compared by precision at a fixed recall of 95%.

RBF (RBF)-SVMs and RFs are considered for discriminative models. RFs are tree ensem-
bles and hence can cope with inputs having diversity of ranges. Furthermore RFs, predict a
probability which is bounded in [0, 1]. By bounding the predictions in a range no further nor-
malization is required when the predictions are used for training a CRF. RBF-SVMs are applied
to several real-world computer vision problems [17, 70, 98, 96, 29, 57]. The RBF-SVM is cali-
brated to output probability predictions between [0, 1], such that it can be combined with the RF
by simple averaging. Inputs for the SVM are normalized to have zero mean and unit standard
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Figure 3.15: MSER (gray) and edges detected by Canny are not overlapping. The stroke widths
are densely computed by the SWT [24].

horizontal distance |xi−xj |
max(wi,wj)

vertical distance |yi−yj |
max(hi,hj)

difference to upper-boundary |ti−tj |
max(hi,hj)

difference to lower-boundary |bi−bj |
max(hi,hj)

color difference ‖ci − cj‖2
vertical ratio max(hi,hj)

min(hi,hj)

horizontal ratio max(wi,wj)
min(wi,wj)

stroke width ratio min(SW (Ci),SW (Cj))
max(SW (Ci),SW (Cj))

vertical overlap min(bi,bj)−max(ti,tj)
max(hi,hj)

Table 3.5: Proposed pairwise feature-set.

deviation.
Cross-validation results for recall-values of about 95% for each model are shown in Table

3.6.

3.3 Textline Grouping

The next step in the text-detection system is grouping text-components to textlines. Since there
are false positive text-components from the previous step (see Figure 3.16), a robust method
for grouping components to textlines is proposed. In the literature for region based methods,
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Method Precision Recall
CRF 0.825 0.955
RF-SVM 0.703 0.955
RF 0.686 0.955
SVM 0.546 0.955

Table 3.6: Cross-validation results for each model at recall of 0.955.

thresholds [24, 11, 60] optimized on the training set are proposed, as well as SVMs [61] and dis-
tance metric learning with energy functions [67, 68, 69]. Since parameter search on a grid for 9
features is computationally expensive on a single machine, for simplicity reasons a combination
of a SVM and thresholds found by gridsearch on the ICDAR sample set is done.

First, two components are considered for grouping if they are close to each other as defined
in Equation 3.7. Next, to avoid grouping text components with non-text components a linear
SVM is trained to classify a pair of CCs as belonging to the same text line or not.

Figure 3.16: The grouping stage has to be robust against false positives from the labeling stage.

The SVM is trained on the pairwise features presented in Section 3.2.2. The positive training
set consists of adjacent CCs in the same textline. The negative training set consists of positive CC
pairs which are close to each other but in different textlines, or CC pairs which are close to each
other and having different class labels. These three cases are illustrated in Figure 3.17. Green
lines correspond to positive samples and red lines to negative samples. The edges connecting
the first letters of “computer” to ’M’ in the top part of the figure are negatives, since the textline
differs. Edges from ’H’, ’S’, ’B’, C’ to non-text regions are examples for the second subcategory
of negatives.

In addition to the SVM prediction, the minimum vertical overlap and horizontal ratio is
constrained by 0.4 and 2.0 respectively. These parameters are found by optimizing F-score on
the ICDAR sample dataset.

Textline candidates which are grouped according to these rules are pruned with several rules
to eliminate false positives. First, as proposed by Epshtein et al. [24], groups consisting of two
or fewer CCs are removed.

Next, groups with a lower confidence score than a threshold gc are discarded. Due to mis-
classification errors, textline candidates contain non-text components which are shown in Figure
3.18. These non-text components are assigned a low-confidence score by the discriminative
model and reduce the average confidence score in candidate textlines. Since the successive steps
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Figure 3.17: Adjacent text-CCs in the same textline are positive cases (top and bottom), adjacent
text-CCs in different textlines (top) and adjacent text and non-text CCs (bottom) are negative
cases.

in this algorithm are designed to be robust against such noise, low-confidence CCs below gc are
ignored if by removing them the area of the textline does not shrink below 0.9× al where al is
the area of the textline. This allows to set higher thresholds for gc and increase the robustness of
the performance on the ICDAR sample set by 3% on F-score.

Finally, overlapping groups are removed. Let Gi denote group i, Gj group j and | · | the
bounding box area of a component. Gi is overlapping with Gj if the following condition holds:

AGi∩Gj

AGi

> 0.6

where AGi∩Gj is the area of intersection of the CCs of each group as defined by:

AGi∩Gj =
∑

CCi∈Gi,
CCj∈Gj

|CCi ∩ CCj |

and AGi is defined as:

AGi =
∑

CCi∈Gi

|CCi ∩ CCj |

Gi is discarded if it is overlapping with Gj and its confidence is lower than Gj and vice
versa.
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Figure 3.18: False positive CCs in a textline have low-confidence scores.

3.4 Word Splitting

The last step of the text detector is splitting grouped textlines into words. Two models are
considered for splitting textlines into words. The first model classifies a gap between letters as
either word-gap or non-word-gap.

The second model is motivated by the fact that natural scene text has variation in letter-
spacing (see Figure 3.19). Distances between words a clustered by k-means into two clusters.
Distances belonging to the smaller cluster are non-word-gaps and distances belonging to the
bigger cluster are word-gaps.

This works if the textline consists of several words. Since natural scene text has short
textlines consisting of single words a method is needed which distinguishes single-word textlines
from multi-word textlines. In textlines with several words the distance between the two cluster-
centroids is large compared to the height of the letters and the median distance between com-
ponents. Hence, a linear SVM is trained to distinguish these two cases with the following two
features:

• centroid difference over height: |ci−cj |H where H denotes the height of the textline.

• centroid difference over median distance: |ci−cj |MD where MD denotes the median distance
between the components.

The training set is extracted from the ICDAR 2003 training images.
If the SVM classifies the textline as multi-word textline, the k-means textline splitting al-

gorithm is applied. Otherwise a bounding box for the whole textline is returned. Furthermore,
textlines consisting of only a single gap are considered as single-word textline.

Since in several candidate texlines false positives are persistent, a robust method for calcu-
lating the distance between components is used.

Figure 3.19: Text in natural scene images has varying letter spacing.

To compute distances, projection profiles on the segmented components are used to estimate
distances between components. Since components are connected with background noise or have
a serif typeface, distances on the vertical projection profiles are non-uniform in words. Hence,
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projection profiles are thresholded by the 0.25 quartile of the histogram. To avoid splitting
characters with small stroke like ’U’, the bounding boxes of the CCs are narrowed on the border
of the box as shown in Figure 3.20. The vertical projection profiles and the 0.25 quartile for the
word is calculated. Each bounding box is narrowed up to 0.1 × w where w is the width of the
box. The distances between the vertical projections of the boxes are used for further processing.

Figure 3.20: Vertical projection profiles for word splitting.

For the k-means approach a further heuristic is introduced which prohibits splitting textlines
into words if the number of word-gaps is larger than the number of non-word-gaps. This reduces
the impact of misclassification errors of the SVM. If a single-word textline is misclassified as
multi-word the textline is split by k-means as illustrated in Figure 3.21. By assuming that a
textline consists of more non-word gaps than word-gaps, these errors are removed.

Figure 3.21: Splitting due to SVM misclassifications.
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The model predicting word gaps as component distance over height achieves a cross-validation
accuracy of 88.6%, and the combined model achieves a crossvalidation-accuracy of 97.5% for
predicting word-gaps.

3.5 Summary

In this chapter the text detection algorithm is presented. The detection task is split up in a
confidence map generation step, a connected component labeling step and a textline grouping
and word-splitting step.

First confidence maps are generated by a sliding window classifier which uses a combination
of LTP [85] and MACeLBP [2]. It is shown that on holdout validation images the feature set
outperforms MACeLBP [2], HOG [67] and a random block HOG variant proposed by Dollar et
al. [21]. Furthermore, size of the training-set, influence of hyperparameters are discussed.

The extracted confidence maps are thresholded and used for connected component labeling.
MSERs are extracted on the grayscale, U and V image, pruned with the thresholded maps and
several features are computed from this regions. A graph from the components is built which is
labeled with a CRF. The CRF utilizes unary predictions from a SVM-RF ensemble and pairwise
predictions from three Random Forests classifiers.

Labeled CCs are grouped to textlines with a linear SVM. Low-confidence textlines and
textlines consisting of fewer than 2 components are pruned.

Finally, textlines are classified as multi-word and single-word. Multi-word textlines are split
by k-means into several words.
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CHAPTER 4
Text Recognition

In this chapter an overview of the text recognition system is presented. The text recognition part
is responsible for recognizing cropped words given a list of candidate words from a dictionary.
This problem is divided into two tasks. First a 1D sliding window classifier predicts a candidate
character sequence for a textline. This candidate predictions are integrated with a language
model which incorporates a dictionary to recognize the final word.

The remainder of this chapter is structured as follows. In Section 4.1 the sliding window
classifier is discussed. In Section an overview of 4.2 the language model used to infer the word
is given. Finally, in Section 4.3 a summary of the recognition module is given.

4.1 Sliding Window Classifier

The task of the sliding window classifier is to predict the character shown in a cropped win-
dow. For text classification deep CNNs are used, since they outperform handcrafted features on
large datasets in several classification tasks including scene character and scene digit recogni-
tion [45, 14, 14, 86, 35, 94]. Furthermore, the network proposed is trained with backpropagation
without unsupervised pretraining. Recent work shows that such networks have competitive per-
formance with unsupervised pretrained and finetuned models and outperform only unsupervised
pretrained models [41]. Since unsupervised pretraining with supervised finetuning is compu-
tationally expensive, and have a larger hyperparameter-space to explore, in this work a CNN
trained with backpropagation is proposed.

The CNN is used as 1D sliding window classifier on cropped word images to create candidate
character predictions, which are used in the prediction step to infer the most plausible word in a
dictionary.

The remainder of this section is structured as follows. In Section 4.1.1 an overview of CNNs,
backpropagation and Dropout is given. In Section 4.1.2 the training set is discussed. In Section
4.1.3 network architecture and hyperparameter choice is discussed.
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4.1.1 Convolutional Neural Network Overview

This section provides an overview of Feed Forward ANNs, backpropagation, CNNs and Dropout.
The notation used in figures and equations follows the conventions of Bishop et al. [5].

Feed Forward ANNs are classifiers which consist of several layers of neurons which is shown
in Figure 4.1. Neuron activations are computed layer by layer. The activations of the last layer
are the predictions of the network.

xD

zM

yk

x1 y1

z1

wMD wKM

inputs outputs

Figure 4.1: Feed Forward ANNs. (Source: [5])

More formally let xi be an input, the activation of the hidden layer zj is computed as:

zj = h

(
D∑
i=0

wji · xi

)
where h(x) is an activation function and wji are the input-to-hidden weights. For clarity

reasons the bias term is left out.
The output yk for the network in Figure 4.1 is computed by:

yk = g

 M∑
j=0

wkj · zj


where g(x) is an activation function, which is not necessarily the same as h(x), and wkj are

the hidden-to-output weights.
The weights wij and wkj are learned by training on labeled data with backpropagation.

Backpropagation minimizes an error criterion E(w). To minimize this criterion the gradient of
the function E(w) with respect to w is computed, which is then used in a numeric optimization
algorithm such as Stochastic Gradient Descent (SGD) to update the weights. Gradients are
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computed layer by layer starting from the output layer (see Figure 4.2). First, the gradients from
the output layer are backpropagated to the neurons of the hidden layer. Hidden Layer neurons
accumulate all gradients from outgoing connections and propagate the error back to the inputs
of these neurons.

zj

yk

xi wkj

1

k

j
wji

.

.

.

Figure 4.2: Backpropagation in Feed Forward ANNs. (Source: [5]).

More formally, let E(w) = 1
2C
∑K

k=0 ·max(0, 1 − tk · yk)2 be the squared hinge loss,
tk ∈ {−1, 1} the targets for dimension k and yk the activation for the last layer. Then by
applying the chain rule:

∂E(w)

∂wkj
=
∂E(w)

∂ak
· ∂ak
∂wkj

= δk · zj

where δk is defined as:

δk ≡
∂E(w)

∂ak
= C ·max(0, 1− tk · yk) · (−tk)

The partial derivatives for the input-to-hidden weights are computed as follows:

∂E(w)

∂wji
=
∂E(w)

∂ak
· ∂ak
∂aj
· ∂aj
∂wji

= δj · xi

where

δj ≡
∂E(w)

∂aj
=

K∑
k=0

δk ·
∂ak
∂aj

= h′(aj) ·
K∑
k=0

δk · wjk

CNNs are ANNs which have layers with shared weights as illustrated in Figure 4.3 for a one
dimensional CNN. Each neuron in layer li+1 is connected with three neurons in layer li. The
weights between these layers are shared, which is indicated by the colors red, green and blue.

To predict the activations for the next layer a convolution operation on the inputs of the layer
is applied.

Convolutional Layers are followed by a subsampling operation, where responses are pooled
in a local receptive field to a single value by computing mean, max, Lp-pooling [76], or sampling
[102].
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li+1

li

Figure 4.3: Illustration of an one dimensional CNN. (Source: [83])

Dropout is a regularization method proposed by Hinton et al. [40] for regularizing ANNs by
randomly setting inputs during training to 0. This can be seen as efficiently training an ensemble
of 2N different networks, where N is the number of neurons in the network. During prediction
the geometric mean of these 2N networks is computed efficiently by scaling the weights by 0.5.

4.1.2 Training Set

Since labeled datasets such as MNIST [50], CIFAR-10 [44], CIFAR-100 [44], SVHN [59] and
ImageNet [19] on which CNNs are applied range from 50000 to over 1 million samples and the
ICDAR training set consists of about 6000 samples for 62 classes, a synthetic text-dataset for
training is created. Synthetic training sets for text recognition are propsed by Wang et al. [92],
Yildirim et al. [101] and Wang et al. [94] for training character classifiers for natural scene text.

Similar to Wang et al. [94] and Yildirim et al. [101] from a database of about 500 fonts
a synthetic dataset consisting of 50000 samples is generated (see Figure 4.4). Each training
patch shows a centered character with 0-2 adjacent characters. The text has random text-color,
is blurred by a Gaussian filter with probability 0.05, perspectively distorted and blended with
a natural scene image. The font-database consists of no small-caps fonts. Lowercase letters
which do not have ascenders are padded with 3-7 pixels on the top border of the patch. The
distribution of characters in the synthetic dataset matches the distribution of characters in the
ICDAR training set. Optimal distortion parameters are found by optimizing performance by
training a RF classifier on HOG features (4 × 4 pixel cell size, 8 × 8 pixel overlapping blocks
with a stride of 4 pixels) on the synthetic training set and maximizing accuracy on the ICDAR
training set. The reason for the choice of HOG features and RF for optimizing performance
is computational expense of CNNs. HOG parameters are found by optimizing accuracy on the
ICDAR training set.

The patch-size is set to 30 × 30 pixels, which is of a similar size proposed by Wang et al.
[94] (32× 32), Yildirim et al. [101] (24× 24) and Wang et al. [92] (48× 48).

For training the ICDAR 2003 training set is split in two subsets. One half is used as holdout
validation set for hyperparameter estimation. The other half is perspectively distorted, blurred
and added to the training set. The final training set consists of about 60000 samples.

4.1.3 Network Architecture

An overview of the proposed network architecture is shown in Figure 4.5 and is similar to other
architectures proposed for computer vision tasks [49, 45, 40, 35]. The network consists of
three convolutional layers with a kernel size of 5 × 5 pixels. The number of different feature
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Figure 4.4: 100 sampled synthetic training samples.

maps learned per convolutional layer is 32-128-128 which is constrained due to computational
reasons. Each convolution layer is followed by a max-pooling operation which operates on 3×3
receptive fields with a stride of 2× 2. Hence, receptive fields overlap on the border. Each input
for a convolution layer is padded by a border of 2 such that the result of the convolution has
the same dimension as the input. The convolutional layer is followed by a fully connected layer
consisting of 2048 neurons. The last layer is a classification layer. For activation ReLUs (g(x) =
max(0, x), where g(x) is the activation) are used, since they are faster to train and perform better
for some problems compared to sigmoids [45]. As proposed by Wang et al. [94] and Tang et al.
[86], for the classification layer the squared SVM-Hinge loss (

∑N
i=1max(0, 1− yi · ti)2, where

ti ∈ {−1, 1} are the ground-truth labels and yi are the predictions) is backpropagated.

Convolution Layer Max-Pool Layer Convolution Layer Max-Pool Layer Convolution Layer Max-Pool Layer

Input
30x30

Feature Maps
30x30x32

Feature Maps
15x15x32

Feature Maps
15x15x128

Feature Maps
7x7x128

Feature Maps
7x7x128

Feature Maps
3x3x128

Fully Connected
2048

SVM
62

FC Layer SVM Layer

Figure 4.5: Proposed CNN architecture, adapted from LeCunn et al. [49]

For preprocessing local contrast normalization as proposed by Jarrett et al. [41] is performed.
Patches are normalized within a 7 × 7 window to have zero mean and unit standard deviation.
The network is trained by a modified version of the Pylearn2 library [36] and optimized CUDA
kernels for fast convolutions from Krizhevsky et al. [45].

For regularization the L2 norm of the kernel-weights in convolutional layers and the column
norms of the remaining layers are constrained. Furthermore, layers are regularized by Dropout.
The optimal hyperparameters are found via human guided search on the validation set described
in Section 4.1.2 in about 100 experiments each of which takes 4-8 hours to on a NVIDIA 770
GTX complete. For training the networks the advice of Bengio et al. [3] is followed. First the
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highest learning rate is found with which the network does not diverge. Too high learning rates
result in too high updates of weights which prevent the network from learning anything. Too
low learning rates result in too slow updates and the optimization is subject to get stuck in local
optimums. Then a CNN is trained to achieve 0% training error, with which the capacity needed
to learn the training set is known. Since the network is regularized with Dropout, which changes
the effective size of the network to 50% during training, the size of the second and third convo-
lution layer as well as the last hidden layer are doubled. On the bigger network the learning rate
is adjusted to the highest value with which the network does not diverge. The remaining param-
eters are found by a combination of random gridsearch [4] and coordinate descent optimization
of individual parameters. Finally, the termination criterion of the network is relaxed, so that the
network trains for a larger number of epochs. Several experiments are conducted to find out if
by locally changing any regularization parameters a better validation error is achieved.

Hence, the final model is trained by constraining the L2 norm for the convolutional layers
to 1.5, 1.9 and 1.9 and the L2 norm for the remaining layers to 1.9. Dropout is applied with
probability of 0.1 in convolutional layers and probability of 0.5 in fully connected layers.

The learned filters are shown in Figure 4.6. The first layer consists of oriented edge detectors.
In the second layer filters for corners and rounded contours are learned. The second-layer filters
are visualized numerical maximization of the input by the method used by Le et al. [47].

Figure 4.6: Random sample of layer 1 and layer 2 filters learned by the network.

4.2 Cropped Word Recognition

To predict a word from the confidence scores of the CNN the method proposed by Wang et al.
[94] is used, since it is simpler compared to other methods proposed by Mishra et al. [57] and
Wang et al. [92, 94].

The result of the sliding window classifier is a 62 × N dimensional response matrix M̃ ,
where N is the number of sliding windows in the cropped word patch. Since word recognition is
evaluated case-insensitive, an augmented 36 ×N dimensional response matrix M is computed
where predictions for case-insensitive letters are defined as maximum over the lowercase and
uppercase letters.

Next, non-maxima-suppression as proposed by Wang et al. [94] is done. For non-maxima-
suppression a confidence score cj for each column of the matrix M is computed. The confidence
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cj for column j is defined as difference of the highest and second highest response over the 36
classes in column j. To obtain candidate characters, non-maxima on the confidence scores cj
in 1 × 4 window are suppressed. Furthermore entries of cj below a confidence threshold tc are
suppressed. For suppressed entries of cj , the columns j of matrix M are set to −∞.

To predict the final word, Wang et al. [94] propose a Viterbi-style algorithm, which mini-
mizes the following score for a given word w as follows:

Sw
M = maxlw∈Lw

 |w|∑
k

M(wk, l
w
k )


where Sw

M is the score of a dictionary word w given a matrix M , lw is an alignment vector
between characters of the word w and positions on the response matrix. lwk = n means that the
kth character in the word is assigned to the nth column of M.

Since choosing the word with best score according to Sw
M from a dictionary does not work,

Wang et al. [94] introduces additional penalty terms.
Word-assignments which do not start or end at the border of the response map are penalized

by dl+dr
l · pb, where dl is the distance of the first assignment to the left border of the response-

matrix, dr is the distance from the last assignment to the right border of the response-matrix, l
is the number of columns of the response-matrix and pb is a parameter.

Furthermore, assignments are penalized by the standard-deviation of the character distances.
Let x1, x2, . . . ,xn denote the columns of matrix M which are assigned to word w. Then di =
|xi+1 − xi|, i ∈ [1, n − 1] denotes the distance between assignments. For the set of distances
di, i ∈ [1, n− 1] the standard deviation σd is computed. The score is hence penalized by σd · ps
where ps is a parameter.

If a word does not contain an ’i’ or ’l’ it is penalized for an average gap-size smaller than 8
pixels by max(0, 8.0− l

|w|) · pn, where l is the number of columns of the response-matrix, and
pn a parameter.

Finally, adjacent assignments which deviate from 8 pixels are penalized by−e−
(|xi−xi+1|−8)2

4 ·
pa where xi denotes a column of matrix M which is assigned to the letter i of word w and pa is
a parameter.

The parameters tc, pb, ps, pn, pa are found by random parameter search [4] on the cropped
word training set on a logarithmic grid of {0} ∪ [10−2, 10] for the parameters tc, pa, ps, a grid
of [10−2, 102] for pn, and a grid of {0} ∪ [10−3, 102] for pb.

4.3 Summary

In this chapter the text recognition system is presented. It consists of a one-dimensional sliding
window classifier which recognizes characters in a 30 × 30 window. The detector is slided
horizontally over a cropped word. Non-maxima of the recognizer-responses are suppressed. A
Viterbi-style algorithm proposed by Wang et al. [94] is used to compute a matching score for
a candidate word from a dictionary. The best-matching candidate word is the prediction for the
cropped word image patch.
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CHAPTER 5
Results

In this chapter the performance of the system proposed is assessed experimentally. To compare
this work with other methods, it is evaluated on several publicly available datasets where ground-
truth data is available. The remainder of this chapter is structured as follows. Section 5.1 gives
an overview of the text detection results on the ICDAR 2003 [84] and ICDAR 2011 [78] datasets.
In Section 5.2 the character recognizer and cropped word recognizer are evaluated on the ICDAR
2003 [84] and the ICDAR 2011 [78] dataset and the SVT [92] dataset. Section 5.3 shows end-to-
end scene text recognition results. In Section 5.4 errors of the end-to-end system are analyzed.
Finally, Section 5.5 summarizes this chapter.

5.1 Text Detection Results

In this section quantitative comparisons of the text detector on the ICDAR 2003 and ICDAR
2011 dataset with other methods is done. Furthermore, to compare the effectiveness of different
proposed models in Section 5.1.3 experiments with different labeling classifiers are done on the
ICDAR 2003 dataset. For each configuration the group threshold gc, maximum height ratio,
minimum vertical overlap are fixed to values optimized on the ICDAR sample set. For discrimi-
native models a lower confidence threshold lc is introduced and optimized on the ICDAR sample
set. CCs in the CC-labeling stage, which are below this threshold are removed.

Next, in Section 5.1.4 the influence of the UV-color channels of the LUV image representa-
tion are discussed on the ICDAR 2003 dataset on the best classifier combination. The parameters
gc, maximum height ratio, minimum vertical overlap are fixed to values found on the ICDAR
sample set. The system is evaluated in a setting where CCs are only extracted from the grayscale
image, and in a setting where CCs are extracted from grayscale L and U image.

In Section 5.1.5 the influence of the word splitting method is compared against a splitting
method which classifies gaps between CCs based on distances-over-height as feature as de-
scribed in Section 3.4.

Next, to compare the influence of response maps on the text-detector, the proposed RF-SVM-
CRF labeling system is evaluated on response maps created by an AdaBoost classifier trained
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on feature sets presented in Section 5.1.6. Furthermore the system is evaluated on ground-truth
response-maps and blank response maps, simulating a setting with a perfect sliding window
classifier and a setting with no sliding window classifier at all. In these experiments gc and the
threshold of the response map is swept out to create a precision-recall curve.

Finally, in Section 5.1.7 several errors of the detection module are listed and a quantitative
error analysis on 30 sampled images is conducted.

5.1.1 ICDAR 2003 Results

In this section comparative results with other methods on the ICDAR 2003 dataset are pre-
sented. The system is evaluated according to the ICDAR 2003 evaluation protocol [84] with the
publicly available Deteval tool [97]. The results are shown in Table 5.1. The proposed LTP-
RF-SVM-CRF detector achieves a precision of 0.825, a recall of 0.675 and a F-score of 0.742,
outperforming other methods on this dataset.

Anthimopoulos et al. [2] uses a RF with MACeLBP to create text confidence maps and
smearing techniques on the gradient image to detect word level bounding boxes. The im-
provement over their method is due to a more discriminative featureset and a more robust post-
processing stage.

Pan et al. [67, 68, 69] uses as segmentation a Niblack variant to label CCs. Furthermore,
energy models are used for textline grouping. The improvement is due to a better segmentation
stage.
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Method P R F
LTP-RF-SVM-CRF (Proposed) 0.825 0.675 0.742
Anthimopoulos et al. [2] 0.82 0.61 0.70
Lee et al. [53] 0.66 0.75 0.70
Pan et al. [68] 0.67 0.68 0.69
Gonzalez et al. [34] 0.81 0.57 0.67
Epshtein et al. [24] 0.73 0.60 0.66
Yao et al. [99] 0.68 0.60 0.66
Chen et al. [10] 0.73 0.60 0.66
Robust Reading Competition 2005
Hinnerk Becker 0.62 0.67 0.62
Alex Chen 0.60 0.60 0.58
Qiang Zhu 0.33 0.40 0.33
Jisoo Kim 0.22 0.28 0.22
Nobuo Ezaki 0.18 0.36 0.22
Robust Reading Competition 2003
Ashida 0.55 0.46 0.50
HWDavid 0.44 0.46 0.45
Wolf 0.30 0.44 0.35
Todoran 0.19 0.18 0.18

Table 5.1: Results on ICDAR 2003.

5.1.2 ICDAR 2011 Results

On the ICDAR 2011 dataset the proposed method is evaluated according to the ICDAR 2011
evaluation protocol [78] with the publicly available Deteval tool [97]. The method proposed
achieves a precision of 0.845, a recall of 0.702 and a F-Score of 0.767 (see Table 5.2).

The improvement over Neumann et al. [62] is achieved by combining text confidence maps
with better labeling model.
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Method P R F
LTP-RF-SVM-CRF (Proposed) 0.845 0.702 0.767
Neumann et al. [62] 0.731 0.647 0.687
Yao et al. [99] 0.776 0.555 0.647
Gonzalez et al. [34] 0.727 0.56 0.632
Robust Reading Competition 2011 [78]
Kim et al. 0.83 0.625 0.713
Yi et al. 0.672 0.5810 0.623
TH-TextLoc System 0.670 0.577 0.62
Neumann’s Method 0.689 0.525 0.60
TDM_IACS 0.635 0.535 0.581
LIP6-Retin 0.63 0.507 0.558
KAIST AIPR System 0.446 0.597 0.510
ECNU-CCG Method 0.35 0.383 0.366
Text Hunter 0.501 0.26 0.342

Table 5.2: Results on ICDAR 2011.

5.1.3 Comparison of Labeling Classifier

To assess the performance differences of the labeling classifier presented in Section 3.2, the
proposed classifiers are evaluated on the LTP feature set, since it has the highest validation set
performance as shown in Section 3.1.4. Performance is measured with the ICDAR 2003 eval-
uation protocol and ICDAR 2011 evaluation protocol. The parameters gc, lc are set according
to experiments on the ICDAR 2003 sample set. The results are shown in Table 5.3. Difference
between the best-performing and worst-performing system is 1.3% (F-score). The SVM has an
impact on performance on the metric proposed by Wolf et al. [97] of 3.2%. To illustrate the
reason for these differences, qualitative comparisons for each model against the best performing
LTP-RF-SVM-CRF are done. For each image the difference in F-score (Wolf) to the result of
LTP-RF-SVM-CRF is computed. The top-3 images with highest difference are retrieved and
compared against each other.

Method P R F P (Wolf) R (Wolf) F (Wolf)
LTP-RF-SVM-CRF 0.825 0.675 0.742 0.811 0.661 0.728
LTP-RF-CRF 0.800 0.675 0.732 0.752 0.635 0.689
LTP-RF-SVM 0.790 0.677 0.729 0.777 0.666 0.718
LTP-RF 0.802 0.669 0.729 0.75 0.630 0.685

Table 5.3: Precision Recall and F-scores on the ICDAR 2003 dataset evaluated with the ICDAR
2003 evaluation protocol and the protocol proposed by Wolf et al. [97] which is used for ICDAR
2011 evaluation.

The top-3 images where the LTP-RF-SVM-CRF detector outperforms the LTP-RF detector
are shown in Figure 5.1. Due to the low threshold lc = 0.1, which is found by optimizing
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performance on the ICDAR sample set, RF fails to retrieve low-confidence text-components
which align with text components. Furthermore, since the minimum vertical overlap is higher for
this detector-combination, letter-parts on the boundary are not grouped to textlines (see Figure
5.1e). Half of the letter ’G’ lies outside the image. Hence, the letter is segmented into two
CCs. The lower letter part is not grouped to the textline by the LTP-RF-SVM classifier, since
the vertical overlap of the CC is too small.

(a) Result of LTP-
RF-SVM-CRF
(+0.50).

(b) Result of LTP-
RF.

(c) Input.

(d) Result of LTP-
RF-SVM-CRF
(+0.50).

(e) Result of LTP-
RF.

(f) Input.

(g) Result of LTP-
RF-SVM-CRF
(+0.50).

(h) Result of LTP-
RF.

(i) Input.

Figure 5.1: Qualitative comparison of results for LTP-RF-SVM-CRF and LTP-RF.

Comparisons of the LTP-RF-SVM-CRF detector and the LTP-RF-SVM detector are shown
in Figure 5.2. Errors of LTP-RF-SVM are due to grouping errors as illustrated in Figure 5.2a,
5.2b and 5.2c. In the first figure the letter ’6’ is split into two components. The LTP-RF-
SVM classifier fails to group the component to the textline resulting in a smaller bounding
box. According to the evaluation protocol proposed by Wolf et al. [97] the retrieved box is
not detected. In the second letter a part of letter ’G’ is not grouped to the textline due to too
small vertical overlap, which results in a lower F-Score for the LTP-RF-SVM method. In the
last picture the same problem happens with part of the letter ’N’. On the retrieved textline the
word splitting algorithm fails, since the gap between ’E’ and ’S’ is assigned to the intra-word
cluster by k-means.

Comparisons of LTP-RF-SVM-CRF and LTP-RF-CRF are shown in Figure 5.3. The re-
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(a) Result of LTP-
RF-SVM-CRF
(+1.00).

(b) Result of LTP-
RF-SVM.

(c) Input.

(d) Result of LTP-
RF-SVM-CRF
(+0.50).

(e) Result of LTP-
RF-SVM.

(f) Input.

(g) Result of LTP-
RF-SVM-CRF
(+0.40).

(h) Result of LTP-
RF-SVM.

(i) Input.

Figure 5.2: Qualitative comparison of results for LTP-RF-SVM-CRF and LTP-RF-SVM.

trieved boxes are the same as for the LTP-RF detector. Errors are due to grouping errors and
misclassifications, which result in errors in the word splitting step (see Figure 5.3h). The letters
of ’STAR WARS’ are not detected by the RF, the part of the letter ’G’ is not grouped to the
textline due to a too small vertical overlap, and in the last image too much background noise is
grouped into the textline, due to which the word-splitting algorithm fails.
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(a) Result of LTP-
RF-SVM-CRF
(+0.50).

(b) Result of LTP-
RF-CRF.

(c) Input.

(d) Result of LTP-
RF-SVM-CRF
(+0.50).

(e) Result of LTP-
RF-CRF.

(f) Input.

(g) Result of LTP-
RF-SVM-CRF
(+0.50).

(h) Result of LTP-
RF-CRF.

(i) Input.

Figure 5.3: Qualitative comparison of results for LTP-RF-SVM-CRF and LTP-RF-SVM.

5.1.4 Influence of UV Color Channels

The influence of detecting MSER regions in the UV color channels is presented in this section.
The best detector LTP-RF-SVM-CRF is applied on just the grayscale image. Performance of the
two systems on the ICDAR 2003 dataset is shown in Table 5.4.

Method P R F P (Wolf) R (Wolf) F (Wolf)
LTP-RF-SVM-CRF-Gray 0.83 0.65 0.732 0.62 0.792 0.693
LTP-RF-SVM-CRF 0.825 0.675 0.742 0.81 0.661 0.728

Table 5.4: Influence on color channels on the ICDAR 2003 dataset.

As Neumann et al. [62, 60, 61] demonstrates, retrieving MSERs from color channels im-
proves performance of the detector. The LTP-RF-SVM-CRF detector achieves an 1% higher
F-score the ICDAR 2003 metric and a 3.5% higher F-score on the metric proposed by Wolf et
al. [97], which is used for evaluation on the ICDAR 2011 dataset. The top 3 images where the
difference in F-score on the metric proposed by Wolf et al. [97] is largest are listed in Figure
5.4. By extracting MSERs from U and V channels, more candidate characters are segmented.
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The grayscale segmentation for the first picture is shown in Figure 5.4c. The character-parts are
not detected by the detector and hence the textline is not retrieved. Characters detected in Figure
5.4g have segmentation errors on the grayscale image and hence are not detected by LTP-RF-
SVM-CRF-Gray. The yellow letters in Figure 5.4l are not a MSER on the grayscale image and
hence not retrieved by LTP-RF-SVM-CRF-Gray.

(a) Result of LTP-
RF-SVM-CRF
(+1.00).

(b) Result of
LTP-RF-SVM-CRF-
Gray.

(c) Grayscale Seg-
mentation.

(d) Input.

(e) Result of LTP-
RF-SVM-CRF
(+1.00).

(f) Result of
LTP-RF-SVM-CRF-
Gray.

(g) Grayscale Seg-
mentation. (h) Input.

(i) Result of LTP-
RF-SVM-CRF
(+0.39).

(j) Result of
LTP-RF-SVM-CRF-
Gray.

(k) Grayscale Seg-
mentation.

(l) Input.

Figure 5.4: Qualitative comparison of LTP-RF-SVM-CRF and LTP-RF-SVM-CRF-Gray.

5.1.5 Influence of Word Splitting

The influence of the proposed word splitting method is assessed by comparing the method with
a version which uses a word-splitting model with distance over component-height as presented
in Section 3.4 (LTP-RF-SVM-CRF-H) The LTP-RF-SVM-CRF-H is outperformed by LTP-RF-
SVM-CRF by 5.4% (6.4% [97]). The reason for this is varying letter spacing of fonts. By
clustering distances by k-means into two clusters, word gaps are assigned to the larger cluster
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independently of the letter-spacing. To avoid splitting single words, this model uses centroid-
distance normalized by the median distance between components as one of its features. Hence,
this feature is invariant to letter-spacing.

In Figure 5.5 a qualitative comparison of splitting models is shown. The k-means method
has less errors on samples where the distance of non-word gaps normalized by the character
height exceeds the threshold found by LTP-RF-SVM-CRF-H for splitting words.

Method P R F P (Wolf) R (Wolf) F (Wolf)
LTP-RF-SVM-CRF 0.825 0.675 0.742 0.81 0.661 0.728
LTP-RF-SVM-CRF-H 0.748 0.638 0.688 0.627 0.706 0.664

Table 5.5: Influence of the proposed word splitting method.

(a) Result of LTP-
RF-SVM-CRF
(+1.00).

(b) Result of LTP-
RF-SVM-CRF-H.

(c) Input.

(d) Result of LTP-
RF-SVM-CRF
(+0.34).

(e) Result of LTP-
RF-SVM-CRF-H.

(f) Input.

(g) Result of LTP-
RF-SVM-CRF
(+0.33).

(h) Result of LTP-
RF-SVM-CRF-H.

(i) Input.

Figure 5.5: Comparison of LTP-RF-SVM-CRF and LTP-RF-SVM-CRF-H.
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5.1.6 Detection Results with Different Text Confidence Maps

The system is evaluated with and without text-confidence maps and with ground-truth text-
confidence maps. The parameter gc of the detector and the text-confidence-map threshold is
swept out to compute a precision-recall curve which is shown in Figure 5.6. Results are shown
in Table 5.6. There are several things to observe.

First, the detector achieves competitive results without text-confidence maps. The reason
for this is that each step of the detector pipeline is designed to be robust against errors of the
previous step.

Next, the biggest improvement in F-score is achieved by using a text-confidence map on any
of the feature sets evaluated. The ordering of the feature-sets according to F-score corresponds
to the ordering found in the validation procedure in Section 3.1.4.

Furthermore differences between text-confidence are between 0.5-1.5% on F-score. Finally,
the performance saturates at 77% (75.8% on the metric proposed by Wolf et al. [97]) when
applied to ground-truth responses. Best thresholds of gc for ground-truth feature-maps are at
0.5, for text-confidence-maps at 0.6-0.7 and without text-confidence maps at 0.8. The reason for
this is that in ground-truth regions are less non-text components than in the whole image, or in
regions detected by the AdaBoost classifier. Hence, the detection system does not need to have
a high textline confidence gc of 0.6-0.8 to achieve an F-score of 77% (75.8% [97]).

Method P R F P (Wolf) R (Wolf) F (Wolf)
No Response Maps 0.784 0.655 0.713 0.798 0.666 0.726
Ground Truth Response Maps 0.827 0.72 0.770 0.818 0.706 0.758
HOG [67, 68, 69] 0.767 0.702 0.733 0.787 0.689 0.734
ChnFtrs [21] 0.809 0.678 0.735 0.807 0.675 0.735
MACeLBP [2] 0.827 0.668 0.739 0.780 0.690 0.732
Proposed 0.816 0.686 0.745 0.832 0.666 0.74

Table 5.6: Best possible ICDAR 2003 results by sweeping out gc and the threshold of the
response-map on the test set.

5.1.7 Detection Errors

In 40 of the 251 images on the ICDAR 2003 dataset the proposed LTP-RF-SVM-CRF system
fails to detect any text in the images on the metric proposed by Wolf et al. [97]. A random
sample of 4 such pictures is shown in Figure 5.7. Errors can be divided into non-detected text of
the sliding window classifier, segmentation errors in the labeling system, errors due to too small
text and errors due to boundary conditions of the evaluation metric.

Since no pixel ground-truth segmentation of the dataset is available, images in which some
words or part of words are not retrieved are manually counted. In 78 images text is not retrieved
due to segmentation errors occur, and in 54 images the sliding window classifier fails to detect
a part of the textline. In 36 images both, the segmentation and the detection fails to detect
text. Hence, errors are correlated, since in images with specular highlights and text with weak
contrast both, the sliding window classifier and the segmentation method, fail to detect text. In
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Figure 5.6: Precision recall curves computed on the ICDAR 2003 metric by sweeping out gc and
the threshold of the response-map on the test set.

27 images errors are due to short text consisting of two or less components which are removed
by the grouping heuristic. 3 images contain handwritten text which cause segmentation errors.
In images where text can be segmented 3 images cause grouping errors and in 6 images errors
due to misclassification in the labeling stage. On segmented components word-splitting fails in
11 images.

The detector system consists of several parts, each of which contributes to a certain fraction
to the total error. In order to estimate this fraction, and hence to find out where to optimize the
proposed pipeline, ceiling analysis is performed. Since there are no pixel ground-truth masks for
the dataset, a sample of 30 images from the ICDAR 2011 dataset drawn and manually masked.
Furthermore, for these experiments the minimum number of CC which are required to form a
textline is reduced from 3 to 1, since this heuristic causes on good segmented images too many
errors.

On these samples the performance of the proposed LTP-CRF-RF-SVM detector is measured.
Then, the sliding window responses are replaced by ground-truth responses and the performance
of the system is measured (GT responses). This gives an upper bound on the maximal improve-
ment which can be achieved by improving the sliding window system. Next, the MSER ground-
truth binary masks are added to the MSER segmentation and the performance is measured (GT
segmentation + MSER). This is an indicator on how good the classifiers are filtering non-text
CCs. Then the MSER segmentation is removed, and the system is executed on ground-truth
binary masks, fixing the probability-predictions of the classifiers to 1.0 (GT segmentation). Fi-
nally, grouping heuristics are relaxed by disabling the linear SVM and setting minimum vertical
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(a) Too short text. (b) Too short text. (c) Non-detected text
by the sliding win-
dow classifier.

(d) Errors due to
evaluation metric.

Figure 5.7: Errors of the detection system.

overlap of two components to 0.08 and maximum height ratio to 6.0 (GT segmentation relaxed).
Results are shown in Table 5.7.
From these results it can be concluded that by improving the sliding window detector, a max-

imum improvement of 3.8% (4.6%) is possible. By further including a method which segments
the characters perfectly a maximum improvement of 3.8% (6.2%) is possible. The lower score
on the ICDAR 2003 metric is due to word-splitting and grouping errors, which are differently
penalized in the metric proposed by Wolf et al. [97]. Word splitting and grouping errors occur
due to misclassified CC on the MSER segmentation which are grouped to textlines and cause
errors in the following steps in the pipeline. If the classifiers correctly classify all segmented
components a maximal improvement of 8.6% (6.5%) can be achieved. Finally, by disabling the
linear SVM and other grouping constraints an improvement of 1.7% (1.2%) can be achieved.

The remaining errors are due to grouping and word splitting errors, which are illustrated in
Figure 5.8.

The errors in the combined MSER-grouping phase are due to misclassified components,
which form single-component textlines as illustrated in Figure 5.9. Hence by removing the
MSER segmentation, a bigger improvement is achieved.

Furthermore, the segmentation step and the classification step cannot be separated easily.
With a better segmentation which segments less degenerate characters which are stuck together
with background noise or split into two CCs, classification becomes easier. On the other hand
a perfect labeling stage can correctly identify degenerate characters and characters which are
split due to partial occlusions in several CCs. Hence, to improve the performance of the detector
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both, the segmentation and the classification step, must be improved 15.3% (12.7%). With
improvements in this stage, word splitting and grouping becomes less error-prone.

Method P R F P (Wolf) R (Wolf) F (Wolf)
LTP-CRF-RF-SVM 0.810 0.644 0.717 0.811 0.664 0.73
GT responses 0.720 0.793 0.755 0.807 0.747 0.776
GT segmentation + MSER 0.775 0.812 0.793 0.830 0.847 0.838
GT segmentation 0.873 0.899 0.886 0.908 0.898 0.903
GT segmentation relaxed 0.921 0.886 0.903 0.925 0.905 0.915

Table 5.7: Error analysis for the text detector.

(a) R:0.65, P:0.6,
F:0.624

(b) R: 0.8, P: 1, F:
0.889

(c) R: 0.778, P:
0.875, F: 0.824

(d) R: 0.72, P: 0.7, F:
0.71

(e) R: 0.8, P: 0.8, F:
0.8

Figure 5.8: Detector errors on ground truth after relaxing heuristics.

The last experiment measures the behaviour of the system on a perfect segmentation and CC
labeler with the LTP detector confidence map. This is a measurement of how many components
are missing due to non-detected text of the classifier. Results are shown in Table 5.8. From
this results it can be concluded that there is room for improvement for the classifier, since by
replacing the responses with the ground-truth, an improvement of the F-score of 2.7% (4.9%) is
possible.

Method P R F P (Wolf) R (Wolf) F (Wolf)
LTP segmentation 0.866 0.832 0.859 0.888 0.822 0.854
GT segmentation 0.873 0.899 0.886 0.908 0.898 0.903

Table 5.8: Influence of the response map on a perfect segmentation compared to ground-truth
responses.
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Figure 5.9: Errors due to single-component textlines.

5.2 Word Recognition Results

In this section an overview of the word recognition results is given. The section is divided in
Section 5.2.1 where the proposed neural network is evaluated on cropped character patches from
the ICDAR 2003 dataset and in Section 5.2.2 where performance is evaluated on the cropped
word recognition problem with varying dictionary sizes.

5.2.1 Cropped Character Recognition

The cropped character recognition performance of the model proposed is evaluated on the
ICDAR 2003 cropped character dataset. For evaluation the 62-way misclassification accuracy
is measured. The proposed method achieves a 62-way classification accuracy of 86.5% and
a 36-way accuracy of 90.4%. Quantitive results for 62-way accuracy are shown in Table 5.9.
CNNs outperform handcrafted features on this dataset. Furthermore, by training a deep CNN
with backpropagation as proposed, a CNN with an unsupervised layer with no supervised “fine-
tuning” [94] is outperformed.

Method Accuracy
Proposed 0.865
unsup. features + CNN [94] 0.839
unsup. features + SVM [15] 0.817
TSM [82] a 0.779
HOG + Ferns [92] 0.64

a49-way accuracy

Table 5.9: Cropped character recognition on the ICDAR 2003 dataset.

28.5% of all errors are due to confusions between lower and uppercase letters. The reason
for that is, that no textline information for character-patches is available. Hence, character scales
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and positions vary in the cropped box. Character-patches are cropped from cropped words which
are shown in Figure 5.10. The word ’on’ has a lowercase ’o’ which is as big as the height of
the cropped box. The reason for that is that the word ’on’ has no letters with ascenders and
descenders. The word ’homogenic’ contains an ’o’ which is in the middle of the textline and
smaller than the ’o’ in ’on’, since the word ’homogenic’ has letters with descenders. Finally,
the word ’Somerton’ has no letters with descenders, hence the ’o’ is aligned at the bottom of the
textline. Hence, the cropped word classifier has to learn to recognize letters invariant to scale
and position, which makes it impossible to distinguish uppercase letters with the same shape
from lowercase letters with 100% accuracy.

Figure 5.10: Cropped words containing letter ’o’ on different positions and in different scales.

Since 28.5% of all errors are due to confusions between lower and uppercase letters, a 36-
way confusion matrix of the classifier is presented in Figure 5.11 and the top 10 errors in the
matrix are listed in Figure 5.12a. The most dominant errors are misclassified ’0’s, which are
recognized as ’o’. This is also the case for 62-way confusions (see Figure 5.12b) and due to
same shape of both objects. Since there are more samples labeled as ’o’ in the training set than
samples labeled as ’0’ (see Figure 5.13), ground-truth ’0’-patches are classified as ’O’-patches.

To compare the effect of different network sizes on accuracy, two CNNs with convolution
layers of size 32-64-64 and 16-32-32 are trained. Each network makes 5 guesses for a given
sample. The error curves after each guess are shown in Figure 5.14. Bigger networks perform
better on the test set, which is the same result Wang et al. [94] shows with CNNs trained
with a fixed unsupervised feature layer. 62-way accuracy saturates at 94% for the best network
(96.7% on 36-way accuracy). The accuracies of the networks are 86.57%, 85.61% and 84.57%.
The differences are 0.96% and 1.04%. Furthermore, 5 random patches which are misclassified
by the best network after 5 guesses are shown in Figure 5.15. These samples represent the
hardest samples for the network. Misclassifications are due to too narrow text, too blurred text,
handwritten text and mislabeled samples.

The effect of different training set sizes is shown in Figure 5.16. Networks of size 32-128-
128 are trained on training sets of 60000 (proposed), 30000 and 15000. The hyperparameters
found for the network of size 32-128-128 with 60000 are kept fixed due to computational con-
straints. The accuracy of 5 guesses are shown in Figure 5.16a and the best accuracy is plotted
against the training set size in Figure 5.16b. Networks with more training samples perform better
than networks with less training samples. The accuracy of the three networks is 0.8247, 0.8472
and 0.8657 for training set sizes of 15000, 30000 and 60000 samples. The differences are 2.3%
and 1.8%, indicating that there is still room for improvement for a larger training set size.

To show the effectiveness of the synthetic training data a 32-128-128 CNN is trained and the
62-way accuracy is measured. The accuracy of the network is 82.65%.

A random sample of misclassified patches in shown in Figure 5.17. The predicted label is
shown in the lower left corner of each patch and the ground-truth label is shown in the lower
right corner of each patch. Due to missing textline information and label noise, the case of
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Figure 5.11: 36-way confusion matrix on the ICDAR 2003 cropped character test set.
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(a) 36-way errors.
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(b) 62-way errors.

Figure 5.12: Top 10 errors
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Figure 5.13: Class label distribution

several classes like ’O’ and ’o’, ’S’ or ’s’ can not be determined for each sample. Further errors
are due to blur, label noise, partially occluded text, narrow text, misaligned text and text with
weak contrast.
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Figure 5.14: Accuracy of CNNs of different sizes after 1, 2, . . . , 5 guesses.

Figure 5.15: Random sample of 5 patches which are misclassified after 5 guesses.
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Figure 5.16: Influence of different training set sizes on the accuracy of the network.
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(a) Case sensitive false positives. (b) Case insensitive false positives.

Figure 5.17: False positives of the CNN on the ICDAR 2003 cropped character dataset. The
predicted label is shown in the lower left corner of each patch, the ground-truth label is shown
in the lower right corner of each patch.

64



5.2.2 Cropped Word Recognition

In this section results for dictionary driven cropped word recognition on the ICDAR 2003
dataset, the SVT-dataset and the ICDAR 2011 dataset are presented. For evaluation the same
protocol proposed by Wang et al. [92] is used. Words consisting of fewer than 3 letters and
non-alphanumeric letters are excluded from evaluation. Furthermore case-insensitive compar-
isons are done. The model is evaluated with a dictionary consisting of 50 random distractor
words (I-50) and the full ICDAR word list (I-FULL). To achieve comparable results, the same
dictionaries used by Wang et al. [92] are used. For the SVT-dataset the dictionaries are already
provided by the authors. Since for the ICDAR 2011 dataset no publicly available dictionaries
are available, performance is evaluated on the full word list (I11-FULL). The performance of
the system is shown in Table 5.10. Due to the better performing CNN the method is about 3%
better on ICDAR benchmarks than the method proposed by Wang et al. On the SVT dataset, the
difference is higher (12%). The reason for that is that only the unsupervised first layer of the
network is trained with synthetic data and ICDAR data, and the supervised learned upper layers
are only trained with ICDAR data. Hence the method achieves better performance on ICDAR,
but worse performance on SVT. Methods with handcrafted features (TSM, HOG + CRF) have
to rely on computationally more complex graphical models to achieve competitive results.

Method I-50 I-Full SVT I11-FULL
Proposed 0.929 0.871 0.82 0.871
unsup. features + CNN [92] 0.90 0.84 0.70 -
Hough Forests [101] 0.857 - - -
TSM [82] 0.847 0.793 0.735 0.829
HOG + CRF [57] 0.818 - 0.733 -
PLEX [92] 0.76 0.62 0.57 -

Table 5.10: Cropped word recognition results.

5.3 End-to-End Results

For end-to-end evaluation the predicted word bounding boxes of the detector are used in the
recognizer to predict the word. As text-detector the proposed RF-SVM-CRF combination is
used. For each detected word the text recognition module predicts a word and a confidence score
given a list of candidate words from a dictionary. From these confidence scores a precision-recall
curve is swept out as proposed by Wang et al. [94]. Word predictions are thresholded on a linear
grid consisting of 40 steps starting at -1 and ending at 50.0 The entry with best F-score is listed
in Table 5.11. The system is evaluated with the full ICDAR word list (I-Full), 50 (I-50), 20
(I-20), and 5 (I-5) distractor words.

Precision-recall curves are shown in Figure 5.18. If the word-recognition system has a
smaller dictionary consisting of less distractor words, it achieves a higher F-score on the test-set.
The AUC in the I-Full, I-50, I-20, and I-5 settings are 0.57, 0.62, 0.63 and 0.63 respectively.
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To measure the impact of the network size on the end-to-end performance, the end-to-end
performance is measured with the two smaller networks (32-64-64, 16-32-32), trained in Section
5.2.1. The end-to-end F-scores are shown in Table 5.12. Improvements on the cropped character
recognition benchmark result in improvements to the end-to-end performance.

Method F-Score (I-Full) F-Score (I-50) F-Score (I-20) F-Score (I-5)
Proposed 0.727 0.790 0.80 0.81
Wang et al. [94] 0.67 0.72 0.74 0.76
Wang et al. [92] 0.51 0.68 0.70 0.72

Table 5.11: ICDAR 2003 end-to-end results.

Network F-Score (I-Full)
64-128-128 0.727
32-64-64 0.719
16-32-32 0.705

Table 5.12: Influence of the network size on the end-to-end F-Score.
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Figure 5.18: End-to-end precision-recall curves.

Qualitative results are shown in Figure 5.19. Errors are either due to detection-errors or due
to recognition-errors. Detection errors are due to segmentation errors, which are responsible for
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errors shown in Figure 5.19c, or misclassification errors of the detector. The text-recognition al-
gorithm compensates for errors in the detection module in Figure 5.19b, since the most plausible
word in the dictionary for the letters “ssex” is “essex”.

(a) Correctly recognized text. (b) Correctly recognized text. (c) Errors due to segmentation
errors.

(d) Misclassification error at
the first box.

(e) Correctly recognized text. (f) Correctly recognized text.

Figure 5.19: End-to-end text recognition results

5.4 End-to-End Ceiling Analysis

In this section ceiling analysis is done. The proposed system is a machine learning pipeline
consisting of several steps (see Figure 5.20). In the first step a sliding window classifier creates
text confidence maps. In the second step CCs are labeled within the detected regions. Finally, in
the last step word recognition on retrieved word-boxes is performed. Hence, in order to assess
which module contributes the most to the end-performance, ceiling analysis is done.

Each module starting from top to bottom is replaced by the ground-truth data, and the end-
to-end performance of the remaining pipeline is measured by executing the whole system on
ground-truth data. Results are shown in Table 5.13. Replacing the responses of the sliding win-
dow classifier with the ground-truth responses improves the end-to-end performance by 2.1%.
This implies that with a perfect detector the end-to-end performance can be maximally improved
by 2.1%.

Replacing the detected word-level bounding-boxes with ground truth word-level bounding-
boxes is the cropped-word recognition task. Hence, the system achieves an F-score of 87.1%

67



Text Detection

Text Con�dence Maps

CC Labeling

Text Recognition

Figure 5.20: System architecture.

which is an improvement of 12.6% on end-to-end performance.
By improving cropped word recognition a maximum improvement of 12.9% can be achieved.
Hence, most improvement can be achieved by improving performance of the word-recognition

step and the CC labeling step.

Method F-score
End-to-end system 0.727
Ground-truth detector responses 0.748
Ground-truth boxes 0.871
Ground-truth 1.0

Table 5.13: Performance of the system when replacing previous steps in the pipeline with
ground-truth data.

5.5 Summary

In this section text-detection and text-recognition systems were evaluated. For the text-detection
system the contribution to detection-performance on the ICDAR evaluation metrics for several
submodules of the system proposed were shown. The use of CRFs in combination with RF
and SVM achieves a difference of about 1% (3% [97]) on F-score to other methods. Detecting
MSER in the U and V channels of the LUV image improves performance by 1% (3.5% [97])
on F-score. The method needs a word splitting method which works with variations in letter
spacing. Otherwise the performance decreases by 5.4% (6.4% [97]). The influence of the feature
set of the sliding window classifier is 1.5% (0.8% [97]). Without sliding window classifier
the performance decreases by 3.2% (1.4% [97]). With a perfect sliding window classifier the
performance improves by 2.5% (3.2% [97]). The text detection system achieves an F-score of
74.2 on ICDAR 2003, 76.7% on ICDAR 2011.
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28.5% of all errors of the CNN are due to misclassifications of lower- and uppercase letters.
Case-insensitive errors are due to too narrow, too blurred, handwritten text and mislabeled sam-
ples. Smaller CNNs achieve less accuracy on cropped word recognition. Furthermore less data
results in a reduced accuracy. In cropped word recognition an F-score of 87.1% is achieved.

The system proposed achieves a F-score of 72.7% on end-to-end scene text recognition. By
improving the performance of the CC labeling stage and the word recognition step end-to-end
performance can be influenced most.
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CHAPTER 6
Conclusion

In this work a competitive dictionary driven end-to-end scene text recognition system is pre-
sented. The system is divided into a text detection and text recognition part. For text detection
an AdaBoost sliding window classifier detects text in multiple scales. The result of this step
is a text confidence map. Within detected regions MSER are detected, labeled and grouped to
textlines. Textlines are split into word-level bounding boxes. The text recognition system uses
a one-dimensional sliding window in detected word bounding boxes. Responses are used in a
Viterbi-style algorithm to predict the final word.

Compared to other methods, the proposed system combines a sliding window classifier on an
adapted feature set with an MSER labeling stage to improve detection performance. As feature-
set a combination of MACeLBP and LTP features is used, which achieve better performance
than other proposed feature-sets. For text recognition a CNN regularized by Dropout [40] is
trained, to learn local features which outperform methods based on hand-crafted features and
CNNs with fixed unsupervised learned layers [94].

The system is evaluated on the ICDAR datasets [84, 78], outperforming state-of-the-art
methods in text detection, recognition and end-to-end dictionary driven scene text detection.

Hence, the research question can be answered: it is possible to achieve competitive results
with a combination of local features, region based approches and learned local features.

For text detection the influence of different feature-sets is demonstrated. Furthermore, the
influence of combining the UV channels of the LUV image with the grayscale channel, the in-
fluence of the word splitting method and the influence the classifier, are assessed in experiments.

For text recognition an error analysis of misclassified patches was conducted, which shows
that 28.5% of all errors are due to case-misclassifications. Other errors are due to narrow text,
blurred text, handwritten text or mislabeled ground truth.

Finally, ceiling analysis was performed, showing the influence of the end-to-end perfor-
mance by replacing parts of the system with ground-truth data.
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6.1 Disadvantages of the System

The proposed system trades off runtime speed for accuracy. In the text detection step a separate
sliding window step is proposed. Since image sizes on ICDAR datasets range from 800 × 600
to 3888× 2592, up to 650000 classifications for the first scale are done. Furthermore, the binary
feature-set used in the CC labeling stage is more expensive compared to the feature-set proposed
by Neumann et al. [62]. The binary features can not be computed incrementally in constant
time as Neumann et al. [62] proposes. Hence, performance is linear in the number of MSER
detected and thus depends on the complexity of the scene. The use of more expensive feature
sets makes it computationally more expensive to include additional segmentations like MSER or
ERs segmented from the gradient image [62] or segmentations on the stroke width image [24].
Furthermore, since the ICDAR training data only contains horizontal text and grouping models
proposed in this method assume that text is horizontal, only horizontal text can be detected.

The text recognition system uses deep CNNs. In the system proposed for each prediction
32 5 × 5 convolutions are applied in the first layer, 128 5 × 5 3D convolutions in the second
and third layer. On a Intel Core i5 CPU classification of about 5000 patches takes 116 seconds.
CNNs, however, take advantage of GPU hardware. On a NVIDIA 770 GTX classification takes
1.3 seconds including host to GPU transfers.

Next, the text detection system relies on segmentation which does not work on images where
text is partially occluded, on images where semi-transparent text is shown, on images where text
components are stuck together or on images with varying illumination.

Furthermore, the text recognition system does not scale to dictionary sizes consisting of
thousands of words. The method, proposed has to evaluate a Viterbi style algorithm for each
word of the dictionary.

6.2 Advantages of the System

The main advantages of the system proposed are robustness and accuracy compared to other
methods. For text detection advantages of texture based approaches and region based approaches
are combined to a robust text detection system.

For text recognition a discriminative model is used which achieves a higher accuracy than
other methods on the task of cropped character recognition. Hence, to read text, only a graphical
chain-model is needed to outperform other methods which use more complex models consisting
of arbitrary graphs ([57, 82]).

6.3 Future of Work

Ceiling analysis in Section 5.4 shows that improving or replacing the component labeling step
and the word recognition step has the biggest potential in improving end-to-end accuracy.

For the text detection module a better performing labeling system is needed. As shown
in Section 5.1.7 the by improving segmentation and labeling step an improvement of 15.3%
(12.7%) is possible. Hence, in images where segmentation is not possible, a segmentation-free
method is needed. Furthermore, based on the conducted experiments, combination of multiple
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segmentation methods will improve performance. To improve performance in the labeling stage,
better feature sets are needed. For better feature sets more training data is needed. With a better
performing labeling stage the grouping and word-splitting tasks will become easier.

For the text recognition module experiments show that a larger training set size and a larger
network are beneficial for performance. Furthermore, regularization techniques such as stochas-
tic pooling [102] and DropConnect [91] and better activation functions such as Maxout [35]
will improve the performance of the CNN. With fast dropout training [93], larger networks can
be trained in the same amount of time, improving performance of the method. Next, as Jarret
et al. [41] shows, unsupervised pre-training with supervised fine-tuning helps improving per-
formance. Hence regularized Autoencoders [89, 73, 72, 37], RBMs [39], Sparse Filtering [63]
Sparse Coding [52] or semi supervised methods as proposed by Sermanet et al. [77] which are
fine-tuned with backpropagation help improving performance.

Next, color information is ignored by the system. Color can be integrated as proposed by
Sermanet et al. [77] by convolving in the first layer of the network over the three YUV channels
instead of over the grayscale image.

Furthermore by comparing the work of Mishra et al. [57] to work of Wang et al. [92], it can
be seen that better language models improve word recognition performance.
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[14] D. C. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. Multi-Column Deep Neural
Network for Traffic Sign Classification. Neural Networks, 32:333–338, 2012.

[15] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J. Wu, and A. Y. Ng.
Text Detection and Character Recognition in Scene Images with Unsupervised Feature
Learning. In International Conference on Document Analysis and Recognition, pages
440–445, 2011.

[16] N. Dalal. Finding People in Images and Videos. PhD thesis, Institut National Polytech-
nique de Grenoble, July 2006.

[17] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In IEEE
Conference on Computer Vision and Pattern Recognition., volume 1, pages 886–893,
2005.

[18] J. G. Daugman. High Confidence Visual Recognition of Persons by a Test of Statis-
tical Independence. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1148–1161, 1993.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hi-
erarchical Image Database. In IEEE Conference on Computer Vision and Pattern Recog-
nition., pages 248–255, 2009.

[20] P. Dollár, S. Belongie, and P. Perona. The Fastest Pedestrian Detector in the West. In
Proceedings of British Machine Vision Conference, volume 2, pages 1– 11, 2010.

[21] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral Channel Features. pages 1–11, 2009.

[22] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian Detection: An Evaluation of
the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(4):743–761, 2012.

[23] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, 2001.

[24] B. Epshtein, E. Ofek, and Y. Wexler. Detecting Text in Natural Scenes with Stroke Width
Transform. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2963–2970. IEEE, 2010.

[25] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

74



[26] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pas-
cal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision,
88(2):303–338, June 2010.

[27] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning Hierarchical Features
for Scene Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1915–1929, 2013.

[28] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual Models from Few Train-
ing Examples: An Incremental Bayesian Approach Tested on 101 Object Categories.
Computer Vision and Image Understanding, 106(1):59–70, 2007.

[29] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object Detection
with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 32(9):1627–1645, 2010.

[30] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning Object Categories from
Google’s Image Search. In IEEE International Conference on Computer Vision, vol-
ume 2, pages 1816–1823, 2005.

[31] Y. Freund, R. Schapire, and N. Abe. A Short Introduction to Boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612, 1999.

[32] J. Friedman, T. Hastie, and R. Tibshirani. Additive Logistic Regression: A Statistical
View of Boosting (with Discussion and a Rejoinder by the Authors). The annals of statis-
tics, 28(2):337–407, 2000.

[33] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Networks. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, volume 15, pages
315–323, 2011.

[34] A. Gonzalez, L.M. Bergasa, J.J. Yebes, and S. Bronte. Text Location in Complex Images.
In International Conference on Pattern Recognition, pages 617–620, 2012.

[35] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout Net-
works. In Proceedings of the International Conference on Machine Learning, volume 28,
pages 1319–1327. JMLR Workshop and Conference Proceedings, May 2013.

[36] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pascanu,
J. Bergstra, F. Bastien, and Y. Bengio. Pylearn2: a Machine Learning Research Library.
arXiv preprint arXiv:1308.4214, August 2013.

[37] R. Goroshin and Y. LeCun. Saturating Auto-Encoders. In International Conference on
Learning Representations, April 2013.

[38] R.M. Haralick. Statistical and Structural Approaches to Texture. Proceedings of the IEEE,
67(5):786–804, 1979.

75



[39] G. E. Hinton, S. Osindero, and Y. Teh. A Fast Learning Algorithm for Deep Belief Nets.
Neural Computation, 18(7):1527–1554, July 2006.

[40] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improv-
ing Neural Networks by Preventing Co-Adaptation of Feature Detectors. arXiv preprint
arXiv:1207.0580, 2012.

[41] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best Multi-Stage
Architecture for Object Recognition? In IEEE International Conference on Computer
Vision, pages 2146–2153, 2009.

[42] Davis E. K. Dlib-ml: A Machine Learning Toolkit. Journal of Machine Learning Re-
search, 10:1755–1758, 2009.

[43] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[44] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical report,
2009.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classification with Deep Con-
volutional Neural Networks. In Conference on Neural Information Processing Systems,
2012.

[46] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Match-
ing for Recognizing Natural Scene Categories. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2, pages 2169–2178, 2006.

[47] Q. V. Le, M.’A. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Y.
Ng. Building High-Level Features using Large Scale Unsupervised Learning. In Pro-
ceedings of the International Conference of Machine Learning, 2012.

[48] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Compu-
tation, 1(4):541–551, Winter 1989.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[50] Y. LeCun and C. Cortes. MNIST Handwritten Digit Database.
http://yann.lecun.com/exdb/mnist/, 2010.

[51] Y. LeCun, F. J. Huang, and L. Bottou. Learning Methods for Generic Object Recognition
with Invariance to Pose and Lighting. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 97–104. IEEE.

[52] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient Sparse Coding Algorithms. In Advances
in neural information processing systems, pages 801–808, 2006.

76



[53] JJ. Lee, P.-H. Lee, S.-W. Lee, A. L. Yuille, and C. Koch. AdaBoost for Text Detection
in Natural Scene. In International Conference on Document Analysis and Recognition,
pages 429–434, 2011.

[54] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

[55] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide-Baseline Stereo from Maxi-
mally Stable Extremal Regions. Image and Vision Computing, 22(10):761–767, 2004.

[56] R. Minetto, N. Thome, M. Cord, J. Stolfi, F. Precioso, J. Guyomard, and N. J. Leite. Text
Detection and Recognition in Urban Scenes. In International Conference on Computer
Vision Workshops, pages 227–234. IEEE, 2011.

[57] A. Mishra, K. Alahari, and C. V. Jawahar. Top-down and bottom-up cues for scene text
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2687–2694, 2012.

[58] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. In Proceedings of the International Conference on Machine Learning, pages
807–814, 2010.

[59] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading Digits in Nat-
ural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

[60] J. Neumann, L. Matas. Text Localization in Real-World Images using Efficiently Pruned
Exhaustive Search. In International Conference on Document Analysis and Recognition,
pages 687–691. IEEE, 2011.

[61] L. Neumann and J. Matas. A Method for Text Localization and Recognition in Real-
World Images. In Proceedings of the Asian Conference on Computer Vision, pages 770–
783. Springer, 2011.

[62] L. Neumann and J. Matas. Real-Time Scene Text Localization and Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3538–3545. IEEE Computer Society, 2012.

[63] J. Ngiam, Z. Chen, S. A. Bhaskar, P. W. Koh, and A. Ng. Sparse filtering. In Advances in
Neural Information Processing Systems, pages 1125–1133, 2011.

[64] W. Niblack. An Introduction to Digital Image Processing. Strandberg Publishing Com-
pany, Birkeroed, Denmark, Denmark, 1985.

[65] T. Ojala, M. Pietikäinen, and D. Harwood. A Comparative Study of Texture Measures
with Classification Based on Featured Distributions. Pattern Recognition, 29(1):51–59,
1996.

77



[66] N. Otsu. A threshold selection method from gray-level histograms. Automatica, 11(285-
296):23–27, 1975.

[67] Y.-F. Pan, X. Hou, and C.-L. Liu. A Robust System to Detect and Localize Texts in
Natural Scene Images. In International Workshop on Document Analysis Systems, pages
35–42. IEEE Computer Society, 2008.

[68] Y.-F. Pan, X. Hou, and C.-L. Liu. Text Localization in Natural Scene Images Based
on Conditional Random Field. In International Conference on Document Analysis and
Recognition, pages 6–10. IEEE Computer Society, 2009.

[69] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. A Hybrid Approach to Detect and Local-
ize Texts in Natural Scene Images. IEEE Transactions on Image Processing, 20(3):800–
813, 2011.

[70] F. Perronnin and C. Dance. Fisher Kernels on Visual Vocabularies for Image Catego-
rization. In IEEE Conference on Computer Vision and Pattern Recognition., pages 1–8,
2007.

[71] I. Pratikakis, B. Gatos, and K. Ntirogiannis. ICDAR 2011 Document Image Binarization
Contest (DIBCO 2011). In International Conference on Document Analysis and Recog-
nition, pages 1506–1510, 2011.

[72] S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X. Glorot. Higher
Order Contractive Auto-Encoder. In Machine Learning and Knowledge Discovery in
Databases, volume 6912 of Lecture Notes in Computer Science, pages 645–660. Springer
Berlin Heidelberg, 2011.

[73] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive Auto-Encoders:
Explicit Invariance during Feature Extraction. In Proceedings of the International Con-
ference on Machine Learning, pages 833–840, 2011.

[74] D. E. Rumelhart, G. E Hinton, and R. J Williams. Learning Representations by Back-
Propagating Errors. NATURE, 323:9, 1986.

[75] J. Sauvola and M. Pietikäinen. Adaptive Document Image Binarization. Pattern Recog-
nition, 33(2):225–236, 2000.

[76] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional Neural Networks Applied to
House Numbers Digit Classification. In International Conference on Pattern Recognition,
pages 3288–3291. IEEE, 2012.

[77] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, June 2013.

78



[78] A. Shahab, F. Shafait, and A. Dengel. ICDAR 2011 Robust Reading Competition Chal-
lenge 2: Reading Text in Scene Images. In Proceedings of the International Confer-
ence on Document Analysis and Recognition, pages 1491–1496. IEEE Computer Society,
2011.

[79] F. Shahbaz Khan, R.M. Anwer, J. van de Weijer, A.D. Bagdanov, M. Vanrell, and A.M.
Lopez. Color Attributes for Object Detection. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 3306–3313, 2012.

[80] Y. Shao, C. Wang, B. Xiao, Y. Zhang, L. Zhang, and L. Ma. Text Detection in Natural
Images Based on Character Classification. In Guoping Qiu, KinMan Lam, Hitoshi Kiya,
Xiang-Yang Xue, C.-C.Jay Kuo, and MichaelS. Lew, editors, Advances in Multimedia
Information Processing - PCM 2010, volume 6298 of Lecture Notes in Computer Science,
pages 736–746. Springer Berlin Heidelberg, 2011.

[81] L. Shen and L. Bai. A Review on Gabor Wavelets for Face Recognition. Pattern Analysis
and Applications, 9(2-3):273–292, 2006.

[82] C. Shi, C. Wang, B. Xiao, Y. Zhang, S. Gao, and Z. Zhang. Scene Text Recognition using
Part-based Tree-structured Character Detection. In IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

[83] Patrice Simard, David Steinkraus, and John C Platt. Best Practices for Convolutional
Neural Networks Applied to Visual Document Analysis. In ICDAR, volume 3, pages
958–962, 2003.

[84] L. P. Sosa, S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young. ICDAR
2003 Robust Reading Competitions. In Proceedings of the International Conference on
Document Analysis and Recognition, pages 682–687. IEEE Press, 2003.

[85] X. Tan and B. Triggs. Enhanced Local Texture Feature Sets for Face Recognition Un-
der Difficult Lighting Conditions. IEEE Transactions on Image Processing, 19(6):1635–
1650, 2010.

[86] Y. Tang. Deep Learning using Support Vector Machines. Computing Research Reposi-
tory, abs/1306.0239, 2013.

[87] K. E A Van de Sande, J. R R Uijlings, T. Gevers, and A.W.M. Smeulders. Segmentation as
Selective Search for Object Recognition. In IEEE International Conference on Computer
Vision, pages 1879–1886, 2011.

[88] M. Varma and A. Zisserman. A Statistical Approach to Texture Classification from Single
Images. International Journal of Computer Vision, 62(1-2):61–81, April 2005.

[89] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and Composing Robust
Features with Denoising Autoencoders. In Proceedings of the International Conference
on Machine learning, pages 1096–1103. ACM, 2008.

79



[90] P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade of Simple Fea-
tures. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 1, pages 511–518. IEEE, 2001.

[91] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of Neural Net-
works using DropConnect. In Proceedings of the International Conference on Machine
Learning, volume 28, pages 1058–1066. JMLR Workshop and Conference Proceedings,
May 2013.

[92] K. Wang, B. Babenko, and S. Belongie. End-to-end scene text recognition. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 1457–1464,
Barcelona, Spain, 2011.

[93] S. Wang and C. Manning. Fast Dropout Training. In Proceedings of the International
Conference on Machine Learning, volume 28, pages 118–126. JMLR Workshop and Con-
ference Proceedings, May 2013.

[94] T. Wang, D.J. Wu, A. Coates, and A.Y. Ng. End-to-End Text Recognition with Con-
volutional Neural Networks. In International Conference on Pattern Recognition, pages
3304–3308, 2012.

[95] X. Wang, T.X. Han, and S. Yan. An HOG-LBP Human Detector with Partial Occlusion
Handling. In IEEE International Conference on Computer Vision, pages 32–39, 2009.

[96] T. Watanabe, S. Ito, and K. Yokoi. Co-occurrence Histograms of Oriented Gradients
for Pedestrian Detection. In Advances in Image and Video Technology, volume 5414 of
Lecture Notes in Computer Science, pages 37–47. Springer Berlin Heidelberg, 2009.

[97] C. Wolf and J.-M. Jolion. Object Count/Area Graphs for the Evaluation of Object De-
tection and Segmentation Algorithms. International Journal on Document Analysis and
Recognition, 8(4):280–296, 2006.

[98] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyramid Matching using Sparse
Coding for Image Classification. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1794–1801, 2009.

[99] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu. Detecting Texts of Arbitrary Orientations in
Natural Images. In IEEE Conference on Computer Vision and Pattern Recognition, pages
1083–1090, 2012.

[100] C. Yi and Y. Tian. Text String Detection from Natural Scenes by Structure-Based Partition
and Grouping. IEEE Transactions on Image Processing, 20(9):2594–2605, 2011.

[101] G. Yildirim, R. Achanta, and S. Süsstrunk. Text Recognition in Natural Images Using
Multiclass Hough Forests. In Proceedings of the International Conference on Computer
Vision Theory and Applications, volume 1, pages 737–741, 2013.

[102] M. D. Zeiler and R. Fergus. Stochastic Pooling for Regularization of Deep Convolutional
Neural Networks. Computing Research Repository, abs/1301.3557, 2013.

80



List of Acronyms

ANN Artificial Neural Network

AUC Area Under Curve

CC Connected Component

CNN Convolutional Neural Network

CRF Conditional Random Field

CoHOG Co-occurence HOG

ER Extremal Region

HOG Histogram of Oriented Gradients

HF Hough Forest

ICDAR International Conference of Document Analysis and Recognition

LBP Local Binary Pattern

LTP Local Ternary Pattern

MSER Maximally Stable Extremal Region

MACeLBP Multilevel Color edge Local Binary Pattern

msLBP multiscale LBP

MLP Multilayer Perceptron

OCR Object Character Recognition

RBM Restricted Boltzmann Machine

RBF RBFRadial Basis Function

PDF Probability Density Function

ReLU Rectified Linear Unit

RF Random Forest

SIFT Scale Invariant Feature Transform

SVM Support Vector Machine

SGD Stochastic Gradient Descent

81



SVT Street View Text

SWT Stroke Width Transform

VOC Visual Object Class

82




	tr-opitz-title
	tr-opitz-thesis

