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Abstract

In this report, a character recognition system is proposed that handles degraded manu-
script documents which were discovered at the St. Catherine’s Monastery. In contrast to
state-of-the-art Ocr systems, no early decision, namely the image binarization, needs to
be performed. Thus, an object recognition methodology is adapted for the recognition of
ancient manuscripts. Therefore, interest points are extracted which allow for the compu-
tation of local descriptors. These are directly classified using a Svm with one against all
tests.

In order to localize characters, interest points that represent characters are found by
means of a scale distribution histogram. Then, the remaining interest points are clustered
using a k-means which is initialized with the previously selected interest points. Finally a
voting scheme is applied where the local descriptors’ class probabilities are accumulated
to a probability histogram for each character cluster. This histogram does not solely allow
for a hard decision, but can be presented to human experts who can decide the character
class for hardly readable characters according to the probabilities obtained.

The system was evaluated on three different datasets, namely a synthetic with Latin
script, degraded characters and real world data. The system achieves a F0.5 score of 0.77
on the last dataset mentioned.
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Chapter 1

Introduction

The St. Catherine’s Monastery on Mount Sinai, Egypt, which is the oldest continuously
existing Christian monastery in the world, features a great collection of Slavonic manu-
scripts containing approximately 43 Slavic codices [MGK+08]. In 1975, another 42 items
were found in a bricked chamber of the monastery. This finding contains six Glagolitic
codices which were written between the 10th and 12th century [MGK+08].

The Glagolica was created in 862 by Konstantin-Kyrill who is famous for creating the
Cyrillic alphabet [Mik00]. It is based upon the Greek alphabet and is today known as
Church Slavonic. The Glagolitic alphabet initially consisted of 36 characters.

The six Glagolitic codices are called Codd. Sin. slav 1n - 5n. They represent a monas-
tic collection comprising liturgical genres, books of canon law, ascetic and apocryphic
miscellanies [MGK+08]. While the Psalterium Demetrii (Cod. Sin. slav. 3n) is preserved
in its entirety, other codices such as the Cod. Sin. Slav. 5n are partially destroyed because
of bad storage conditions. In Figure 1.1 (left), a typical page from the Cod. Sin. Slav. 5n
is illustrated. It can be seen that the parchment’s border are disrupted, parts of text lines
are faded out and background clutter is present. The methods discussed in this report
are developed with respect to the Cod. Sin. Slav. 5n.

In September 2007, a scientific team traveled to the St. Catherine’s Monastery in
order to digitize the Cod. Sin. Slav. 5n and the Cod. Sin. slav. 3n. For the acquisition
of the manuscripts, a Hamamatsu C9300-124 camera was used. It records images with a
resolution of 4000×2672 px and a spectral response between 330 and 1000 nm. A lighting
system provides the required Infra-Red (IR), VIS and Ultra-Violet (UV) illumination. In
order to speed-up the acquisition process, software was developed which controls the
Hamamatsu camera and the automatic filter wheel that is fixed on its object lens. Thus,
the user can specify which optical filters to use and camera parameters such as exposure
time. Having specified all parameters, the software takes the spectral images and stores
them on the hard disk [KS08].

Low-pass, band-pass and short-pass filters are used to select specific spectral ranges.
The near UV (320 nm - 440 nm) excites, in conjunction with specific inorganic and or-
ganic substances, visible fluorescence light [Mai03]. UV reflectography is used to visualize
retouching, damages and changes through e.g. luminescence. Therefore the visible range
of light has to be excluded in order to concentrate on the long wave UV light. This is
achieved by applying short-pass filters and using exclusively UV light sources. Addition-
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Figure 1.1: Page 20 verso (left) and the acquisition system (right) used for digitizing the
manuscript pages.

ally, a RGB color image and a UV fluorescence image of each manuscript page are taken
using a Nikon D2Xs camera. Figure 1.1 (right) shows the acquisition system where the
Hamamatsu camera is used to capture seven spectral images (grayscale). Having acquired
the spectral images, the manuscript pages need to be moved in order to capture RGB
images with the Nikon camera [DLS07].

1.1 Motivation

It was illustrated in Figure 1.1 that the dataset investigated consists of ancient manu-
scripts which are degraded resulting from their storage conditions. The principal concept
of this report is to develop a system that assists human experts when reading degraded
manuscript pages. State-of-the-art Ocr methods which are further detailed in Chapter 2
binarize images before extracting features for the recognition process. However, if the
detail in Figure 1.2 (a) is considered, strokes and parts of faded-out characters are missed
when applying a state-of-the-art binarization on manuscript images of the investigated
dataset. As can be seen in Figure 1.2 (c), a global threshold, namely Otsu’s method
[Ots79], falsely detects background clutter. As a consequence of the image’s low dynamic
range, character holes (e.g. w in the second row) which are useful for feature extraction1,
are not found correctly. Applying a local binarization (see Figure 1.2 (d)) improves the
character extraction. However, background clutter still results in false objects. If the b
or the m of the last text line is considered, it can be seen that even Sauvola’s [SP00]
method cannot extract faded-out characters correctly. These two characters are correctly

1Holes are topographic features of a character.
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recognized with the system proposed. Figure 1.2 (b) shows the classification results of the
same manuscript page when the proposed system is applied. Green characters with the
corresponding character overlaid indicate correctly recognized characters. On the other
hand red highlights marked with an × illustrate false classification results.

If we regard Figure 1.2, it can be seen that, despite the improvements of document
binarization in the last decades, still challenging datasets exist. Intuitively, the task of
image binarization is easy for human observers: mark all parts of characters and leave
remaining image parts blank. A human observer who is not illiterate does not solely re-
gard differences of gray-values but takes the document’s context into account. However,
if degraded manuscripts are to be considered, binarization-based on local gray values does
not lead to correct results since gray scale information is ambiguous for degraded char-
acters. Hence, the same gray values are parts of characters and background clutter. A
solution for improving the binarization results is to take the image context into account.
But solving the binarization using context would solve character recognition at the same
time. Fischer et al. [FWL+09] call the segmentation of characters in cursive handwritings
a “chicken-and-egg” problem, since characters can be reliably segmented, if they are rec-
ognized, but state-of-the-art recognition systems require a correct character segmentation.
The same applies for ancient manuscripts if the binarization is considered.

In the last two decades, a paradigm shift – namely replacing blob features by local
features2 – took place in the object recognition community (see Chapter 2). Object recog-
nition systems where initially similar to Ocr systems. Therefore images were binarized
based on the intensity, then binary features where computed for each object present. If a
bicycle or a car in a real world scene is considered, it is obvious that a binarization based
on intensities cannot correctly segment these objects. That is why features such as local
descriptors which are directly computed on the input signal achieved success for image
retrieval and object recognition tasks [Low04, MS05]. Recently, methods were developed
that localize objects by means of probabilistic models [MLS06], sliding windows [FFJS08]
or sub windows [LBH09].

As previously mentioned, modern binarization techniques are not applicable for the
dataset investigated. That is why a system is designed that is inspired by modern ob-
ject recognition system. This allows for a late classification decision meaning that no
information is initially lost owing to image binarization.

1.1.1 Scope of Discussion

This report focuses on character recognition for ancient manuscripts. However, a complete
Ocr was not developed in this context. Thus the scientific question is: Can state-of-the-
art object recognition methods be applied for recognizing degraded characters?

In order to answer this question, state-of-the-art interest points and local descriptors
where compared on the investigated dataset being synthetically affine distorted. Accord-
ing to tests further detailed in Chapter 4, the best performing, namely DoG and Sift,
where chosen for the feature extraction. Since all current Ocr systems binarize images,

2blob features are based on binary images, while local features are computed on color or grayscale
images
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Figure 1.2: A manuscript page’s detail (a), results of the system proposed (b), binarization
of the page using Otsu’s method (c) and the Sauvola binarization (d).
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characters or words are implicitly localized. However, accurate object localization is a cur-
rent issue in the object recognition community [MLS06, LBH09]. That is why a character
localization based on clustering interest points was developed for the system proposed.

As previously mentioned it is not intended to build a complete Ocr system. This
is on the one hand because a dictionary, which is important to improve the recognition
process, does not exist for the Glagolica. In addition, words are not separated by spaces
in this script, which complicates the localization of words that are needed for dictionaries.
On the other hand, a text does not need to be transcribed in order to evaluate a character
recognition system. Hence, the proposed system is evaluated by directly groundtruthing
document images.

As a consequence of the dataset investigated, the system is not compared to current
state-of-the-art Ocr systems. Nevertheless, the classification performance which is fur-
ther discussed in Chapter 4 can be compared to results gained by current systems on
degraded manuscripts which are further detailed in Chapter 2.

In addition to Glagolica, the system was evaluated on modern computer fonts in order
to show its flexibility. This test additionally shows if a system based on local information
is applicable for general Ocr tasks.

1.1.2 Objective

Reliably recognizing characters of scanned machine printed documents is possible if cur-
rent commercial Ocr systems (e.g. TypeReader3, FineReader4, OmniPage5, Tesseract6)
are regarded. However, recognizing manuscripts and especially degraded manuscripts is
still a challenging task which is further discussed in Chapter 2. Especially the binarization
of faded-out characters in presence of background clutter is a current issue [FWL+09].

Another issue arising when manuscript characters are recognized is the class diversity.
In other words, the classification task needs to differentiate in our case 36 characters which
are even more for other scripts. However, the problem is not solely the number of classes,
but also the characters’ shapes vary according to the scribe, neighboring characters and
writing materials. In addition to this, noise such as faded-out ink or mold degrades the
documents which results in a challenging character recognition task. At the same time,
characters such as v , d and t exist that have a similar shape. Figure 1.3 shows two
different characters having a similar shape. Additionally, the character variation of one
scribe is shown. The last row illustrates faded-out characters and stains present in the
background.

The previously mentioned class diversity can be handled by training the system with
all currently available characters. Yet, the human effort should be kept as low as possible
in order to guarantee that the system can be applied to other scripts. That is why a
classifier needs to be incorporated that maximizes the prediction when only few (e.g. 20)
samples per character are presented to the system. An additional intention is to design
a system that keeps probabilities throughout the processing. Thus, human observers are

3ExperVision: http://www.expervision.com/
4ABBYY: http://www.abbyy.com/
5Nuance Communications: http://www.nuance.com/
6Hewlett-Packard & Google: http://code.google.com/p/tesseract-ocr/
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ä ò

Figure 1.3: Four variations of a d a (left) and four variations of t (right).

provided not solely character predictions but also with probabilities of a character for
belonging to a given class.

If document images are not binarized, the object localization is an issue. It is known
that a distinct part of the image is most probable belonging to a character (e.g. b ). Still
it is not known if this part fits the whole character or more than the actual character.
Additionally, combining the information of different local descriptors improves the final
prediction. That is why a character localization method needs to be developed which
is based on gray scale information so as to guarantee that faded-out characters are still
recognized.

1.1.3 Main Contribution

The objective of this report is not to develop a complete Ocr system but to discuss
a case study on new methods for recognizing characters of ancient manuscripts. Thus,
the main contribution of this report is to introduce object recognition methodologies to
the character recognition community. For this purpose, a character recognition system
was designed that incorporates state-of-the-art local features. An evaluation of local
descriptors on ancient manuscripts is given in Chapter 3 and in [DS09].

Another issue solved in this report is the localization of characters without the need
for binarization. This is further discussed in Chapter 3 and in [DS10]. The character
localization is based on the fact that every object produces one single interest point that
describes the whole object. These interest points are detected using an adaptive scale
selection threshold that is computed by means of a scale distribution. Subsequently, the
interest points representing characters are obtained as seed points for a k-means clustering
that groups all local descriptors of a given manuscript image.

In addition to the designed system and comparison of local descriptors, the system was
applied to modern computer fonts (see Chapter 4). This evaluation allows for proofing the
system’s capability to be easily adapted to different writing systems. The synthetically
generated characters additionally allowed for tests with artificial noise and to proof that
the methodology does not only apply for Glagolica.
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1.2 Definition of Terms

In this section, commonly used terms will be discussed. Before going into details on
definitions, a general remark on the notation of Glagolitic characters needs to be done.
Figure 1.4 shows two Glagolitic d ’s and v ’s. Since the LATEX font does not support
the different shapes of these characters, they are defined as d a and d b where d a marks
the initial which consists of two circles connected by an arrowhead and d b denotes the
character that is represented by the font. For the v the same notation is used.

Äa Äb Âa Âb

Figure 1.4: Definition of d and v

Subsequently, a list with definitions of commonly used abbreviations will be given.

DoG Difference-of-Gaussian: An approximation to the LoG which is computed
by successively differencing images that were previously smoothed with Gaus-
sians having different scale parameters σ [Low04]. This method allows for
finding blob-like structures of different scales in images (see Section 3.1).

Fast Features from Accelerated Segment Test: A corner detector which ex-
tracts corners of a single scale. Therefore, Bresenham circles around each
pixel are considered. Corners are classified according to previously learned
rules [RD06] (see Section 2.2).

Gloh Gradient Location-Orientation Histogram: A local descriptor that was
first proposed by Mikolajczyk et al. [MS05]. It is similar to Sift but exploits
the Pca for dimensionality reduction (see Section 2.3).

k -nn k-Nearest Neighbor: A simple classifier. It predicts classes by finding a
sample’s k nearest neighbors and accumulating their labels [DHS00].

LoG Laplacian-of-Gaussians: A scale-space that is computed by repeatedly
applying a LoG filter. The filter which is illustrated in Figure 2.6 is a robust
high-pass filter [Lin94].

Mser Maximally Stable Extremal Regions: An interest Point detector which
finds image regions by means of a watershed-like segmentation. It was pro-
posed by Matas et al. [MCUP04] and proved to be the most stable interest
point detector in studies by Mikolajczyk et al. [MTS+05] (see Section 3.1).

Ocr Optical Character Recognition: The process of transcribing documents
from digital images by recognizing characters [RK09].
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Pca Principal Component Analysis: A statistical method that allows for di-
mensionality reduction. This is achieved by computing the eigenvectors of
the data’s covariance matrix. Thus, the feature space is transformed to a new
vector basis where the dimensions can be sorted according to their importance
[DHS00, Jol02].

Sift Scale Invariant Feature Transform: A local descriptor which was first
proposed by Lowe [Low04]. It is based on accumulating gradients according
to their orientation and location into a high dimensional feature vector (see
Section 3.2).

Surf Speeded Up Robust Features: A local descriptor similar to Sift proposed
by Bay et al. [BTG06]. It can be computed faster than Sift since integral
images are exploited for the interest point detection and the feature vector’s
construction (see Section 2.3).

Susan Smallest Univalue Segment Assimilating Nucleus: A corner detector
that is based on non-linear filtering. It extracts corners in a single scale
[SB97] (see Section 2.2).

Svm Support Vector Machine: A classifier which allows for classifying high
dimensional features by solving a dual optimization problem. It is based on
risk minimization rather than error minimization which is known for tending
to over fit the training data [VC74] (see Section 3.2).

1.3 Results

In order to choose the best performing local descriptors, state-of-the-art methods where
compared on the dataset investigated. For these experiments affine transformations where
applied to the document images. It turned out that Sift, in combination with the DoG, is
most robust with respect to image transformations such as scale, rotation and projective
distortions.

The system proposed was evaluated using synthetic data, degraded characters and
real world data. For the test with synthetic data, character images with different fonts
(e.g. Times New Roman, Arial) where generated. For undistorted data, the system’s pre-
cision is 0.96. The single false predictions are i and j when written with Arial. This is
because solely small corners with different directions are recognized. In order to simulate
partially visible characters, the characters in the synthetic images where occluded. If 50 %
of the characters are occluded, the system’s precision is 0.75. The precision is 0.904, if
Gaussian noise with zero mean and σ = 0.008 is added to the initial data.

In the second experiment, degraded characters were extracted from the Cod. Sin. Slav.
5n. On the degraded test set the precision was 0.789 compared to 0.981 if characters with
a high dynamic range are evaluated. Considering 25 different characters, a precision of
0.717 is achieved when partially visible and faded-out characters need to be recognized.

Finally, a test on real world data including 1055 characters was performed. Aside
from the evaluation of crucial parameters, a comparison between no clustering and with

8



the character localization proposed was done. The F0.5-score, which is a weighted mean
between precision and recall, is 0.804 if characters are localized using synthetic clustering.
In contrast, the F0.5-score decreases to 0.772 if characters are localized with the proposed
interest point clustering. A remarkable fact is that the precision does not significantly
change (0.005) between these experiments, but the performance decrease can be traced
back to the recall which decreases from 0.748 to 0.673. This can be attributed to characters
which are missed if clustering errors occur.

1.4 report Structure

Having previously discussed the motivation for this report, the related work will be subse-
quently given in Chapter 2. There, the state of the art for degraded character recognition
is described in the first part. The second part details related work on object recognition
focusing on interest point detectors and local descriptors.

In Chapter 3 the interest point namely DoG and the local descriptor (Sift) is de-
scribed in detail. Additionally, comparisons of different interest point detectors and local
descriptors are discussed in this chapter. The Svm and methods used for properly training
the system are discussed accordingly. The chapter’s final section addresses the character
localization which was especially designed for manuscript images.

Chapter 4 details experiments and the system’s results on the dataset investigated. In
order to show the system’s performance, three experiments were carried out using different
datasets. The first of which evaluates the system for Latin script where its behavior is
tested if artificial noise is being introduced. In the second experiment, images containing
single characters are used to compare the system’s performance on degraded and well
preserved characters. Finally, a test on real world data is carried out that allows for
computing the precision and recall on degraded document images.

At the report’ end, a conclusion is given in Chapter 5, which discusses advantages and
disadvantages of the system proposed. Additionally, future developments are depicted
that may improve the character recognition system.

9



Chapter 2

Related Work

In this chapter, an overview of state-of-the-art methods is given. The objective is to show
the current progress of document analysis and object recognition. The chapter’s first part
– which deals with Ocr – demonstrates the current frontiers in character recognition
of ancient documents. The second part aims at introducing common object recognition
methodologies with the history of local features in particular.

It is not intended to give an exhaustive survey about object recognition methodologies,
but to give a short overview mapping important concepts and ideas. A more detailed
explanation of the methods used in this report is given in Chapter 3. Additionally, the
respectively cited papers particularize the discussed topics.

First, Ocr systems are discussed in Section 2.1 focusing on off-line character recog-
nition applied to degraded documents. In addition to general document pre-processing
methods, new developments in document binarization are detailed in Section 2.1.1. Since
this report is geared to object recognition, its state of the art is discussed in the Sec-
tions 2.2 and 2.3. The first of which deals with the progress of interest point detection.
The latter gives an overview of remarkable local descriptors and their performance eval-
uated in [MS05].

2.1 Optical Character Recognition Systems

It is reported in [AYV01] that the first character recognition system was developed in 1900
by Tyuring who aimed at assisting visually impaired people. However, Handel patented
a so-called Statistical Machine which was able to optically recognize characters in 1933
[Han33]. Similarly, the Austrian inventor Tauschek developed an analog optical reading
device [Tau35]. In Figure 2.1 the illustration of Tauschek’s Reading Machine is given. He
recognized characters by means of templates which are projected onto the document. If
a template matches the character (number) hardly any light is backscattered. Thus, a
photo sensor can recognize if a template matches the currently observed character.

Beginning in 1940, the first digital Ocr systems were developed. At that time, sci-
entists focused on machine printed Latin documents. For that task, simple template
matching algorithms were designed that matched each character present in a document
with a set of predefined character images.

10



Figure 2.1: Tauschek’s analog Reading Machine [Tau35].

Modern Ocr systems can be divided according to their input data. A principal
difference is on-line versus off-line Ocr. The first of which deals with the recognition of
words written on a digital device such as a Pda. The latter analyzes digitized manuscript
or machine printed pages. In on-line Ocr systems, the input data does not require pre-
processing. Thus, the data is already binarized and thinned as a result of the input
device. Additionally, the signal is time dependent meaning that the time is known when
strokes where written. Therefore, the writing direction of each stroke is known. A survey
on on-line and off-line handwriting recognition is given in [PS00, Vin02]. Off-line Ocr
systems are further discussed in Section 2.1.2. Figure 2.2 illustrates the classification of
Ocr systems. This illustration does not show the difference between constrained and
unconstrained Ocr. The first of which are systems having a constrained vocabulary
(e.g. postal address recognition, geographical names).

OCR

o�-line

machine handwritten

on-line

handwritten

Figure 2.2: Classification of Ocr systems.
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2.1.1 Document Analysis

State-of-the-art Ocr systems need a preceding document analysis in order to recognize the
characters. Typical document analysis steps include layout analysis [DKS09, MEE+09],
skew estimation [Hul98, vBSB09], text line extraction [KSGM08, LSZT07] and binariza-
tion [GNP09]. In this section, related work on binarization will be detailed. A survey
about character segmentation is given in [CL96].

In Figure 2.3, established image binarization methods of the 20th century are applied
to the investigated dataset. For visualization purposes, objects are set to 0 (black) and
background is set to 1 (white). It can be seen that the global binarization method pro-
posed by Otsu [Ots79] is not capable to correctly segment the characters. As a result
of background clutter, the method segments background in the left image part. In addi-
tion, faded-out ink causes a low dynamic range which results in filled character holes. In
addition character holes are filled because of faded-out characters which results in a low
dynamic range. The Sauvola [SP00] binarization method performs visually better on this
test image. However, for this result the parameters (especially k = 0.2) had to be tuned
which is crucial if a varying dataset is investigated. Degraded characters such as the b
in the last text line cannot be extracted correctly. Similarly to the Otsu binarization,
background clutter is segmented in the left image region.

original Otsu

Sauvola

Figure 2.3: Comparison of two binarization methods on the investigated dataset.

Otsu [Ots79] proposed in 1979 a global thresholding approach that considers the class
variances. It takes into account a gray scale image’s histogram and assumes that all gray-
values belong to two classes: foreground and background. In order to find the best global
threshold, the intra-class variance is minimized while at the same time maximizing the
inter-class variance. Even though this method was not designed especially for document
image binarization, it proved to perform perfectly if printed scanned documents are con-
sidered. However, when for example photographed documents with changing illumination
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need to be processed, a global thresholding approach fails.
That is why Niblack [Nib90] proposes a local thresholding approach based on the

local mean value and standard deviation. Sauvola [SP00] further improves this method
by adaptively amplifying the standard deviation. The mean and standard deviation of
a local region are computed for each pixel. This can be calculated efficiently if integral
images are exploited. Then, a threshold is assigned to each pixel according to:

T (x, y) = m(x, y)

[
1 + k

(
s(x, y)

R
− 1

)]
(2.1)

where T (x, y) is the resulting threshold for each pixel, m(x, y) and s(x, y) are the local
region’s mean and standard deviation respectively. The standard deviation’s dynamic
range is given by R and k > 0 is used to control the influence of s(x, y). This local
adaptive thresholding method is capable of binarizing document images of poor quality.
It can especially handle changing illuminations and background clutter which arises from
repeatedly copying the same page. However, considering ancient or medieval manuscripts,
this method fails particularly if the character size varies, homogeneous background is
present and characters are faded-out.

Bukhari et al. [BSB09] propose an improved document binarization method based on
Sauvola’s methodology. For this purpose, ridges are detected by means of multi-scale
anisotropic Gaussian smoothing and the Hessian matrix. Instead of using a constant k
in Equation 2.1, they suggest to vary k(x, y) according to ridges previously detected. If
k = 0.05 for foreground regions and k = 0.2 for homogeneous background regions, this
method outperforms Otsu’s and Sauvola’s thresholding approach.

A similar approach that is based on Sauvola’s thresholding method is proposed by
Tanaka [Tan09]. He detects homogeneous background by extracting a flatness measure
of local regions. This allows for a noise reduction which arises from Sauvola’s binariza-
tion. Additionally, if more than two gray value classes are present in a local region, the
current window is shifted away. This improves the segmentation of lines which are close
to characters and have a different gray value.

Text binarization methods that focus on uneven lighting conditions are proposed by
Lu et al. [LT07] and Kuk et al. [KC09]. The latter of which propose to initially estimate
the shading by means of a Gaussian convolution having a large kernel. Then a descriptor
is established which is based on mean filters and allows to classify pixels into Text Region
(TR), Near Text Region (NTR) and Background Region (BR). Finally, pixels belonging
to TR and NTR are relabeled by means of a graph cut method.

In contrast, Lu et al. [LT07] – winner of the Document Image Binarization Contest
2009 [GNP09] – developed a document binarization method based on a global Savitzky-
Golay filter. In more detail, the shading is estimated by fitting a least square polynomial
surface to a given document image. Combining the pixels’ gray-values and the polynomial
surface allows them to directly threshold the observed image. Their method outperforms
Otsu’s and Sauvola’s thresholding method on the investigated dataset.

Yosef [Yos05] proposes a binarization method focusing on degraded manuscript images.
Therefore, a global threshold (e.g. Otsu) is applied to the manuscript image. According to
cc statistics such as the aspect ratio of the cc’s bounding box, characters connected with
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background clutter in the binary image are detected. Noisy characters are then converted
into seed regions for a growing process that finds the final character form.

Ntirogianis et al. [NGP09] developed a binarization method which handles printed and
handwritten degraded document images. Therefore, a local binarization method such as
the Sauvola threshold is initially applied to the document image. Computing the skeleton
and the outer contour of each cc allows for a stroke’s width estimation. An adaptive
parameter is then applied to the local thresholding method that considers the likelihood
of a background pixel for belonging to a character according to the previously computed
stroke width. An additional method for binarizing degraded document images is proposed
by Xi et al. [XCL+07]. They combine two local thresholding methods namely Niblack’s
[Nib90] and Palumbo’s [PSS86] which is based on local contrast information.

In addition to these binarization methods, a work from Ramanan [RS06, Ram06] is
discussed which deals with localizing objects. He proposes to train deformable models
that estimate the pose of an object in order to get a fuzzy segmentation. This allows for
a localization of objects. Considering that handwritten characters are deformed proto-
types, one could think of adapting this approach for localizing characters that cannot be
binarized correctly.

2.1.2 Recognizing Characters of Degraded Documents

In this section, state-of-the-art Ocr systems for degraded documents are presented. Cur-
rent Ocr systems have three basic steps in common which are shown in Figure 2.4. First,
document pre-processing, which was given in the previous section, is performed. There
the document’s skew is estimated, the text layout is extracted and the document image is
binarized. Subsequently, binary features, which will be further discussed in this section,
are extracted. These features are then classified by means of a Neural Networks (NN)
or a Svm. Some Ocr systems have an additional step which is not illustrated in Fig-
ure 2.4. They use a dictionary in order to correct spelling mistakes caused by character
classification errors. Finally, each character gets assigned a corresponding class label.

<code>

<\code>

image pre-processing features classi�er characters

Figure 2.4: General Ocr system design.

The approaches subsequently presented differ according to the data investigated.
Thus, three general data sets are differentiated: typewritten documents, cursive hand-
written documents and handwritten documents. Figure 2.5 illustrates documents of the
particular datasets. The Georg Washington document in Figure 2.5 (middle) can be
correctly binarized since the background is homogeneous. However, a correct character
segmentation is hard as stated in [LRM04] because of the cursive script. On the contrary,
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the Hebrew manuscript in Figure 2.5 contains background clutter because of the ink on
the reverse bleeding through.

Figure 2.5: Degraded typewritten document (left), cursive handwritten document from
the George Washington collection (middle) and Hebrew manuscripts (right). Courtesy by
Pletschacher [PHA09], Lavrenko [LRM04] and Yosef [Yos05] (from left to right).

A framework for recognizing degraded typewritten documents from the 19th century is
proposed by Pletschacher et al. [PHA09]. They propose to train the classifier using a semi-
supervised clustering approach. Therefore, binary features such as the normalized height
or aspect ratio are extracted. Based on the feature’s information, glyphs are clustered
such that the same characters are grouped together. Human feedback allows to label and
correct the automatically found glyph clusters.

Lavrenko et al. [LRM04] directly recognize words from the George Washington collec-
tion. Hence, previously segmented words need to be normalized according to the slant,
skew and baseline. Then, scalar features such as the word’s width or aspect ratio and
profile-based features (e.g. projection profiles) are computed on the normalized word im-
ages. A Hidden Markov Model (Hmm) with hidden states that represent words is used to
classify the words. Lavrenko reports a precision on the George Washington collection of
0.603. This technique was later improved by Rath et al. [RM07] who propose to use dy-
namic time warping in order to compensate non-linear variations present in manuscripts.

Similar to the previously mentioned methods, a word recognition system is proposed
by Frinken et al. [FB09]. They compute statistical moments from sliding windows that
are applied to normalized word images. A NN with one hidden layer is constructed for
the classification. In addition, the a priori data distribution is trained by means of semi-
supervised learning that is fed with labeled and unlabeled data. Frinken et al. [FPF+09]
additionally combine this methodology with Hmm’s in order to improve the word recog-
nition.

Contrary to the word recognition methods, Alirezaee et al. [AAFF05] developed a
character recognition system for medieval Persian manuscripts. They extract statistical
features such as Pseudo-Zernike moments from previously binarized document images.
In order to find features that are discriminately, the Fisher Linear Discriminant is used,
which transforms the data such that the inter-class variance is maximized. The resulting
weight function is used for character classification.

Arrivault et al. [ARFMB05] propose a combined statistical and structural character
recognition approach for ancient Greek and Egyptian documents. Therefore, two statis-
tical features namely Fourier moments and Zernike moments are extracted from binary
document images. According to the dictionary’s size, a Bayes or k -nn classifier is used to
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label characters according to statistical features. Structural features such as attributed
graphs are computed and classified for characters which are rejected during the classifi-
cation of statistical features.

Another approach that aims at recognizing historical Greek characters is published by
Vamvakas et al. [VGSP08]. Having binarized the image and segmented individual char-
acters, zone features and character profile features are calculated. The first of which are
constructed by tiling the character image into zones and accumulating the character pixel
density to the normalized zone image. Unlabeled character features are then clustered ac-
cording to the features extracted. In a manual step, labels are assigned to the clusters and
clustering errors can be corrected. Finally, a Svm is applied for character classification.

In 2007, Ntzios [NGP+07] developed a so-called segmentation-free character recogni-
tion system applicable for the same documents. He extracts geometrical features from
binarized images in combination with a watershed-like algorithm that fills cavities. A
decision tree is used for the character classification. Since the decision tree and the fea-
ture extraction are highly script dependent, the approach does not show promising for
generally recognizing ancient manuscripts.

2.2 Interest Point Detectors

In this section, an overview of state-of-the-art interest point detectors is given. The
detection of interest points is a crucial task, since the results of the subsequent feature
matching is directly related to its performance. Hence, if an interest point detector is
chosen which has a low repeatability against certain geometrical distortions (e.g. scale
change) that are present in the observed images, the feature matching performs poorly.
This is because interest points which are found in one image are not detected in another
image because of the detector’s low repeatability. As a consequence, interest points with
no corresponding partner in the other image cannot be matched at all, since the same
interest points need to be selected in both images in order to match them. Due to the
previously mentioned importance of the interest point detection, it is a well investigated
but still active research topic (see [Mor81, HS88, MS01, Low04, BTG06]). This section
does not cover all interest point detectors, but gives an overview of important concepts.
A more detailed explanation of the topic is given in [Mik02].

All interest point detectors presented are based upon derivatives or their approxi-
mations since derivatives allow for extracting structures invariant to global illumination.
Figure 2.6 shows the first and second partial derivatives of a 2D Gaussian. The y deriva-
tives (gy, gyy) are the same as the transposed x derivatives. In addition to the Gaussian
derivatives, the LoG is illustrated in Figure 2.6.

2.2.1 Corner Detectors

Local interest points for stereo image matching tasks were first introduced by Moravec
[Mor81] in 1981. He proposes to compute features at image locations which possess
corners in order to minimize the number of wrong matches. Therefore, the directional
variance is measured using squared sums of adjacent pixel differences in four directions.
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Gx Gxx Gxy LoG

Figure 2.6: Gaussian derivative kernels and the LoG kernel which are commonly used for
interest point detection.

The window’s interest measure is subsequently calculated by the minimum of these sums.
Moravec suggests locating features at local maxima of the interest measure.

Harris and Stephens [HS88] improves the repeatability of the Moravec detector using
the second moment matrix (autocorrelation-matrix). The so-called Harris corner detector
extracts feature points at locations of corners and image regions which have large gradients
in all directions. A drawback of the Harris corner detector is its sensitivity to scale changes.
Thus, feature points can solely be extracted at a predefined scale.

In order to compensate the lack of scale-invariance, Mikolajczyk et al. [MS01] combines
the Harris corner detector with a Laplacian. Thus, the features are spatially located using
the Harris function. Afterwards, the characteristic scale is found by the maximum of the
Laplacian in a scale-space introduced by Lindeberg [Lin94]. By this means, it is possible
to detect regions of interest which have a high (80 % for a scale factor of 1.2) repeatability
with respect to scale changes.

Mikolajczyk [Mik02] additionally exploits the Hessian matrix for interest point detec-
tion. The Hessian matrix – a square matrix consisting of second-order partial derivatives
– is used to select the dominant scale of an interest point by selecting the maxima of
the determinant. Even though the trace of the Hessian matrix is the same as the Lapla-
cian, the scale selection is more robust with respect to illumination changes and noise
[Mik02]. Recently, a Fast-Hessian detector was presented by Bay et al. [BTG06]. There,
the Gaussian second-order derivatives are approximated by box filters accelerating the
computation in combination with integral images.

Smith and Brady [SB97] proposes Susan which is a fast corner and edge detector
based on non-linear filtering. Therefore, a mask is defined which compares each pixel
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within the given mask with the current center (nucleus) of the mask. Afterwards, pixels
with a similar brightness to the nucleus define an area which is used to find the local
structure.

Another method that focuses on real-time corner detection rather than finding corners
accurately invariant to a given set of distortions was recently proposed by Rosten and
Drummond [RD06] and is called Fast. This method is similar to Susan but considers a
Bresenham circle around each pixel. The pixels are classified into corner and non-corner
pixels respectively with a machine learning algorithm. The method is further optimized
with the ID3 algorithm which minimizes the access rate per pixel. Finally, a non maxima
suppression is performed in order to guarantee that no real corner produces more than
one detected corners.

2.2.2 Blob Detectors

Lowe [Low99] first introduced Sift in 1999. He recognizes objects using scale and rota-
tionally invariant features. In contrast to the previously mentioned methods, the features
are not localized with the Harris function but by computing the DoG which detects blob-
like image regions. In order to localize features spatially and in scale, local extrema of
the DoG function are computed. Mikolajczyk [Mik02] showed with experimental compar-
isons, that the most stable features are produced by extrema of the LoG (see Figure 2.6).
Since the DoG is an approximation of the LoG – for the sake of computational effort –
the results of both methods are similar.

2.2.3 Other Techniques

A summary of other commonly used interest point detectors is given consecutively. Kadir
and Brady [KB01] compute saliency regions by measuring the entropy of pixel intensity
histograms which are computed for elliptical regions. In order to select the scale of
the detected interest points, they search for the maximum in the scale-space of each
feature. In 2002, Matas et al. [MCUP04] introduced Mser which are extracted with a
segmentation algorithm that is similar to the watershed segmentation. Later, Mikolajczyk
et al. [MTS+05] demonstrate that Mser are robust with respect to viewpoint changes,
but have low repeatability under increasing blur and scale changes compared to other
well-known interest point detectors.

Carboneto et al. [CDS+06] propose to combine different interest point detectors in
order to improve the results of object recognition. More precisely, they combine the
Harris-Laplace, Kadir-Brady and LoG detectors and conclude that the image classification
could be improved over the Harris-Laplace detector. Nevertheless, the interest point
detection using a combination of detectors does not significantly outperform the Kadir-
Brady detector in combination with their dataset but is more computationally expensive
[CDS+06].
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2.3 Local Descriptors

This section gives a brief overview of current research on local descriptors. The principle
of local descriptors is to find distinctive image regions such as corners and to analytically
describe these regions independent of a predefined set of transformations (e.g. affine trans-
formations). A remarkable advantage of local descriptors compared to global methods is
their robustness with respect to occlusions and global non-linear distortions present in
images [Low04, Mik02]. Thus, local descriptors are capable of recognizing objects even
if parts (see Section 4.1) of the objects are occluded because solely local information is
computed to establish the correspondence between the objects.

While at the beginning, image matching on the basis of local features was solely used in
stereo vision tasks, Schmid and Mohr [SM97] proposed to use feature matching for image
retrieval tasks. Therefore, they build a method which uses the Harris corner detector
for feature localization and compute a feature vector by means of Gaussian derivatives
which are called “local jet” [KvD87]. Schmid and Mohr show that matching local features
outperforms previous global methods for image retrieval tasks. Currently, the methods
are applied to solve general image processing tasks such as wide baseline stereo vision
[MCUP04], shape matching [BMP02] and object recognition [FPZ03], object localization
[CDS+06, MLS06, LBH09].

An intuitive local descriptor would be to take n pixel intensities in a predefined region
around the localized interest point and convert them into an n-dimensional vector. Ob-
viously, this descriptor would fail if an affine transformation such as a rotation with an
angle θ > ε was applied to the image. Another drawback of such a descriptor would be its
dependency to photometric transformations (e.g. intensity changes) caused by changing
illuminations or sensor noise. The matching of such a descriptor can be done with the
normalized cross correlation in order to obtain matching results independent of intensity
changes. Nevertheless, the high dimensionality which results in a high computational
complexity and its sensitivity to affine transformations limit the applications of such a
descriptor. That is why local descriptors are designed to be robust with respect to geo-
metrical and photometric transformations of a given dataset.

2.3.1 Distribution-Based Descriptors

In contrast to simple descriptors, distribution-based descriptors use a histogram of locally
measured data in order to represent the local appearance. Johnson and Hebert [JH97]
proposes a distribution-based local descriptor for 3D object recognition on the basis of
oriented points. Therefore, they compute the position of other points with respect to the
selected point. Lazebnik et al. [LSP03] adapted this approach to 2D images by taking
into account the intensity values and the distance between neighboring pixels and the
reference point.

Another descriptor called shape context which is based on point distributions is pro-
posed by Belongie et al. [BMP02] for shape matching and object recognition tasks. For
this purpose, the canny edge detector [Can86] is computed and the interest points are
uniformly sampled on the edge of objects. Afterwards, a log-polar histogram containing
the relative distances to all n− 1 remaining interest points is constructed. The log-polar
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space guarantees that nearby interest points are emphasized.
As previously mentioned, Lowe [Low04] proposes Sift for object recognition tasks.

There, each interest point is represented by a three dimensional histogram of the gradient
magnitudes’ distribution weighted by their orientation. In more detail, eight orientation
planes consisting of 4× 4 bins are constructed which results in a 128–dimensional feature
vector. The scales of interest points are determined by computing a DoG scale-space.
Invariance to changes in rotation is achieved by transforming the coordinate system with
respect to the dominant direction which is found by the global maximum of a histogram
over all orientations.

Mikolajczyk and Schmid [MS05] extended the Sift approach in order to gain more
robustness and distinctiveness. To achieve this, they use a log-polar location grid instead
of a Cartesian grid. For the so-called Gloh they take into account different radii and gra-
dient orientations which results in 272 dimensions. Since the performance of the matching
process decreases with increasing dimensionality, Mickolajczyk proposes to compute the
Pca in order to reduce the dimension of each descriptor to 128. The covariance matrix of
the Pca was estimated using 47000 image patches. Nevertheless, the Pca may perform
poorly for specific datasets as a result of the estimation process.

Ke and Sukthankar [KS04] recently improved the Sift descriptor. Therefore, they
take into account a 41 × 41 image patch at each interest point detected. Having com-
puted a 3 042 dimensional Sift descriptor, the Pca is calculated to reduce the vector’s
dimensionality. The Pca was applied to the covariance matrix of 21000 image patches.
Afterwards, the eigenvectors are sorted according to their importance and the top n are
taken into account. Ke proposes – based on empirical studies – to take the first 20 eigen-
vectors. Despite the low dimensionality compared to the Sift descriptor, the authors
show experiments where Pca-Sift performs better than the original Sift algorithm.
They trace this effect back to the fact that eliminating the lower components of the Pca
removes unmodeled distortions.

Due to the fact that distribution, based high-dimensional descriptors exhibit the best
performance on general object recognition tasks [MS05], Bay et al. [BTG06] designed
a new descriptor called Surf for on-line applications focusing on computational speed.
Similar to the Sift descriptor they obtain rotation invariance by normalizing the de-
scriptor with its dominant orientation. To achieve this, the Haar-wavelet responses are
computed in x and y direction using integral images. Then, the dominant orientation is
determined by calculating the sum of all responses within a sliding window. Finally, the
64-dimensional descriptor is constructed by summing the Haar-wavelet responses in x and
y direction and their absolute values in 4 sub regions around the interest point.

2.3.2 Other Techniques

In contrast to distribution-based descriptors, the interest point neighborhood is approxi-
mated in differential descriptors by derivatives of a given order. Koendrik and van Doorn
[KvD87] were the first to investigate local derivatives, called local jet. The derivatives are
computed by convolution with Gaussian derivatives (see Figure 2.6). Since this approach
is not rotationally invariant, Florack et al. [FHRKV94] proposes to compute invariants
which are combinations of local jet components and additionally reduce the dimension
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of the feature vector. A further approach to gain rotational invariance of differential de-
scriptors is to use steerable filters investigated by Freeman and Adelson [FA91]. There,
the derivatives are steered in the gradient direction.

Another method describing local context is to compute central moments up to a given
order [GMU96]. Then, invariants are calculated that describe the shape and intensity
distribution within a defined region.

2.3.3 Performance of Local Descriptors

Mikolajczyk and Schmid [MS05] evaluate the performance of ten different local descrip-
tors (amongst others: Sift, Gloh, Pca-Sift, shape context). They compare the pre-
cision/recall of each descriptor on a database1 that contains real images with different
geometric and photometric transformations such as rotation, viewpoint change or Jpeg
compression. They conclude that Gloh performs best for object matching and object
recognition tasks. Nevertheless, the performance of Gloh is not significantly better than
the performance of Sift throughout their tests, but it is computationally more expensive
than Sift. Similar results are obtained by shape context. However, the performance of
shape context decreases significantly if edges in the images are not reliable. Pca-Sift
performs worse than the high-dimensional descriptors. Mikolajczyk and Schmid take 36
eigenvectors into account which showed – empirically evaluated on their database – the
best results for low dimensional descriptors. They do not mention if the projection matrix
is trained for their database or if they apply the proposed one. The best performance of
low-dimensional descriptors is achieved by gradient moments and steerable filters.

Summary

In this section, related work about character recognition and object recognition was de-
picted. According to the discussed state-of-the-art Ocr systems, it can be assumed that
recognizing characters in ancient and degraded manuscripts has still not reached the final
frontier. It was additionally shown that all current systems extract their features from
binary images. This can be traced back to the fact that character recognition systems
where developed since the beginning of the 20th century, a time when object recognition
was not feasible because of hardware constraints. However, in the last two decades, ob-
ject recognition systems have become powerful tools in Computer Vision (cv). That is
why it is proposed in this report to use object recognition methodologies for character
recognition in order to overcome challenges that arise when degraded manuscripts are
observed.

In addition to current Ocr systems presented, related work in the field of object
recognition was described. For that purpose, an overview of the last two decades was given.
The interest point detectors and local descriptors explained will be further compared and
discussed in the subsequent Chapter which details the design of the character recognition
system proposed.

1available at: http://www.robots.ox.ac.uk/~vgg/research/affine
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Chapter 3

Methodology

In contrast to state-of-the-art systems, the system proposed has a fundamentally new
architecture which is designed to compensate the drawbacks that arise when dealing with
ancient manuscripts. Instead of applying a binarization so as to compute features, they
are directly extracted from the gray-scale image.

The system is divided into two major tasks: classification and localization. Both tasks
are based upon the extraction of interest points which are computed by means of the DoG.
This interest point detector extracts blob-like regions at different scales of an observed
manuscript image. Thus, the x, y coordinates as well as the scale s are provided for each
region of interest.

Exploiting this information, local descriptors are calculated which describe the respec-
tive regions by means of gradient vectors that rely on the pixels’ gray-scale values. These
local descriptors are directly classified using a multi-kernel Svm. Having classified all
extracted image regions, one character consists of multiple pre-classified points.

In order to assign one class label to each character present in an image, the interest
points need to be clustered. Therefore, character center estimation is performed, which
exploits the fact that each character produces a single interest point at a specific scale
(see Section 3.4). This estimation is used for an improved initialization of the k-means
clustering which groups the interest points according to the subjacent characters. Finally,
the information gained by the classification and localization steps is merged together.
The so-called interest point voting weights the class probabilities of all local descriptors
belonging to the same cluster and assigns the final class label to each character.

In this chapter, the methods for character recognition are detailed. Figure 3.1 illus-
trates the two major tasks and gives an overview of the core methods. As can be seen,
the character localization and the classification are based on interest points. Both tasks
are computed in parallel as they do not depend on each other. Finally, a voting scheme
merges the information gained by localization and classification and predicts character
labels. Section 3.1 presents the interest point extraction. The local descriptors based on
Sift are described in Section 3.2. Their classification accomplished by a Svm is detailed
in Section 3.3. Whereas in Section 3.4 the character localization, which is needed to group
the local descriptors, is illustrated. Finally, the descriptor voting is given in Section 3.5.
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Figure 3.1: The system proposed consisting of two major tasks: classification (top) and
character localization (bottom).

3.1 Interest Point Detector

In Section 2.2, an overview of state-of-the-art interest point detectors was given. Ad-
ditionally, advantages and drawbacks were depicted for each method. For the system
proposed in this report, the DoG detector is used for the localization of image regions
where local descriptors are computed. It was chosen by reason of the consecutively enu-
merated advantages which were gathered by studies of Mikolajczyk [MTS+05, MS05],
Lowe [Low04] and comparisons of interest point detectors on the investigated dataset (see
Section 3.1.2). Thus, the main advantages of the DoG are subsequently given.

◦ Blobs are detected in a scale-space. That is why features can be extracted in a scale
invariant manner.

◦ The scale-space is computed by convolving an image with Gaussians having an
increasing σ. As a consequence, the DoG is robust with respect to noise caused by
e.g. the camera sensor or Jpeg compression.

◦ The DoG is computationally faster than the LoG but produces similar results.

◦ The DoG detects more interest points1 than other approaches such as Mser or
Fast. Thus, a character is described with more details (≈ 70.8 %) which results in
a higher reliability of the descriptor classification.

◦ Mikolajczyk [Mik02] states that the DoG has a higher repeatability for viewpoint
changes below 50 ◦ than Harris based interest point detectors.

1The DoG detects 1997 interest points for a sample image having 474× 616 px where Mser detects
584 and Fast detects 1057 interest points.
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3.1.1 Interest Point Localization

In order to detect interest points invariant to scale changes of the image, a scale-space
which was exhaustively studied by Lindeberg [Lin94] is constructed. The scale-space
L(x, y, σ) of an image f(x, y) is constructed by convolving the image with Gaussians
G(x, y, σ) having a varying scale parameter:

L(x, y, σ) = G(x, y, σ) ∗ f(x, y) (3.1)

where ∗ denotes the convolution in x and y direction and σ is the scale parameter.
The Gaussian filter kernel is defined by:

G(x, y, σ) =
1√

2πσ2
exp−(x

2+y2)/2σ2

(3.2)

Figure 3.2: A Gaussian low-pass filter kernel with σ = 10 visualized as image (left) and
as a function of x and y (right).

Figure 3.2 shows the Gaussian filter kernel which is a 2D representation of the well-
known normal probability curve. Lindeberg [Lin94] proved that the Gaussian kernel is
the only low-pass filter which can be used to compute a scale-space owing to its linearity
and spatial shift invariance. This arises from the fact that each pixel of a finer scale
contributes equally to a pixel of a coarser scale. Hence, structures of a coarse scale
represent simplified structures of the finer scale levels and do not possess new structures
generated by smoothing.

A convolution using a 2D symmetric filter kernel is equivalent to convolving the image
with the same 1D kernel successively. Therefore, the scale space is computed, according
to:

L(x, y, σ) = G(x, σ)T ∗ (G(x, σ) ∗ f(x, y))

G(x, σ) =
1√
2πσ

exp−x
2/2σ2 (3.3)

where G(x, σ)T denotes the transposed 1D Gaussian. This method accelerates the scale
space computation since the convolution with a 2D kernel results in O(HW ·M2) multi-
plications and additions where HW are the image height and width respectively and M
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is the kernel’s size. Convolving an image with two 1D Gaussians results in O(HW · 2M)
multiplications and additions which dramatically reduces the computational effort con-
sidering that M is at least 3 and in our case: σ =

√
2⇒M = 9.

The scale-space allows extracting structures of an image at different levels of details.
In order to speed-up the computation of the scale-space, the images are resampled after
σ has doubled which is called octave. Thus, the image size decreases exponentially with
each octave. Due to the resampling, subsequent processing steps can be implemented
efficiently. The Gaussian filter kernel additionally suspends noise introduced by e.g. the
camera sensor or image compression.

Having constructed the scale-space, regions of interest are extracted at every scale level
by means of the DoG D(x, y, σ). It is computed by differencing images of two nearby scale
levels which are separated by a constant factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ f(x, y)

= L(x, y, kσ)− L(x, y, σ)
(3.4)

Since the scale-space – which is computationally intensive – needs to be computed
anyway in order to gain scale invariance of the features, the DoG can be computed simply
by subtracting the images which represent scale levels.

As mentioned in Section 2.2.2, the DoG is a close approximation to the LoG. Since
the Laplacian, which is denoted by ∇2 is a differential operator, structures such as edges
and corners – more generally blobs – have strong negative or positive responses while
flat regions become zero. Figure 3.3 illustrates the pyramid representation of a Gaussian
scale-space and its corresponding DoG scale-space. Note the increasing smoothness of the
image as σ is increased.

Extrema Detection

Having computed the DoG, interest points can be located simply by finding the positive
and negative extrema of each scale level of a given image. Therefore, each pixel value
D(x, y, σ) is compared to the values of its 8-connected neighborhood. If the observed
pixel represents a spatial local extremum within one scale level, it is compared with its
18 neighbors of the lower and the higher scale level. Solely pixel values which are local
extrema spatially and in scale are chosen as possible interest point candidates. More
precisely:

D(x, y, σ) > D(x− i, y − j, (k − l)σ)

∀ i, j, l ∈ {−1, 0, 1} ∧ (i ∧ j ∧ l 6= 0)
(3.5)

where D(x, y, σ) represents a scale-space level and k is a constant factor multiplied to σ
in order to select different scale levels. The indices i, j, l are defined between [−1, 0, 1].

Currently, the interest points are located at pixel coordinates. However, Lowe [Low04]
established that the performance of feature extraction can be improved if the interest
points are not placed at the central sample point. Therefore, a 3D quadratic function is
fitted to the local function in order to determine the interpolated position spatially and in
scale. At the same time, points are rejected, which have a low contrast and are unstable.
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Figure 3.3: The first and the second octave of a Gaussian scale-space (left). Consider the
increasing smoothness of the images within one octave as σ increases. The corresponding
DoG is illustrated on the right side. There, edges and corners become black or white
while flat regions are gray (zero).

In order to reject weak interest points, the quadratic function value is thresholded (thresh)
at the extremum. This threshold is further studied in Section 4.3.1.

In addition to the mentioned weak interest points caused by noise, those located at
edges have a poor localization along the edge. In order to detect such interest points the
2× 2 Hessian matrix H is computed at their location. The Hessian matrix is defined by:

H =

[
Dxx Dxy

Dxy Dyy

]
(3.6)

where Dij denotes the second partial derivatives by x and y respectively. The underlying
idea of computing the Hessian matrix is to determine whether the principal curvature
is large compared to the perpendicular curvature which is characteristically for interest
points located at edges. Lowe introduced a measure which allows comparing the curva-
tures and therefore to find out if a point is weakly located on the edge without having to
compute the eigenvalues of the Hessian matrix. This measure is defined by:

Tr(H)

det(H)
<

(r + 1)2

r
(3.7)

where r is a threshold, det(H) is the determinant of the Hessian matrix and Tr(H) is
defined by:

Tr(H) = Dxx +Dyy (3.8)
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(b)(a) (c)

Figure 3.4: The images show a Glagolitic a with interest points. The threshold (thresh)
of (a) is set to 0.007, in (b) it is 0.01 and in (c) r is set to 10.

Figure 3.4 shows three images of a Glagolitic a where the black circles indicate the
scale of each interest point. Figure 3.4 (a) shows the interest points with a low threshold
(thresh)(0.007). In Figure 3.4 (b) a threshold of 0.01 is applied which rejects interest
points of lower scale levels since they are most likely caused by noise. This threshold is
optimal for the given problem (see Section 4.3.1). Figure 3.4 (c) is computed with the
same threshold as Figure 3.4 (b) but r is set to 10. In this case, one interest point is
rejected which is located on the left vertical stroke of the character (illustrated with a
dashed line in Figure 3.4 (b)).

3.1.2 Comparison of Interest Point Detectors

In order to emphasize the advantages of the DoG, different detectors are tested on the
investigated dataset. Therefore, four state-of-the-art interest point detectors (namely:
DoG, Fast, Mser, Susan) are evaluated on the dataset given. These detectors were
selected since they (DoG, Mser) outperformed other detectors (see [MS05]) or they are
fast (Fast) and not considered in previous performance evaluations (Susan).

An overview of the interest point detectors compared is given in Section 2.2. The
interest point detectors’ robustness to three relevant types of affine image transformations
(scale, rotation, projective), which are illustrated in Figure 3.5, is evaluated.

These transformations arise when document images are not scanned but digitized us-
ing a camera which is the case when books or ancient manuscripts are considered. To
exemplify, the scale-changes result from different resolutions of digital cameras, chang-
ing object lenses or changing the distance between the camera and the object imaged.
Rotation variations arise from rotations of the manuscript pages as well as non parallel
text lines (local rotations). Projective transformations occur when documents are imaged
without a controlled environment and, therefore, the camera is not positioned normal to
the document’s surface.

The robustness is evaluated with four test panels, containing 84 characters, are syn-
thetically distorted according to the defined image transformations. Four test panels were
chosen since three turned out to be not statistically significant. On the other side, more
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(a) (b) (c) (d)

Figure 3.5: The synthetic transformations which are used to test the robustness of the
detectors. Original test panel (a), scale test with 30 % of the original image size (b),
rotation with an angle of 40 ◦ (c) and affine distortion (d).

than four test panels would slow down the time consuming evaluation. The performance
of each interest point detector is computed by means of the precision which is evaluated
using manually tagged ground truth data. Hence, 84 characters are used in order to
compute the performance.
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Figure 3.6: Comparison of different interest point detectors with varying rotation angle
between 0◦ and 180◦.

Rotation

The interest point detectors’ invariance to rotation was tested by rotating each test panel
from 0◦ − 180◦. The step size was chosen to be 20◦ so that image degradations caused
by interpolations are minimized. The step size being 20 ◦ is a trade-off between the
experiment’s precision and computational performance. Figure 3.6 shows the precision
of each interest point detector tested with increasing rotation angles. All interest point
detectors where compared without the modifications described in this report.

The Fast detector (Figure 3.6) closely followed by the Susan detector outperforms
the other interest point detectors. Nevertheless, the performance of Fast decreases with
increasing angles (max: 67.2 % at 0 ◦ and min: 51.5 % at 160 ◦). The mean performance
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of the DoG, which is ø = 36.3 %, is weaker than those of Fast and Susan. This can
be traced back to the fact that the DoG is computed with a scale-space where features
of a coarse scale level are mistaken for features of a fine scale level. In detail, a whole
text line has the similar shape at a coarse scale-level as a horizontal stroke of a character.
As illustrated in Figure 3.6, the DoG is more stable with respect to rotation than the
detectors compared. The Mser has a weak performance since it locates fewer interest
points on the characters than the other detectors which results in a worse training of
the classifier (see Table 3.1). Notice, that the performance of Mser decreases similar to
Fast as the angle increases since they are not robust with respect to rotational changes.
Additionally, randomly sampled interest points were computed. They perform better
than Mser due to the previously mentioned fact that more samples per training image
are used to train the classifier.

Detector # ip Mean Std (σ) Min

Mser 124 19.8 % 4.25 % 14.0 %
DoG 289 36.3 % 1.09 % 35.0 %
Fast 249 59.6 % 5.19 % 51.5 %

Susan 200 56.2 % 2.93 % 50.1 %
Random 216 29.1 % 2.47 % 24.7 %

Table 3.1: Number of interest points (# ip) per test panel, mean, standard deviation and
minimal precision of all compared interest point detectors, if a test image is rotated. The
precisions are averaged on all test panels.
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Figure 3.7: Comparison of the performance of four different interest point detectors with
respect to varying image size (10 %− 120 % of the original image size). The vertical line
marks the location where the test panels have the scale which is used to train the classifier.
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Scale

This test setup was arranged similar to the rotation invariance test. Each test panel
was resampled 12 times with a step size being 10 % of the original image size. It can be
seen that Fast performs best around 100 % of the original image size. In this test setup,
Susan performs significantly worse than Fast. Since, except for the DoG, the interest
point detectors are not computed in a scale invariant manner, it outperforms all other
methods. The DoG has a constant performance for image sizes larger than 30 % of the
original image. Although the radius of the Fast detector could be changed, it cannot be
used to extract features in a scale invariant manner [RD06]. By contrast Mser can be
computed invariant to scale changes. Nevertheless, the DoG outperforms Mser on the
investigated dataset because of the previously mentioned drawbacks of Mser.
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Figure 3.8: Comparison of the performance of four different interest point detectors with
respect to increasing projective distortions of the investigated dataset.

Viewpoint Change

In addition to comparing the stability of different feature detectors with respect to scale
and rotation, their robustness under viewpoint changes was evaluated. The viewpoint
change of an image was simulated by applying an affine transformation where the hori-
zontal and vertical axes on one side were shortened. This results in a distortion similar
to changing the viewpoint angle (e.g. walking around an object). Once again, Fast and
Susan outperform the compared detectors if the affine transformation is below 6. But
while the angle of the viewpoint increases, the performance of both detectors decreases
significantly faster than that of the compared detectors. Even randomly sampled interest
points are more robust with regard to affine distortions than the two mentioned detectors.
This can be observed by comparing the standard deviation of all detectors in Table 3.2.
The DoG is the most stable detector of the methods evaluated if an image undergoes
projective distortions. Its precision decreases slightly.
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Detector # ip Mean Std (σ) Min

Mser 124 17.8 % 7.48 % 7.1 %
DoG 289 34.0 % 3.24 % 27.7 %
Fast 249 44.2 % 18.00 % 19.5 %

Susan 200 36.5 % 17.41 % 14.3 %
Random 221 23.8 % 5.63 % 15.6 %

Table 3.2: Number of interest points (# ip) per test panel, mean, standard deviation
and minimal precision of all compared interest point detectors, if a viewpoint change is
simulated on the test panels. The given precisions are averaged on all test panels.

3.2 Local Descriptor

For each interest point detected by the DoG, a descriptor is computed which considers
the structure of the neighborhood of a given interest point. The size of the neighborhood
considered depends on the scale factor σ which is determined by the scale selection. The
aim of a local descriptor is to maximize its distinctiveness, while at the same time maxi-
mizing its robustness to a certain set of image distortions. Obviously, the distinctiveness
of a descriptor decreases, when increasing its robustness with respect to image transfor-
mations. Consider for example a Latin d which is similar to a Latin p rotated by 180 ◦. If
the descriptor is invariant to rotation, the feature vectors of d and p would be the same.

A comprehensive test of state-of-the-art local descriptors is performed on the inves-
tigated dataset in order to choose the best performing one. According to studies of
Mikolajczyk and Lowe [MS05, Low04] and to the evaluation of local descriptors, which
is further explained in Section 3.2.3, Sift was chosen. It turned out that Sift performs
best for the given task due to the subsequently enumerated advantages.

◦ Sift is a high-dimensional descriptor which leads to a high distinctiveness.

◦ It is robust regarding common transformations of manuscript images (e.g. rotation,
scale, illumination changes).

◦ The distribution of gradient magnitudes and their orientation is considered, which
are reliable features for recognizing characters.

◦ The computational effort of Sift descriptors is lower compared to similar descriptors
(e.g. Gloh, Pca-Sift).

◦ Sift was successfully used for miscellaneous recognition tasks (e.g. [DS03, CDS+06,
QMO+05]).

3.2.1 SIFT

Sift was first introduced by Lowe in 1999 [Low99] for matching different camera views
of one object. He did not try to classify the feature vectors but to match features of
different images. In order to find correspondences between arbitrary images of one object

31



the features primary need to be scale and rotation invariant. By weighting the considered
image region with a 2D Gaussian, the features are additionally robust with respect to
affine distortions and poorly localized interest points. They are additionally robust with
respect to non-linear illumination changes, by extracting information using gradients.

The local descriptor’s design was inspired by a model based on biological vision
[EIP97]. Complex neurons in the primary visual cortex respond to gradients of a spe-
cific orientation and spatial frequency. But, their locations may shift within a so-called
receptive field without loss of information. Using this model for a descriptor increases its
robustness with respect to 3D viewpoint changes and non-rigid deformations.

Orientation Normalization

In order to achieve rotation invariance, the orientation – computed by local pixel proper-
ties – is assigned to each descriptor. This allows representing the features relative to the
estimated orientation rather than computing each feature in a rotation invariant manner
(e.g. local jet).

The orientation estimation is based on the computation of the gradient magnitude
m(x, y) and the gradient orientation θ(x, y) within the local neighborhood. For these
computations, the smoothed image L(x, y) closest to the given scale, is chosen. Addition-
ally, a 2D Gaussian window having a σ of 1.5 times the interest point’s scale, is multiplied
to the gradient magnitude so that the influence of border pixels is decreased. This in-
creases the descriptors robustness with respect to affine distortions and small variations
of poorly localized interest points. Both, the gradient magnitude and the orientation, are
calculated using pixel differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.9)

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(3.10)

The orientations θ(x, y) are assigned to an orientation histogram which consists of 36
bins corresponding to 360 ◦ (see Figure 3.10). Each orientation is weighted by the cor-
responding gradient magnitude m(x, y) since the gradient magnitude can be seen as an
information content measure of a given pixel. The orientation histogram is then smoothed
by means of a 1D Gaussian kernel in order to increase the robustness of the estimation
against noise. The highest bin of the orientation histogram indicates the estimated dom-
inant orientation of a given local region. In addition, each orientation that is greater
than 80 % of the dominant direction is taken as dominant rotation of a novel descriptor.
Hence, if any other orientation bin lies within 80 % of the global maximum, more than one
descriptor is computed at the position of the given interest point. This heuristic increases
the generalization performance of the local descriptors. Finally, a 2nd order polynomial is
fit through the 3 bins of the local maximum’s neighborhood in order to accurately map
the dominant orientation.

Figure 3.9 (a,b) shows the local region of a given interest point, extracted at the top
of a Glagolitic b . Calculating the gradient magnitude of the given region results in Figure
3.9 (c). The orientation is shown in Figure 3.9 (d), note the noise in the right upper corner.
The resulting smoothed orientation histogram is shown in Figure 3.10. The red upper line
marks the global maximum which is in this case 0.0079. The black line at 0.0063 marks
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(a) (b) (c) (d)

Figure 3.9: The gradient magnitude (c) and the orientation (d) of a local image region
which are used for the estimation of the local orientation. The image region is taken from
an image showing a Glagolitic b .
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Figure 3.10: An orientation histogram with the 80 % interval denoted by the black line.

the 80 % interval where additional descriptors are created. In this particular case three
descriptors having different dominant orientations are created.

Descriptor Computation

The previous sections introduced the computation of image location, scale and orientation
of a given interest point. Thus, a 2D coordinate system is created which is invariant to
these parameters.

The descriptor is constructed by means of the gradient magnitude m(x, y) and the
gradient orientation θ(x, y). First, the coordinates of a local region are rotated relatively
to the orientation of the interest point. The gradient magnitudes of a local region are
again weighted by a 2D Gaussian function in order to decrease the effect of gradient
magnitudes at the region’s border which change if the interest point is poorly localized.

Each descriptor consists of eight 4 × 4 orientation histograms which yield to a 128
dimensional feature vector. The orientation planes correspond to 8 different gradient ori-
entations (0 ◦, 45 ◦, 90 ◦, ..., 315 ◦). Each orientation plane has 4×4 bins which approximate
the spatial distribution of the given gradient magnitudes. Then, the gradient magnitudes
of a local region are trilinearly interpolated in order to avoid boundary effects. In detail,
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a gradient magnitude is spatially interpolated according to its Euclidean distance to the
4 nearest bin centers. In addition, it is interpolated between the two nearest orientation
histograms determined by the gradient orientation.
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m(x,y)

O 7 O 3

O 5

O 1

O 4

O 2O 8

O 6

local image patch SIFT descriptor interpolation of m(x,y)

Figure 3.11: The computation of a Sift descriptor. The cubes illustrate different gradient
magnitudes. In this case eight 2 × 2 orientation histograms are used as feature vector.
The right illustration shows the trilinear interpolation of a sample having a gradient
orientation of 292.5 ◦.

Figure 3.11 illustrates the computation of a Sift descriptor for a given local image
patch. In the local image patch, the gradient magnitudes m(x, y) at each pixel position
are represented by cubes, where the height of each cube indicates the magnitude of the
gradient. The descriptor consists – for the sake of simplicity – of eight 2 × 2 orientation
planes. In this case, the cubes represent histogram bins accumulated by the local image
patch. The orientation planes are labeled (O 1, O 2, ... O 8) which correspond to the
orientations (O = 0 ◦, 45 ◦, ..., 315 ◦). Figure 3.11 (right) shows the trilinear interpolation of
a gradient magnitude which is marked red in the local image patch. The sample gradient
orientation is 292.5 ◦. Thus, it is added to the 7th (270 ◦) and 8th (315 ◦) orientation
plane. The weights2 for the orientation interpolation are 0.5 in this case. Furthermore,
the sample is spatially interpolated with the weights 0.25 (left bin) and 0.75 (right bin).

The gradient magnitudes are not sensitive to global brightness changes since they are
computed by means of pixel differences. Nevertheless, they are not robust with respect
to varying illuminations of an object. In order to gain invariance to affine illumination
changes, the feature vector is normalized. However, the descriptors are then still not
resistant to non-linear altering illumination arising from camera saturation, or shading
variations of 3D objects. This dependence is in fact reduced by thresholding large gradient
magnitudes with an empirically found limit but can be neglected in character recognition
applications.

3.2.2 Modifications of SIFT

The modifications of Sift and the DoG subsequently introduced, are motivated by ex-
periments discussed in Section 4.3.1. The threshold displayed in Figure 3.4 is set to 0.01

2The weights are determined by the Euclidean distance of the sample orientation to the nearest

orientation planes: 1−
√

(270−292.5)2

360/8 = 0.5
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compared to the proposed value 0.03. Thus, more interest points are detected in an image,
which improves the probability histogram defined in Section 3.5.

In contrast to the original implementation, we do care about the difference of local
maxima and local minima in the DoG space. Since local maxima represent characters (by
trend black) whereas local minima are located between lines or characters. The character
center estimation (see Section 3.4.1) is improved if solely local maxima are regarded in
the DoG space.

Lowe [Low04] proposed to subsample the original image (double its size) in order to
get interest points corresponding to the highest spatial frequencies present in an image.
However, it turned out that especially these interest points corresponding to a small local
descriptor are unstable throughout the classification and that they adulterate the final
classification performance. This modification improves the recognition while at the same
time reducing the memory consumption of the final software.

Furthermore, the rotation invariance of Sift is disabled up to 180 ◦. Thus, the same
structure rotated by 180 ◦ results in a different descriptor which increases its distinctive-
ness (see Section 3.2). The dependence on rotation is achieved by:

θ = θ − π ∀θ > π (3.11)

where θ is the main orientation of a given local descriptor. If additionally π
2

would
be subtracted, the local descriptor would be sensitive to rotational changes up to 90 ◦.
However, tests showed that the performance is decreased then. In Figure 3.12 a Glagolitic
v is illustrated, which is a Glagolitic d rotated by 180 ◦. As can be seen, the interest
points are located in the center of circles, at corners and at junctions. The highlighted local
descriptor is once computed rotationally invariant and once with a rotational dependence
up to 180 ◦. The histograms in the second row are down-sampled local descriptors for
a more intuitive visualization. It can be seen in the second row of Figure 3.12 that the
descriptors are similar3 to each other if the features are computed rotationally invariant.
In contrast, when the rotational invariance is discarded, the same local descriptor produces
a mirrored vector4 for the v and d . This is why the rotational dependence improves the
system’s performance.

3.2.3 Comparison of Local Descriptors

Similar to the interest point detectors, described in Section 3.1, the performance of five
state-of-the-art local descriptors (namely: Sift, Surf, Gloh, Pca-Sift and gradient
moments) is evaluated on the investigated dataset. These local descriptors where chosen
since they performed best in Mikolajczyk’s performance evaluation [MS05]. Except for
Surf which was selected to demonstrate the performance of approximated high dimen-
sional features. It was developed in 2006 which is after the performance evaluation of
local descriptors.

This evaluation incorporates the same test setup as the comparison of interest point
detectors described in Section 3.1.2. Again, the robustness of the local descriptors with

3Absolute difference: 0.155, r = 0 ◦

4Absolute difference: 10.39, r = 180 ◦
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Figure 3.12: A Glagolitic v and d with their local descriptors (first row). The down
sampled features computed rotationally invariant (right) and with rotational dependence
up to 180 ◦ (left).

regard to a certain set of affine transformations (particularly: scale, rotation, projective)
is evaluated. In order to demonstrate the effect of the feature vector on the classification
performance, the interest points were computed using the DoG detector. Since training
and testing for all local descriptors is done with the same interest points, the varying
results can be traced back to the weaknesses and strengths of the different local descriptors.
Indeed, the classifier could possibly influence the results. In order to minimize this effect,
all tests are carried out with the same Svm having one Rbf kernel. The classifier’s
parameters (γ, C) are estimated individually by means of a three-fold cross-validation.

When classifying features, the vector’s dimensionality needs to be considered. Hence,
the higher the feature dimension, the more training samples are needed to guarantee a
generalization of the classifier (see Section 3.3). But then, high-dimensional feature vec-
tors have a higher distinctiveness than low-dimensional features [MS05]. However, Svms
are based on statistical learning theory rather than empirical risk minimization. That
is why they have a generalization even if they are trained with few samples of high-
dimensional classification problems. To demonstrate this fact, Pca-Sift is tested using
the first 128 eigenvalues and with the first 36 eigenvalues as proposed by Ke and Suk-
thankar [KS04]. Additionally, gradient moments5 are evaluated to show the performance
of low-dimensional features. The high-dimensional descriptors are chosen on the one hand
because they are new (Surf) and on the other hand due to their good results (Sift and
Gloh) in Mikolajczyk’s performance evaluation [MS05].

5Gradient moments performed best, of all low-dimensional features, in [MS05].
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Figure 3.13: Comparison of four different local descriptors with respect to varying image
size (10 % – 120 % of the original image size). The vertical line marks the image scale
which was used for training the classifier.

Scale

The abscissa of Figure 3.13 shows the changing image scales in 10 % steps. The red vertical
line marks the image scale used for training the classifier. In general, all descriptors have
a similar robustness with respect to scale changes because it mainly depends on the scale
selection scheme which is implemented in the interest point detector algorithm.

It can be seen that Sift has the highest precision which is x = 35.6 %. The 128
dimensional Pca-Sift descriptor performs similarly. In contrast, the 36 dimensional
Pca-Sift has a worse performance (x = 20.4 %) which is not significantly different to the
second low-dimensional local descriptor (gradient moments). The performance of Gloh
increases slower with respect to scale changes and reaches its mean performance at 50 %
of the original scale regarding the other descriptors which reach the mean performance at
30 %. The worst results on the investigated dataset are obtained by Surf. This can be
ascribed to the fact that the descriptor is highly dependent on the proposed Fast-Hessian
detector [BTG06] as it performs significantly better if this detector is used instead to the
DoG (see Section 3.2.4).

Rotation & Affine

Since the robustness regarding rotation and affine transformations depends more on the
interest point detector than on the descriptor, just a brief summary of these test results
is given below. Figure 3.14 (left) shows that all evaluated descriptors are invariant to
rotation (maximum standard deviation: σ = 1.01 %). The ranking of the mean classi-
fication performance is headed by Sift (x = 38.8 %) and Pca-Sift 128 (x = 33.7 %).
In the center span, the low-dimensional descriptors gradient moments (x = 23.2 %) and
Pca-Sift 36 (x = 22.6 %) are located. Contrary to the expectations, Gloh performs
poorly within the proposed system and in combination with the DoG, having a mean
classification performance of (x = 15.0 %). But the worst results are achieved with Surf
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Figure 3.14: Comparison of different local descriptors with varying rotation (left) and
projective distortions (right).

(x = 3.3 %) in combination with the DoG.
Testing the robustness of local descriptors with respect to affine distortions results in a

similar ranking as the rotation evaluation (see Figure 3.14 (right)). The only remarkable
result is here obtained by Gloh which was especially designed to handle affine distortions
[Mik02]. Table 3.3 shows that Gloh has the smallest standard deviation (σ = 1.05 %)
which supports the conclusion that the descriptor is in fact more robust with respect
to affine transformations than the other descriptors evaluated. In these tests, Surf
has a similarly small standard deviation. However, this number results from the poor
performance of Surf and cannot be used to draw any conclusion about the characteristics
of the descriptors.

Descriptor # ip Mean Std (σ) Min

Sift 1600 36.0 % 3.92 % 28.8 %
Surf 1600 6.1 % 1.04 % 4.4 %
Gloh 1600 20.1 % 1.05% 18.4 %

Pca-Sift 36 2161 18.9 % 2.82 % 13.9 %
gradient moments 2161 17.6 % 2.96 % 12.2 %

Pca-Sift 128 2161 30.2 % 3.08 % 24.2 %

Table 3.3: Number of interest points (ip) evaluated, mean, standard deviation and mini-
mal precision of all local descriptors compared, in respect of affine transformations. The
precisions are averaged on all test panels.

3.2.4 Comparison of Local Feature Systems

The previous evaluation was setup to precisely show the characteristics of different lo-
cal descriptors if embedded in the proposed system. Due to the strong dependence of
some descriptors (e.g. Surf) to the proposed interest point detectors, an additional eval-
uation was done, where the whole systems – proposed by the respective authors – are
tested on Glagolitic manuscript images. Table 3.4 shows the local descriptors tested, the
corresponding interest point detectors and the papers which first introduced the systems.
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Descriptor Detector Reference

Sift DoG [Low99]
Surf Fast-Hessian [BTG06]
Gloh Harris-Laplace [Mik02]

Pca-Sift DoG [KS04]
gradient moments Harris-Hessian-Laplace [GMU96]

Table 3.4: Local Descriptor, corresponding interest point detector and the respective
paper of the local descriptor systems evaluated on the investigated dataset.
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Figure 3.15: Comparison of six different local descriptor systems with varying image size
(10 % – 120 % of the original image size). The vertical line indicates the image scale used
for training the classifier.

Scale

Even though the local descriptors are computed with their particular interest point de-
tector, Sift still performs best on this dataset. Gloh and gradient moments have – in
combination with their detector – even a lower scale adaption (at ≈ 70 %) compared to
the previous tests carried out using the DoG. On the contrary, Gloh performs better
at scales nearby the trained scale (max: 20.82 % compared to max: 15.05 % in the pre-
vious test). As mentioned before, Surf performs significantly better (up to 22.07 %) in
combination with the proposed Fast-Hessian detector. Due to the approximations made
(e.g. integral image) the Fast-Hessian detector is not scale invariant, but robust regarding
scale changes. This is clearly illustrated in Figure 3.15, since the performance is about
0 % between 0 ≺ and 40 % of the original scale, where other descriptors such as Sift have
already fully adapted to the changing scale.

Rotation & Affine

Regarding Figure 3.16 (left), it can again be observed that the interest point detector is
the most important factor for the feature’s robustness regarding image transformations.

39



0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

cl
as

si
�c

at
io

n 
pe

rf
or

m
an

ce
 in

 %

angle in °

 

 

SIFT
SURF
GLOH
PCA−SIFT 36
gradient moments
PCA−SIFT 128

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

cl
as

si
�c

at
io

n 
pe

rf
or

m
an

ce
 in

 %

viewpoint change

 

 

SIFT
SURF
GLOH
PCA−SIFT 36
gradient moments
PCA−SIFT 128

Figure 3.16: Comparison of six different local descriptor systems with varying rotation
(left) and projective distortions (right).

In contrast to this illustration, the classification performance is almost constant in Figure
3.14 where the descriptors were evaluated using the same interest point detector. The
Fast-Hessian, which is used for the computation of Surf, is solely invariant for orthogonal
angles (0 ◦, 90 ◦, 180 ◦...). Therefore, the classification performance decreases significantly
when applying image rotations with different angles. The other descriptors have the same
performance as in the previous tests, except for Gloh which has – beside Surf – an
improvement in performance of x = 5.27 % on average.

The evaluation of the descriptor system’s robustness with regard to projective transfor-
mations is given in Figure 3.16 (right). Analogous to the previous test, the Fast-Hessian
detector has the highest performance decrease (standard deviation σ = 4.64 %) as the
affine distortions are increased. The Harris-Laplace detector (without affine adaption)
is less robust than the DoG. This can be observed when the standard deviation of the
previous test (σ = 1.05 %) is opposed with that of the current test (σ = 2.41 %).

The performance tests introduced on Glagolitic manuscript images show, that Sift per-
forms best for the given task and is robust with respect to common image transformations
that need to be considered when recognizing characters. This can be attributed to the fact
that Sift is high-dimensional – therefore highly distinctive – and that new approaches
such as Surf focus on computational speed, not accuracy.

3.3 Classification

Having computed the local descriptors of a given manuscript image, each non-planar image
region is described by a high-dimensional feature vector. For the character recognition, the
local descriptors are classified by means of a one-against-all scheme. Thus, one classifier is
trained per character class, resulting in 25 classifiers. Additionally to the labels predicted
for local descriptors, a probability is assigned to the descriptors by each classifier resulting
in a probability histogram. This strategy has two major advantages. On the one hand,
the classifier is not too sensitive to noise in the training data as the criterion function
is less complex when two class labels are assigned (e.g. a , not a ). On the other hand,
probabilities – needed for the subsequent voting – can be solely computed for two classes.
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For that purpose, a simple k -nn or a Bayes classifier could be considered. However,
both classifiers have a major drawback. The k -nn classifier is capable of classifying a
dataset which is not linearly separable by assigning the most probable class label to an
unknown data point according to the labels of the k nearest neighbors in the training set.
Hence, it is suitable for handling complex input data with few training data. Nevertheless,
it is a well-known fact that the k -nn tends to overfit the training data. The Bayes
classifier, on the other hand, finds an optimal solution for a given classification problem
by maximizing the a-posteriori probability of an unknown sample. This is equivalent to
minimizing the classification error on the training set. Yet, if the training set does not
well approximate the true data, both listed classifiers fail. By contrast, the Svm rather
minimizes the overall risk than the overall error of a training set, which results in a good
generalization performance even for high-dimensional features.

3.3.1 Support Vector Machine

The Support Vector Machine was introduced by Vapnik and Chervonenkis in 1974 [VC74].
As previously mentioned, the Svm is based on statistical learning theory which considers
the difference between the empirical risk and the true overall risk. Thus, the size of the
training data and the model complexity are incorporated.

Compared to a Perceptron, the Svm does not search for any solution (separating hy-
perplane) of a given problem. It rather finds the optimal hyperplane having a maximal
margin to both classes. The margin 1/ ‖w‖ is defined as the minimum distance of a fea-
ture vector to the separating hyperplane. This formulation leads to a dual optimization
problem. Since the optimization criteria are convex, they can efficiently be solved by La-
grange multipliers. To solve the optimization problem, solely support vectors – generally
a small subset of the input data – need to be considered. Support vectors are feature
vectors which are located on the margin or – in case of non-linear separability – on the
wrong side of the hyperplane.

Figure 3.17 shows a Svm for a 2D training set consisting of two classes. The optimal
margins are illustrated with dashed lines, additionally, the support vectors are marked by
a dark circle.

3.3.2 Radial Basis Function

The linear Svm was extended to a non-linear classifier by Boser et al. [BGV92] in 1992.
Therefore, the dot product of the feature vectors (xTi xj) in the criterion function are
replaced by kernel functions. Thus, the feature space is transformed to a higher dimension.
There, a hyperplane is computed according to the previously mentioned scheme and then,
the feature space is re-transformed to the input space. This results in a non-linear classifier
in the input space, as the transformation was non-linear. Due to the kernel trick which
was proposed by Aizermann et al. [ABR64], the higher dimensional space does not need
to be evaluated explicitly, since the inner product can directly be computed as a function.

The Rbf kernel is defined by:

k(xi, xj) = e−γ‖xi−xj‖
2

γ > 0 (3.12)
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Figure 3.17: Linear Svm (left) with the optimal hyperplane (black line) and the maximal
margin (dashed lines). Svm (right) with an Rbf kernel.

where xi and xj are feature vectors and γ is a parameter which needs to be determined
using cross-validation. The Rbf, kernel has the advantage, that solely one parameter
needs to be determined while at the same time being flexible enough to handle complex
training sets.

In Figure 3.17 the hyperplane of a Svm which has an Rbf kernel is shown. For this
illustration, γ was chosen to be 5.

3.3.3 Training

The supervised learning is carried out with 20 sample images per character class which
were manually extracted from the codex and tagged. The parameters γ, C are determined
for each character class individually by means of 3 fold cross validations. The parameter
γ introduced in Equation 3.12 controls the sensitivity of the kernel function. The cost
parameter C controls the flexibility of the classifier. If it is set too high, the model
perfectly fits the training data which reduces its generalization performance.

For the three-fold cross-validation, the training set is split into 3 subsets. Then,
the classifier is trained on one of the respective subsets and validated with the remaining
subsets. This process is carried out for all subsets and classifiers with changing parameters
γ, C. Finally, a grid is obtained with classification performances for each tuple. Then the
classifier is trained on the whole training set using parameters which maximize the three-
fold cross-validation. This algorithm guarantees, that the Rbf kernel is properly adapted
to the given classification problem.

In Figure 3.18 (left) the classification performance of the cross validation is given for
varying parameters γ, C. For this kernel, the maximum, being 96.98 %, is achieved for
the tuple 〈γ, C〉 = 〈2.6, 8〉 which is used for finally training this Svm. It can be seen,
that the performance decreases with γ (e.g γ = 0.1). This results from the fact that
the decision boundary gets more rigid when γ is decreased. In addition, the number of
training features influences the decision boundary when γ is set to a small value. If for
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Figure 3.18: Cross-validation of the Svm kernel for the character e (left). The maximum
performance for this kernel is achieved with 〈γ, C〉 = 〈2.6, 8〉. Classified local descriptors
(right). Note that most false classified descriptors have a large or a small scale.

example 0.1 % of the features are a and the rest is not a , then the Svm would classify
all samples as not a .

A five- or seven-fold cross-validation can be used to determine the classifier’s param-
eters. Tests showed that, indeed, the absolute classification performance increases if the
training set is split more than 3 times. This arises from the fact that more samples are
presented to the classifier as the splitting is increased. Nevertheless, the relative perfor-
mance over all parameter tests does not change which results in the same local maxima
and, therefore, the same values for both parameters.

Figure 3.18 (right) shows a test panel which was manually tagged (gray blobs). After
the classification step, a label is assigned to each local descriptor according to the highest
probability. The figure shows correctly classified (green circles) and false (red rectangles)
local descriptors. Additionally, the scale of each descriptor is illustrated by a black circle.
In this case, 25 character classes were trained and the classification performance on this
test panel is 76.9 %.

3.4 Character Localization

For traditional Ocr engines, the characters or words are localized implicitly in the bi-
narization step. If handwriting Ocr engines are considered, an additional character
segmentation step needs to be performed in order to detect concatenated characters. In
contrast, the system proposed does not incorporate information about the positions of
characters in a given image to the point of feature classification. Indeed, the positions of
the classified features are known, but as a feature does not necessarily represent a whole
character, its position and size is unknown.

The character localization is based on clustering the interest points. This approach
benefits from the fact, that degraded characters are detected with local descriptors but not
considered when the image is binarized. Thus, even degraded characters can be localized.
Another advantage is the low computational complexity, since solely the interest points
are considered (e.g. for a 436 px×992 px image that has a total of 432512 px, 1543 interest
points are detected).
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3.4.1 Character Center Estimation

The k-means clustering cannot estimate the number of clusters k. In order to determine
the number of clusters, which is in this case equivalent to the number of characters, a
cluster validity index can be used [BP98, HBV01]. However, experiments showed that the
combination of different cluster validity indexes does not work for this task. This arises
from the fact that the text line spacing is greater than the between-character spacing.
Hence, a cluster analysis would group lines, not characters.

Scale Estimation

To overcome this problem, the scales of interest points are exploited. There exists at
least one interest point that represents a whole character. In other words, each character
produces a single local maximum in a certain scale level. In order to remove interest
points that represent lines, solely interest points resulting from positive local maxima in
the DoG scale space are considered (characters are generally darker than background).
Extracting this information, the parameter k of the k-means can be estimated and, at the
same time, initial cluster positions are obtained that improve convergence. However, the
scale levels representing a character need to be extracted in a scale invariant manner.

In order to find the minimum scale level of interest points that represent a whole
character, the scale distribution of all interest points in a given image is regarded. Figure
3.19 shows the interest point’s scale distribution. There, the abscissa represents increasing
scales, particularly the radius of interest points, measured in px. The ordinate gives
the number of interest points corresponding to the scale interval. It can be seen that
most interest points are detected in scale levels below 30 px. This results, on the one
hand, from the higher resolution which decreases with respect to increasing scale and
on the other hand from the fact that manuscripts have high frequency features such as
endings, junctions and corners. The scale levels corresponding to characters – which we
are interested in – are within the second peak between 30 px and 80 px. The third and
last peak corresponds to interest points that represent text lines or low frequency features
such as illumination changes or stains.

Indeed, the intervals are fuzzy, which precludes the use of a sharp threshold. The
interest point’s scale of a small character is the same as the scale of an interest point that
represents a structure of a larger character.

Since the interest points’ scale distribution is similar for all manuscript images, in-
dependent of the image resolution, the number and localization of characters can be
obtained by a simple algorithm. First, the scale distribution is normalized and smoothed
by a Gaussian filter kernel (σ = 3) that removes noise. Afterwards, the first peak is
located by means of the second derivation:

s′σ(x) = sgn(sσ(x)− sσ(x− 1)) (3.13)

s′′σ(x) = s′σ(x)− s′σ(x− 1) (3.14)

where sσ represents the smoothed scale distribution and sgn is the Signum function. Thus,
the first peak ps is obtained by:

ps = min{ x | s′′σ(x) = 2 } (3.15)
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Figure 3.19: Interest points’ scale distribution of a manuscript image. Three characteristic
peaks can be seen, which represent high frequency structures, characters and lines. The
red vertical line marks the minimum scale level of an interest point in order to be selected
for the cluster initialization.

Then, the minimum scale level (rendered as a red vertical line in Figure 3.19) is defined
as the first bin having a higher index than the peak that is below a given threshold st.
The threshold is evaluated on the dataset, which is further explained in Section 4.3.1.

This algorithm guarantees that even small characters6 are localized for the k-means
initialization. Generally, more interest points are selected than characters are present in
an image. This relies on the fact that background clutter – which produces interest points
– is clustered together with characters, if too few initial cluster centers are obtained.

Cluster Center Refinement

The interest points that represent characters are now selected. However, more than one
interest point still represent one large character or more than one interest point is at
the same location according to changing main orientations. In order to overcome these
erroneous localizations, a heuristic was developed that exploits the area of influence. Each
interest point’s region of influence is estimated by a circle having a radius that corresponds
to the point’s scale. Thus, interest points having a smaller Euclidean distance to their
nearest neighbor than the radius of the smallest scale selected in the scale estimation
process are regarded. They are erroneous due to the causes afore mentioned and could
therefore simply be deleted. But since a correct character localization method significantly
improves the k-means, it proved to be better if the erroneous interest points are linearly
interpolated.

One could think about changing the Euclidean metric to one that weights the dis-
tance by a determined orientation. This would guarantee that interest points are not
interpolated across text lines. But the manuscript page’s orientation had to be estimated.

627 px× 34 px compared to other characters which have 93 px× 33 px
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Figure 3.20 shows the initial cluster centers (white rectangles). Multiple interest points
representing one character are denoted by red circles and the corresponding interpolated
points are white circles. As can be seen, the interpolation solely needs to be done for large
characters such as the Glagolitic d . Interpolated interest points with no erroneous points
nearby, are those with multiple orientations. Note that this algorithm does not detect all
characters at the image border (e.g. h in the last text line). This results from the border
effect of the convolution which especially discards interest points having a high scale level
(> 30px).

 

s
Initial Centers
Removed Center
Interpolated

Figure 3.20: Estimated cluster centers. Removed centers are displayed as red circles,
interpolated are white circles

3.4.2 Interest Point Clustering

As mentioned before, the interest points are clustered using k-means clustering. This
method was first introduced by Stuart P. Lloyd [Llo82] and further studied by J. Mac-
Queen [Mac67].

First, cluster centers are initialized by randomly choosing k vectors of the dataset.
David Arthur [AV07] showed that the k-means can be improved if the seeding points are
not chosen randomly. In the system proposed, the seeding points are chosen according to
the method explained in Section 3.4.1.

The problem of k-means is to minimize the potential function:

Φ =
n∑
x=0

min
c
‖x− c‖2 (3.16)

for k centers c where x are samples. Having found those centers, samples are grouped
according to their minimum distance to the cluster centers. The solution of this problem
is np-hard. Thus, the k-means is a local search method that does not guarantee to find
the optimal solution. The heuristic algorithm consists of two steps that are altered until
convergence:
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1. Initialize the centers ci for i = 1...k.

2. Assign Ci all samples that are closer to ci than to cj for ∀j 6= i.

3. Update ci to be the center of mass of all points in Ci.

4. Repeat step 2 and 3 until convergence

where Ci denotes a cluster (group of samples) and ci the cluster center. The k-means
converges when no cluster center ci changes its position in the update step. By this
means, the interest points are grouped together so that they represent the characters.
Particularly, the position and an approximate size of the character are determined. Having
grouped the previously classified interest points, a simple voting scheme can be performed
to finally assign the character labels.

Figure 3.21: Interest point clustering. The shape and color of interest points denotes their
belonging. Blue circles having a white contour represent the final cluster centers.

In Figure 3.21, the interest point clustering is displayed. The blue circles with white
contours represent the final cluster centers. The markers’ shape and color indicate the
interest points’ clusters. It can be seen that some large characters like the Glagolitic m
(third character of the first line) have more than one cluster. As a result of the border
effects, mentioned in Section 3.4.1, one character (h ) is fused with its neighbor (m ) in
the last line.

3.5 Feature Voting

For the final character classification, a voting scheme is applied. Therefore, all local
descriptors of a cluster Ci are considered. Each descriptor was previously classified (see
Section 3.3). Hence, a probability histogram exists that indicates the class likelihood of
each descriptor in the cluster. Accumulating these histograms, the maximum bin indicates
the most probable class label.

Figure 3.22 shows the final probability histogram of two degraded characters. Each
bin of the histograms represents one of the previously trained character classes. The bin’s
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height indicates the probability of a character belonging to the respective class. The left
character is classified correctly, having a significantly high class probability. In contrast,
the probability histogram of a false classification is given in Figure 3.22 (right). There,
three class probabilities are similarly high.
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Figure 3.22: Probability histogram of two character clusters. A correct classification (left)
and a false classification (right). There, the probability is similarly high for three classes,
one of which is the correct (a ).

Descriptor Weighting

Directly averaging the descriptors’ probabilities has drawbacks. First, descriptors which
are larger than a character describe the structure of more than one character. Additionally,
descriptors of background clutter are falsely clustered to characters. These incorrect
descriptors adulterate the performance if direct averaging is applied. That is why a
weighting function is developed that regards these observations.

According to the previously mentioned observations, descriptors that are larger than
characters should have a low weight. That is why a weight is established, that linearly
depends on the descriptor’s scale:

wi = 1− si
max
j=0...n

(sj + c)
(3.17)

where si is the ith descriptor’s scale and wi is the final weight. The constant c > 0
guarantees that the weight wi is > 0 for all descriptors. Similarly, the descriptors are
weighted according to their distribution within the character cluster. Instead of the scale
si, the descriptor’s distance di to the cluster center is regarded. It turned out, that
a robust cluster center improves the weighting compared to the default center-of-mass.
This is because the robust center penalizes outliers (the center-of-mass shifts towards
outliers). The robust cluster center is defined as the median of all x, y coordinates in a
particular cluster.

Detecting Weak Clusters

In addition to the classification, the probability histogram can be used to estimate the
weakness of a character cluster. Therefore, the maximum class bin mb is considered. If
another bin exists that has a higher probability than mb = 0.875, it can be assumed,
that the character cluster is weak (e.g. background clutter, false classification). This
method allows improving the precision and therefore the F1-score. The false classification
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in Figure 3.22 (right) would be rejected since two bins are greater than 87.5 % of the
maximum bin (see Section 4.3.1).

Summary

In this chapter, the methodology was discussed in detail. A character recognition system
consisting of two major steps namely localization and classification was introduced. This
system is especially designed for ancient manuscripts, as binarization does not need to be
performed. The features which are extracted in a scale invariant manner are computed
by means of the image’s gray value information. In order to choose the best performing
interest point detector and local descriptor, state-of-the-art methods were compared on
the investigated dataset. In addition, the training and the validation of the classifier was
discussed. Since there solely exist character localization methods based on binarization, a
new method was introduced that allows for localizing characters by means of the interest
points extracted. Finally, a voting scheme that is able to cope with uncertainty was
proposed.

The subsequent section shows experiments that were carried out on the Cod. Sin. Slav.
5n. It is intended to show the strengths and the weaknesses of the approach proposed.
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Chapter 4

Results

In this chapter, the system introduced is evaluated. It is intended to empirically evaluate
the system by manually annotated real world data and synthetically generated data. The
subsequent experiments show the strengths and drawbacks of the new character recogni-
tion methodology proposed in this report. Three different experiments were carried out
in order to analyze certain aspects which are detailed subsequently. Figure 4.1 illustrates
the three test setups. The number of characters for training and testing as well as the
number of classes evaluated are shown for each dataset.

a b

a b

À Á

À Á

ÀÁÂ

ÃÄÅ

# 52/156
26 classes

# 100/198
10 classes

# 442/1025
25 classes

Synthetic Data Degraded Data Real World Data

Figure 4.1: The three datasets used to evaluate the system with the number of characters
for training/testing and the number of character classes.

The first experiment is performed using synthetic data. Therefore, Latin text is gener-
ated with varying fonts. In addition, noise is added to the synthetically generated images
in order to show the system’s robustness regarding image degradation. In one experi-
ment, white Gaussian noise with varying standard deviation σ is added. The second test
setup aims at analyzing the effect of partially faded-out characters. For that purpose, a
gradient that removes the character’s parts is introduced. It is shown in Section 4.1 that
the system is capable of classifying characters correctly even if parts are occluded.

In addition to experiments on synthetic data, degraded characters were extracted from
the investigated dataset. The evaluation discussed in Section 4.2 aims on the one hand at
showing the system’s performance when degraded characters are present in manuscripts.
On the other hand an evaluation is given that solely considers the classification step. Thus,
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errors introduced by the character localization are not considered in this experiment. In
order to show the performance decrease resulting from degraded characters, a second data
set is evaluated that contains intact characters similar to those used for training the Svm.
A class confusion matrix that is computed on both datasets allows for analyzing the errors
on the respective character classes. It shows which topological structures are likely to be
mistaken.

In Section 4.3, the system is evaluated by means of manually annotated ground truth
data. In these experiments, the parameters incorporated are evaluated on the test data.
A discussion is then given about which parameters need to be adapted if the system is
applied on different manuscripts or writing systems. Finally, results of the system on
real world data are presented in Section 4.3.2. Using a synthetic character localization
that was especially designed for the evaluation allows for an exact error computation
on both major steps (classification, localization) individually. Additionally, statistics are
given that show the character class occurrence and classification performance of different
character classes.

4.1 Experiments on Synthetic Data

Before experiments are carried out on the challenging dataset investigated in this report,
tests are performed on synthetic data. The data generated contains Latin fonts. This
is done on the one hand, to demonstrate the system’s capability of recognizing different
writing systems. On the other hand, using Latin script allows for experiments with
different fonts. Another reason for choosing Latin to generate synthetic data, is the fact
that even though Glagolica is embedded in Unicode since version 4.1.0 (March 2005)
[Aea07] the fonts available do not incorporate this standard. Hence, generating an a does
not necessarily result in a Glagolitic a (a ).

The training and test sets are generated by rendering TrueType fonts into images.
This allows for generating test images with arbitrary fonts and at the same time to
automatically annotate the ground truth data which minimizes the human effort. The
system is trained using Times New Roman (regular) and Arial (regular). These fonts are
chosen in order to guarantee that the system is trained on Serif fonts and Sans Serif fonts.
In all subsequent experiments, 26 character classes (the English alphabet) are evaluated.

First, the system is tested with the training set so as to guarantee that the implemen-
tation is correct. If all 52 characters are considered, two characters are falsely classified,
namely: i and j when generated with Arial. The i is confused with j while j with h. This
can be traced back to the fact that Sans Serif characters such as i, j, l exclusively produce
Sift features that represent corners with changing orientations. However, all remaining
characters (e.g. h) produce the same corners at stroke endings. That is why the Svm
cannot be trained properly for Sans Serif fonts. Considering this experiment, one could
think of joint probabilities being classified (see Section 5).

Figure 4.2 shows two results of the evaluation with synthetic data. Topologically
complex characters (Figure 4.2 (left)) are easily recognized since they produce distinct
local descriptors (note the probability interval is [0 1] in contrast to Figure 4.2 (right)
[0 0.12]). On the opposite, the descriptors of i vote for j in Figure 4.2 (right). As can
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be seen, all interest points are located at corners having different scales, which results in
low prediction probabilities for all classes trained. The maximal probability, being 0.102,
indicates that the decision made is uncertain.

e
0

1

e

i
j

0

0.12

Figure 4.2: Two examples of the synthetic data set with their corresponding class proba-
bilities. The i is classified falsely.

In addition to experiments on the training set, the system’s performance is evaluated
for new fonts presented. Therefore, a test set containing three Serif fonts (namely: Times
New Roman, Georgia, Garamond) and three Sans Serif fonts (namely: Arial, Helvetica,
Tahoma) is generated. This results in 156 sample characters, while the Svm is trained
on 52 characters. In this experiment, a precision of 0.763 is achieved. If weak character
clusters are rejected (mb = 0.85), the precision increases to 0.865.

Experiments with Noise

Two further experiments are carried out on synthetic data in order to show the system’s
robustness with respect to certain degradations which are subsequently detailed. First,
the system’s robustness with regard to partially visible characters is regarded. Therefore,
a gradient sg is multiplied that occludes parts of the characters. Secondly, white Gaussian
noise with zero mean and increasing standard deviation σ is added to the image.

Figure 4.3 shows the system’s precision when varying the gradient’s occlusion fraction,
which is evaluated between 0.5 and 0.6. The upper sample shows an a occluded with a
gradient set to 0.5. This corresponds to an occlusion fraction of two thirds, which means
only one third of the character remains visible. Whereas the gradient is set to 0.6 for
the lower sample image (the whole character is visible, however, it gradually fades out).
The minimal precision, being 0.312, is achieved for sg = 0.5. On opposite, the system
achieves a precision of 0.923 when the gradient is set to 0.6. If one half of a character is
occluded, the precision is 0.75. Thus, the system is capable for classifying partially visible
characters as a consequence of the approach being based on local information.

The second experiment shows the system’s behavior if white Gaussian noise is added.
If the standard deviation σ of the Gaussian noise is set to 0.003, the precision is 0.923.
Increasing the noise to σ = 0.008 decreases the system’s precision to 0.904. Hence, the
proposed system is robust with respect to Gaussian noise.
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Figure 4.3: Synthetically degraded character if sg = 0.5 (upper) and sg = 0.6 (lower).
The right plot shows the system’s precision when varying sg.

4.2 Character Evaluation

By extracting single characters, it is possible to solely evaluate the classification step
illustrated in Figure 3.1. Therefore, two datasets are constructed that consist of single
characters which are extracted from the Cod. Sin. Slav. 5nand annotated.

The first dataset (setA) consists of 10 classes having 10 – 12 samples each (totally
107) which are well preserved. This dataset is a reference for the evaluation with degraded
characters. The second dataset, which is referred to as setB, contains 25 character classes
with about 9 characters per class (totally 198). Degraded or partially visible characters
were extracted to construct this set. It is used to demonstrate the systems’ behavior when
degraded characters need to be recognized.

Figure 4.4 shows examples of both datasets. It can be seen that some characters such
as d b, t and v b are similar to each other. The degraded characters in the second row
differ strongly from those of setA. They are hard to read for humans.

ÂbÒÑÊ ÍÄbÀ

SETA

SETB

Figure 4.4: Examples of the datasets evaluated. The first row shows examples of setA,
whereas the second row shows the same characters from the degraded dataset.
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4.2.1 Evaluation of Dataset A

The setA is first evaluated in order to show the method’s performance on noise-free data.
As mentioned before, 10 Svm kernels are trained using 10 samples per class. Then all 107
test characters are evaluated. The voting is the same as described in Section 3.5 except
for the fact, that clustering does not need to be performed. Another difference to the
system described in Chapter 3 is the interest points’ threshold. It is set to 0.009 instead
of 0.01 in order to guarantee that highly degraded characters never remain without any
descriptor being detected.

For the character classification, an overall precision of 98.13 % is achieved. Thus, solely
two characters1 out of 107 are falsely predicted. Both confused characters consist of two
circles and a connecting stroke (see Figure 4.4, second and last column) which produce
similar descriptors.

A confusion matrix of the local descriptors is given in Table 4.1 in order to show the
class confusion. To construct this table, the highest probability of each descriptor being
classified was taken into account. Totally, 1714 descriptors where detected in setA while
solely 60 % of them could be classified. In Table 4.1, the columns indicate the system’s
prediction of a local descriptor while the rows show its correct class. Hence, values in the
principal diagonal (bold font) represent the precision of the particular class. The other
values (e.g. 2.9 in the last column of the first row) indicate that 2.9 % of descriptors that
belong to the class a are falsely predicted as belonging to v b. The last column illustrates
the total number of descriptors that belong to the particular class. In contrast, the last
row gives the number of descriptors that where classified as the respective class.

The overall precision of the local descriptors is 79.83 %. Compared to the overall
precision being 98.13 % it can be concluded, that the voting improves the character clas-
sification. This can be attributed to the fact, that false classifications are assumed to be
noise with a given prior. Hence, if 10 descriptors of a character (e.g. a ) vote for a the
other 10 descriptors will not necessarily vote for one other class but for different classes.

prediction

co
rr

ec
t

cl
as

s

% a b d a d b e k n s t v b #
a 74.3 1.4 7.1 8.6 2.9 0.0 1.4 1.4 0.0 2.9 70
b 0.0 92.2 2.6 2.6 0.0 0.9 0.0 0.0 1.7 0.0 116
d a 0.5 2.0 85.9 2.0 0.5 1.0 1.0 2.4 1.5 3.4 205
d b 0.8 3.4 6.7 65.5 4.2 0.0 2.5 1.7 3.4 11.8 119
e 5.4 0.0 2.7 0.0 81.1 0.0 5.4 1.4 0.0 4.1 74
k 0.0 8.2 1.6 0.0 3.3 70.5 6.6 1.6 4.9 3.3 61
n 1.0 3.0 2.0 0.0 3.0 2.0 87.9 0.0 0.0 1.0 99
s 2.5 0.0 0.0 1.3 7.5 1.3 3.8 81.3 0.0 2.5 80
t 1.0 2.0 6.9 7.9 0.0 0.0 1.0 1.0 74.3 5.9 101
v b 0.0 4.7 4.7 6.6 0.0 0.0 0.0 3.8 4.7 75.5 106
# 62 131 209 107 79 49 105 80 92 117 1031

Table 4.1: Confusion matrix of the local descriptors in setA.

1A v b is mistaken with a d a and a d b is mistaken with a v b.
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As can be seen in Table 4.1, d a produces nearly twice as much descriptors than the
other characters do. This can be attributed to the fact that the character is larger than
the other ones (≈ 100 × 80px compared to ≈ 60 × 50px). This ratio also applies to the
training. But if the column d a is examined it can be assumed that not significantly more
descriptors are confused with this class than with other classes. Thus, the classifier is
capable of handling classes having more training samples.

The worst classification result is obtained for d b whose precision is 65.5 %. When
regarding the last column of that row, it can be seen that d b is most likely (11.8 %)
confused with v b which has the same shape rotated by 180 ◦. This class confusion also
holds for v b which is most likely classified as d b with 6.6 %. However, this correlation
does not hold in general. For example the character a is confused with d b in most cases
(8.6 %), while solely 0.8 % of the d b descriptors are falsely assumed to be those of a .

In general, it can be observed that the class confusions are intuitive. In other words,
the probability of a class being mistaken with another one is high when human observers
consider these characters as similar.

4.2.2 Evaluation of Dataset B

For a direct comparison of both datasets, the same ten classes are chosen of setB. Cer-
tainly, the same classifier is used for both test setups. In contrast to setA, the degraded
characters in the second dataset have a lower precision, which is 78.89 %. Additionally,
the ratio between descriptors detected and those classified is lower which is in this case
39 % compared to 60 % in setA. These numbers indicate that it is harder for the system
to classify degraded characters. On the other hand, the system copes with uncertainty
which arises from the fact that fewer descriptors are classified in this case.

prediction

co
rr

ec
t

cl
as

s

% a b d a d b e k n s t v b #
a 56.1 2.4 12.2 7.3 7.3 4.9 7.3 0.0 0.0 2.4 41
b 1.5 69.2 3.1 0.0 1.5 3.1 12.3 1.5 0.0 7.7 65
d a 1.1 10.3 67.8 5.7 4.6 2.3 3.4 1.1 0.0 3.4 87
d b 8.1 8.1 12.9 33.9 4.8 3.2 14.5 4.8 1.6 8.1 62
e 2.6 5.3 7.9 0.0 60.5 10.5 0.0 5.3 0.0 7.9 38
k 3.1 0.0 6.3 6.3 9.4 56.3 15.6 0.0 0.0 3.1 32
n 2.5 5.0 2.5 7.5 0.0 5.0 67.5 5.0 0.0 5.0 40
s 4.7 14.0 7.0 7.0 2.3 2.3 11.6 44.2 0.0 7.0 43
t 1.8 12.3 17.5 5.3 0.0 1.8 3.5 3.5 29.8 24.6 57
v b 1.9 5.6 13.0 13.0 1.9 5.6 13.0 9.3 5.6 31.5 54
# 37 80 100 47 39 37 69 35 21 54 519

Table 4.2: Confusion matrix of the local descriptors in setB.

Table 4.2 shows the confusion matrix of the local descriptors in setB. In general, the
confused classes are similar to those in setA even though the overall precision is decreased.
The t stands out in this test, since hardly any descriptor (4/519) is falsely classified as
t . Although not as outstanding, this peculiarity can be observed in Table 4.1 too. One
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Äa (SETA)
Äa (SETB)
Ò (SETA)
Ò (SETB)

À Á Ä Ä Å Ê Í Ñ Ò Âa b

Figure 4.5: Prediction rates of all classes when two characters are evaluated from both
datasets. d a has most false predictions in setA while t has the least number of false
predictions in setB.

intuitive explanation to this observation is the fact that four out of ten characters are
similar to the t in these test setups. Thus, similar descriptors scale down the feature space
where the Svm classifies a feature into this class. The observed phenomenon indicates one
of the major disadvantages of the system proposed which is further discussed in Chapter 5.

Figure 4.6 compares the per-class precision of both datasets. As can be seen, the
results of the degraded dataset are highly correlated2 with those of setA. This draws the
conclusion that the interclass variations do not significantly change if characters are de-
graded. The performance decrease, when degraded characters are regarded, is on average
27.16 %± 11.24 %.

Evaluation of All classes

In addition to the comparison of setA and setB, all 198 degraded characters where
evaluated. Even though, 25 different classes are predicted in this evaluation (+15 classes),
the precision decreases slightly by 7.17 %. Thus, the overall precision is 71.72 % when
descriptor voting is applied on degraded characters. The ratio of detected descriptors and
those classified is now 26 % which is decreased by 13 % compared to the previous test
on the same dataset with 10 classes. Since the performance decrease is lower than the
complexity increase, the system proofs to be capable for classifying degraded manuscripts.
Table 4.3 gives an overview of all tests performed with single Glagolitic characters.

2correlation coefficient: 0.719
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Figure 4.6: Comparison of the class precision between setA and setB. The precision is
computed on the descriptor level (1550 descriptors where evaluated).

# # classes precision
setA 107 10 0.981
setB 90 10 0.789
setB 198 25 0.717

Table 4.3: Dataset, number of samples, number of classes and the system’s precision

4.3 System Evaluation

In this section, the evaluation of the system proposed is given. Beside the system’s perfor-
mance on the dataset, crucial parameters are studied. In order to evaluate the system, 15
different pages containing 1055 characters are extracted from the Cod. Sin. Slav. 5n. The
pages were chosen randomly. It can be seen in Figure 4.7 that the pages contain faded-out
ink, degraded characters and background noise. The groundtruth was annotated manu-
ally. Therefore, each character was brushed with a gray-value that corresponds to its class
index. These indices correspond to the alphabetical order of the Glagolica and are given
in Table 1. Figure 4.7 additionally shows that the annotation does not need to perfectly
fit the subjacent character, since the system provides one coordinate per character. Thus,
if the center of mass obtained by the clustering is located within the annotated blob, it
is assumed to belong there. Furthermore, local descriptors are evaluated with this anno-
tated test set. Since interest points which describe a part of a character may lie outside
the character’s border, one is well advised to tag more. Additionally to the groundtruth,
characters where annotated according to their condition. In Figure 4.7, the gray border
illustrates the good versus degraded annotation. All characters outside the border are
annotated as being degraded. Certainly, this annotation highly depends on the operator.
However, it is exclusively used to determine the performance difference between good and
degraded characters which is compared to the results presented in Section 4.2.
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Figure 4.7: Manually tagged groundtruth extracted from page 38 verso of Cod. Sin. Slav.
5n.

Statistical Methods

All statistical methods used for evaluating the system are based upon three different
values:

• True Positive: values that correspond with the groundtruth

• False Positive: correctly located values with false class labels

• False Negative: groundtruth values that are not detected by the system

Thus, a character is exclusively considered as a True Positive if all centers of mass that are
within the tagged blob have the same class index as the blob. If at least on center of mass
does not correspond to the tagged label, the character is considered as False Positive.
On the opposite, characters that were not detected at all (e.g. if the ink is faded-out) are
defined as False Negatives.

These values allow for computing the precision and recall. The former is defined as
the sum of True Positives divided by the sum of retrieved values (True Positives + False
Positives). The latter is the sum of True Positives divided by the total number of elements
that exist (True Positives + False Positives + False Negatives). Thus, the precision
indicates the percentage of correctly classified characters to those retrieved. Whereas
the recall specifies the percentage of correctly classified characters to those present in an
image.

The aim of a classification task is to maximize both, the precision and the recall.
Therefore the F score is introduced, which is a weighted average between the precision
and the recall:

Fβ =
(1 + β2)p · r
β2p + r

⇐⇒ Fβ =
(1 + β2)tp

(1 + β2)tp + β2fn + fp
(4.1)

where r is the recall and p is the precision. The right equation expresses the F score in
terms of True Positives/False Positives. There, tp stands for True Positives, fp are False
Positives and fn is defined as False Negatives. The β allows weighting the precision or the
recall. Thus, if β is set to 0.5, the precision is weighted twice as much as the recall. This
value is user defined and depends on the particular classification task.

58



In our case, β = 0.5 since it is more important that correct results are retrieved than
to detect all degraded characters. If a character is missed, the operator has the possibility
to select this character. After that, the classification is performed on this individual
character as it is done on setB.

4.3.1 Parameter Evaluation

In this section, the system’s parameters are evaluated. First, the parameters of the local
descriptors are given, then, those of clustering and voting are presented. The classifier
has two parameters that need to be adapted to a given training set. These parameters
are found by means of a cross-validation, which is explained in Section 3.3.3.

Local Descriptor Parameters

Three parameters (thresh, r, omin) are crucial for the computation of local descriptors.
The threshold thresh rejects weak local maxima (see Section 3.1.1). Similarly, r detects
interest points that have a poor localization as they are placed on edges. In contrast, omin
defines the minimum scale level.

In Figure 4.8, the evaluation of thresh is given. The grid is chosen to be logarithmic
around 0.01. This is done to give a better insight on the system’s performance around
the maximum. The central line shows the F0.5 score when varying thresh. In addition,
the precision (upper line) and the recall (lower line) are given. The maximal F score
(0.75) is obtained when thresh is set to 0.01 which is a low threshold compared to Lowe
[Low04], who proposes 0.03. This can be attributed to the fact that Lowe matches local
descriptors but they are classified in the proposed system. Thus, he needed reliably
located descriptors. In contrast, the system introduced in this report benefits from more
features as their number improves the voting. However, if the threshold is set too low
(0.0025), noise adulterates the classification, which results in a lower F score, namely
0.71.

0,0025 0,008 0,01 0,015 0,025

0.5

0.6

0.7

0.8

 

 

F
0.5

 score

precision
recall

Figure 4.8: Evaluation of the local descriptors’ threshold. A logarithmic grid around 0.01
is used to show the performance.
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The curvature threshold r is evaluated between 10 and 90. It turns out, that varying
the edge threshold parameter has hardly any influence on the system’s performance (σ =
±0.0028). However, the maximal F score is achieved when r = 35 (Lowe proposes to set
r = 10). It improves the performance by 0.01. Thus, the edge threshold can be neglected
in further studies.

Lowe proposes to subsample the input image in order to detect interest points having
the pixel’s frequency. However, it turned out that subsampling decreases the performance.
When omin is set to -1 (scale-space with subsampling), the F score is 0.73. But if the image
is not subsampled (omin = 0), the performance increases to 0.76. If omin is set to 1 (the
second octave), the performance decreases dramatically to 0.22. This is, because parts
of characters are not described by local descriptors if the first octave is not computed.
Subsampling the image results in 28608 descriptors on the previously mentioned dataset
which are reduced by 5267 when omin = 0. That is why the images are not subsampled in
the system proposed, which additionally improves the computational speed (fewer interest
points) and the memory consumption (no subsampling).

Clustering Parameters

For the character center estimation (see Section 3.4.1), two thresholds st, dt exist. The
former defines the minimum scale of an interest point so that it is considered as describing
a character. The latter specifies the minimum distance of two interest points to interpolate
them.

The scale threshold st is evaluated in the range of 0.3 - 1. Again, a logarithmic grid
around 0.6 is used in order to give a more detailed evaluation. If st is set to 0.3, fewer
interest points are selected for the clustering initialization. On the opposite, st = 1
selects the maximum of the interest points’ scale distribution. In Figure 4.9, the F0.5

score, precision and recall are illustrated. It can be seen that too many initial character
centers st = 1, which result in too many clusters, gain a low performance (0.56). This is,
because parts of characters that are similar to parts of different characters are clustered
having few interest points. On the other hand, the recall decreases if too few initial
character centers are chosen (st = 0.3 ⇔ recall = 0.61). This can be traced back to the
fact that characters are missed if too few initial character centers are obtained for the
k-means. The maximal performance, being 0.76, is achieved for st set to 0.6.

Apart from the scale st, the minimum distance threshold dt is regarded. This threshold
adapts to the particular image too. It is defined as the percentage of the minimum scale
level chosen for character estimation. Thus, if dt = 1, solely interest points, which are
closer to each other than the minimal scale, are interpolated. The theoretical background
is that if the areas of two interest points overlap for at least 39.1 %, they represent the
same character3. The minimum distance threshold was evaluated between 0.3 and 2. The
test results support the theoretical background since the maximum F0.5 score is achieved
for dt = 1. This indicates that the minimum scale corresponds with the minimum distance
smin = dmin.

3In case of two interest points having the same radius (r1 = r2) and their centers lie on the circular
path.
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Figure 4.9: Evaluation of the minimum scale threshold st. The F0.5 score, precision and
recall are illustrated.

Feature Voting Parameters

For the voting scheme described in Section 3.5, three parameters ωs, ωd,mb need to be
considered. The first two are the scale weighting ωs and the distance weighting ωd,
which weight local descriptors according to these properties. Both do not have tunable
parameters, but can be turned on or off. Thus, the subsequent experiment evaluates
their influence on the classification process. Finally, the last parameter mb removes weak
character clusters dependent on the class probability distribution.

If the scales are weighted ωs = 1, high weights are assigned to local descriptors which
represent parts of characters. This method improves the classification performance from
0.716 by 0.039. The improvement can be attributed to the fact that a lower weight
is assigned to descriptors which incorporate more than one character. Similarly, the
distance weight ωd, which favors descriptors being closer to the cluster center, improves
the performance. In this case, the F0.5 score is increased by 0.036. The distance weight
improves the system because descriptors which are further away from the center have a
higher probability of being background clutter or belonging to other characters.

In order to further improve the system’s precision, weak character clusters are rejected.
Therefore, a parameter mb is introduced that controls the behavior of the cluster rejection.
Figure 4.10 shows the system’s performance when varying mb. If it is low (e.g. 0.5),
clusters are easily rejected, which results in a high precision but a low recall (correct
clusters are rejected too). On the other hand, if clusters are not rejected at all (mb = 1),
the precision is decreased while the recall reaches its maximum. For this experiment, the
F1 score is considered, since it is not intended to reject correct clusters. The maximal
performance is gained when mb = 0.875 which is a good trade-off between precision and
recall.

Summing up the parameter evaluation, it can be concluded that solely two parameters
are crucial for the system, namely the descriptors’ threshold thresh and the minimum scale
threshold st. The first is crucial because it controls the amount of information extracted
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Figure 4.10: Removing weak clusters increases the precision (black dashed line) while the
recall (gray dashed line) is decreased.

from a given image. Consequently, this changes the system’s capability of handling uncer-
tainness and the character localization process. The minimum scale threshold st directly
influences the number of characters localized in a given image. These two parameters
should be adapted if a different dataset is observed. All other parameters have little in-
fluence on the system’s performance or they are not dependent to a particular dataset or
script (e.g. r, dt, ωs).

4.3.2 Evaluation of the Investigated Dataset

The results of the system evaluation are presented in this section. Basically four tests
are carried out on the whole annotated test set. First, an artificial clustering approach
is implemented in order to evaluate the system’s major steps (classification/localization)
separately. In order to show the effect of degraded characters on the system’s performance,
the testpanels are additionally annotated according to this criterion. The performance
of each individual testpanel and character class is extracted so that conclusions of the
system’s disadvantages can be drawn.

Clustering Evaluation

In order to demonstrate the effect of the character localization, an artificial clustering
is implemented. This is based on the annotated groundtruth where cluster centers are
defined as the center-of-mass of each blob. As constraint, solely interest points being
within a character blob are considered. The evaluation with artificial clustering allows
separately regarding the localization and classification step on the same dataset. Thus,
the error introduced by clustering can be extracted.

Using optimized parameters as discussed in Section 4.3.1 results in an F0.5-score of
0.772 (see Table 4.4 and Figure 4.11). If the artificial clustering is applied, a F0.5-score
of 0.805 is achieved. This directly draws the conclusion that the F -score is decreased by
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0.033 because of the character localization. The test setup additionally shows that the
character clustering has hardly any influence on the system’s precision (difference: 0.005).
In contrast, the proposed k-means decreases the recall rate by 0.075. This results from
clustering errors which increase the False Negatives rate as characters are not localized
correctly.

# recall precision F0.5-score
with clustering 1055 0.673 0.832 0.772

no clustering 1055 0.748 0.837 0.804

Table 4.4: Number of characters, system’s recall, precision and F -score when the system
proposed and groundtruth clustering is applied.

recall precision F0.5 score
0
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Figure 4.11: System’s recall, precision and F -score when the proposed system and
groundtruth clustering is applied. Note that the precision is the same (difference: 0.005).

Character Quality Evaluation

The dataset used for the discussed evaluation comprises normal and degraded characters.
This is done to guarantee a statistically representative dataset of the investigated manu-
scripts. In the subsequent discussion, results are presented that show the system’s per-
formance on good and degraded characters, which were manually annotated beforehand.
It is intended to show the system’s behavior when solely good characters are considered
and to draw conclusions about the character localization when degraded characters are
considered.

Table 4.5 and Figure 4.12 show the system’s recall, precision and F -score on the
investigated dataset. The investigated dataset contains 142 degraded characters which are
13.5 % of all characters evaluated. If normal characters are regarded, a F0.5-score of 0.79
is achieved. In contrast, degraded characters have a lower performance (namely: 0.38).
This arises mainly from the fact that the recall is low due to 64 False Negatives which
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draws the conclusion that 45.1 % of degraded characters are missed. When comparing
these numbers to previous tests discussed in Section 4.2, where degraded characters were
extracted, a performance loss can be observed. On the one hand, it can be attributed
to the fact that no recall was obtained in this test since False Negatives do not exist if
characters are extracted. On the other hand, the interest point’s threshold was chosen to
be lower (0.009) which results in more interest points that improve the precision.

# recall precision F0.5-score
normal 913 0.732 0.862 0.792

degraded 142 0.296 0.539 0.382
setB 198 - 0.712 0.712

Table 4.5: System’s recall, precision and F -score when normal and degraded characters are
considered. The last row shows the character evaluation from Section 4.2 with degraded
characters.
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Figure 4.12: System’s recall, precision and F -score when normal and degraded characters
are considered.

Test Panel Evaluation

In the experiments discussed previously, all test panels where considered at the same time
in order to give statistically significant results. However, the test panels’ quality differs
according to the manuscript folios they were extracted from. In order to show these
differences, the precision, recall and F -score of each test panel are regarded.

Table 4.6 shows the system’s performance on the individual test panels. The mean
F -score averaged over the test panels is 0.75. However, it can be seen in Table 4.6 that
two test panels are outliers, namely: test panel #1 and test panel #10. Both test panels
are illustrated in Figure 4.13. As can be seen, test panel #, 1 which has a F -score of 0.9,
solely contains two faded-out characters. That is why the system’s performance is better
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# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F -score 0.9 0.6 0.7 0.8 0.6 0.8 0.8 0.8 0.8 0.5 0.6 0.8 0.8 0.9 0.8
recall 0.9 0.6 0.6 0.8 0.5 0.7 0.8 0.7 0.6 0.3 0.5 0.7 0.7 0.7 0.7

precision 1.0 0.7 0.8 0.9 0.7 0.9 0.9 0.9 0.8 0.7 0.6 0.9 0.9 0.9 0.8

Table 4.6: The system’s F -score, recall and precision on the respective test panels.

on this panel compared to the other test panels. On the other side, test panel # 10 was
extracted from a so-called palimpsest, which means that characters were partially erased
and a new script was written over the original text. This results in degraded characters.
More precisely, the clustering fails on this test panel since the stains of the second script
produce false interest points which results in false clusters. That is why the recall being
0.3 is lower compared to the other test panels.

Figure 4.13: The two outliers, test panels # 1 (left) and test panel # 10 (right).

Character Class Evaluation

In order to show the classification performance of each character class separately, the
class statistics over all test panels are extracted. Figure 4.14 shows the F0.5-score of
each character class. Since the characters have different a-priori probabilities, a different
number of characters are observed per character class. The width of each bar in Figure 4.14
indicates the normalized number of characters. This allows comparing the F -score of a
given character class with its a-priori probability in the observed test set.

Figure 4.14 shows that i has most instances (namely: 114) in the given test set.
In contrast, j and v a are contained only once in the whole test set. Hence, their
performance cannot be regarded as statistically relevant. The lowest performance being
0.355 is gained by r , which is in most cases confused with i (27.3 %) and g (18.2 %).
This can be traced back to the fact that r solely consist of a circle and one vertical stroke,
which are mistaken with the circles of i and g . The highest performance of statistically
relevant character classes (n > 50) is achieved by m having a F0.5-score of 0.911. This
can be traced back to its complex and individual shape (4 connected circles).
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Figure 4.14: Weighted F0.5-score of the character classes. The width of each bar indicates
the percentage of characters that belong to the class.

Summary

In this chapter, the system’s performance was discussed. The experiments on synthetic
data were carried out in order to show the system’s behavior if undistorted data is con-
sidered. But it was additionally shown that the method proposed can easily be adapted
to other writing systems. This experiment proofed the implementation’s correctness.
Adding noise to synthetic data allowed for evaluating the system’s robustness with re-
spect to noise.

The second experiment aimed at analyzing system’s behavior when degraded charac-
ters need to be recognized. Therefore, degraded characters were compared with normal
characters extracted from the Cod. Sin. Slav. 5n. Beside this comparison, the performance
trend was analyzed if the number of classes is increased.

The final evaluation on annotated ground truth data allowed for conclusions on the
system’s behavior in real world applications. There, the system’s major steps were again
computed separately in order to derive a detailed performance evaluation.
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Chapter 5

Conclusion

This report presents a new methodology for character recognition of ancient manuscripts.
The approach, which is inspired by recent object recognition systems, exploits local de-
scriptors directly extracted from grayscale images. Multiple Svms with Rbf kernels are
used to classify the local descriptors. The character localization is based on clustering
interest points previously extracted for the computation of local descriptors. A scale
selection that adapts to the observed manuscript image allows for the cluster center ini-
tialization.

The system proposed was evaluated on synthetically generated data as well as real
world data extracted from the Cod. Sin. Slav. 5n. Experiments showed the system’s ca-
pability to be trained on Latin font as well as the Glagolica, even though both writing
systems have little in common. Experiments on synthetic data demonstrated the sys-
tem’s behavior when noise, such as white Gaussian noise, or partially visible characters
are present. In addition, a dataset was created that consists of highly degraded Glagolitic
characters. Experiments on this dataset proofed the system’s capability to recognize de-
graded characters and the difference to well preserved characters. Additional tests with
annotated ground truth allowed for extracting errors introduced by clustering and those
of the classification.

The presented character recognition system does not need any pre-processing of docu-
ment images. In contrast to existing systems, a new architecture was designed that focuses
on degraded manuscript images. Since ancient manuscripts – in contrast to modern ones
– exhibit stains, faded-out ink and rippled pages, new challenges are faced when trying
to recognize characters of ancient documents. The degradations can be attributed to bad
storage conditions, on-purpose destruction and the ravages of time.

Although the data dramatically changes between modern and ancient manuscripts, the
methodology proposed does not change except for minor optimizations. As a consequence
to the previously mentioned degradations, a binarization is not applicable for ancient
manuscripts. This fact is stated by other authors and was further discussed in Section
2.1. A simple example why binarization fails when ancient documents are regarded is
subsequently given. If an image is binarized, every pixel gets assigned one out of two
class labels: foreground, background. But considering ancient manuscripts, gray-values
of characters are the same as those of stains. When regarding faded-out ink, degraded
characters have the same gray- value as background in a different region. That is why
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a binarization – local or global – cannot separate foreground from background correctly.
Hence, methods are proposed that incorporate context knowledge in order to improve the
binarization. But nevertheless, features that are extracted from binary images suffer from
misclassifications that occur within the binarization step. Thus, false predictions within
the binarization propagate through all subsequent processing steps.

As a consequence of this reasoning, a new character recognition architecture was de-
veloped. It is designed similarly to existing object recognition systems. In contrast
to character recognition systems, object recognition is not based on binarization since
decades. Thus, an object recognition system allows for recognizing characters even if the
ink is faded-out or background clutter degrades characters.

Disadvantages of the Proposed System

It was shown in Chapter 4 that the proposed system has disadvantages when certain
aspects are considered which will be discussed subsequently. If modern fonts such as
Latin need to be recognized, characters with little topological structure exist such as i,
j, l. Considering these characters and assuming they do not have Serifs, local structure
information is not capable for recognition. This can be attributed to the fact that solely
corners with changing orientations are passed to the classifier. Since the only difference
between an i and a j is the descender which is not recognized by local descriptors, a
correct classification of these characters cannot be guaranteed. Handwritten characters,
in contrast to printed fonts, have the advantage that the topological structure – even for
similar characters – is changed according to the sequence of strokes written.

In addition to this, the character localization, which is currently based on the interest
points extracted, is still weak if characters are at the image border, or highly degraded
characters are considered. It was shown in Section 4.3 that recognizing degraded charac-
ters performs better if the clustering does not need to be performed.

In contrast to state-of-the-art Ocr engines, the system proposed does not exploit
dictionaries to improve the recognition rate. This is, on the one hand, because up to now,
there does not exist a Glagolitic dictionary that would be applicable for Ocr. On the
other hand, the report concentrates on Computer Vision, not Information Retrieval.

Advantages of the Proposed System

It was stated in Section 4.3 that the system proposed achieves an overall F0.5 score of 0.772
on degraded manuscript images when 25 character classes are trained. The precision is
even higher, being 0.832. These experiments were performed on randomly selected manu-
script pages that contain faded-out characters, background clutter and locally skewed text
lines. In contrast to state-of-the-art Ocr systems, no prior knowledge about the page
layout, the page scale or orientation needs to be incorporated for the method introduced.
Thus, the recognition rates mentioned are achieved without preprocessing. This allows
for a flexible recognition system that can easily be adapted to other datasets, writers and
writing systems. Considering the dataset investigated and the system’s performance, it
can be stated that it is capable for recognizing degraded manuscript pages which it was
designed for.

It was shown in Section 4.1 that the system is suitable for to correctly classifying
partially preserved characters, which is important when degraded manuscripts are con-
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sidered. This can be attributed to system’s design which directly classifies local structure
information. Thus, the global topology of characters does not need to be considered in
order to correctly predict the character class. An additional advantage of classifying local
information is its robustness with respect to intra-class variations arising from different
writers and writing materials.

The system proposed does not solely predict character classes but assigns class prob-
abilities to each character recognized. This restrict alternatives for characters that are
not recognizable by human experts anymore. Thus, a faster transcription is achieved if
philologists apply the system introduced. As an example, characters having faded-out ink
need manual (local) contrast enhancement so as to allow for a human recognition. These
characters are easily recognized by the system since the first derivation is exploited, which
renders the system invariant to linear illumination (contrast) changes.

Future Work

Since this report covers rather a case study on a new architecture for character recognition
systems than a complete Ocr, the methodology can be improved in order to challenge
state-of-the-art Ocr engines. A major drawback is the system’s previously mentioned
disability to recognize topologically similar characters. This could be improved if a global
merging of local descriptors within character clusters – similar to the Bag-of-Features
concept – would be exploited [SRE+05, MS06]. Another advantage of this approach
would be a computational speed-up since not every local descriptor but solely one feature
per character had to be classified. However, experiments proving that this methodology
is still capable for recognizing partially visible characters would have to be carried out.

Another basic approach for improvements concerns the character localization. In the
approach proposed, characters are localized according to interest points detected. This
allows for localizing degraded characters as there is no need for binarization, but fails if
background clutter impairs the interest point localization. Thus, a combined approach
using texture information and the interest points’ locations could be aspired. In addition,
the features’ probability histograms could be incorporated to the clustering which would
emphasize clusters having similar class signatures.

A recent study by Zhang et al. [ZMLS07] focusing on local feature based object recog-
nition proposes to exploit different interest point detectors and local descriptors. This
approach could improve the character recognition system to the effect that topologically
similar characters would be distinguished based on additional information extracted.
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Appendix

Glag. LATEX Class ClassIdx Glag. LATEX Class ClassIdx
a a a 1 n n n 17
b b b 2 o o o 18
v a v va 130 p p p 19
v b v vb 131 r r r 21
g g g 4 s s s 22
d a d da 150 t t t 23
d b d db 151 u u ou 24
e e e 6 f f f A 26
� Zz zh 7 h h kh 27
9 9 dz 8 q q omega 29
z z z 9 � Ch sht 30
i i i A 10 c c c 31

i B1 11 � Cc ch 32
y y i B2 12 � Ss sh 33
j j gj 13 4 4 jor 34
k k k 14 7 7 jer 38
l l l 15 w w jat 39
m m m 16 2 2 ju 40

Table 1: Glagolitic alphabet with corresponding class labels and class indices.

70



List of acronyms

cc Connected Component

cv Computer Vision

DoG Difference-of-Gaussian

Fast Features from Accelerated Segment Test

Gloh Gradient Location-Orientation Histogram

Hmm Hidden Markov Model

ID3 Iterative Dichotomiser 3

Jpeg Joint Photographic Experts Group

k -nn k -Nearest Neighbor

LoG Laplacian-of-Gaussians

Mser Maximally Stable Extremal Regions

NN Neural Networks

np-hard non-deterministic polynomial-time hard

Ocr Optical Character Recognition

Pca Principal Component Analysis

Pda Personal Digital Assistant

Rbf Radial Basis Function

Sift Scale Invariant Feature Transform

Surf Speeded Up Robust Features

Susan Smallest Univalue Segment Assimilating Nucleus

Svm Support Vector Machine
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