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Abstract

The application of multispectral imaging is a well known method for the analysis and
digitization of decayed manuscripts. The main advantage in analyzing multiple spectral
ranges, including the ultraviolet and infrared range, is the additional information which
is invisible to the human eye. This report focuses on two aspects for image restoration
of multispectral images of degraded documents. The first problem relates to a general
enhancement of the readability. Due to mold, air humidity, water, etc., parchment and
text may partially be damaged and consequently hard to read. The proposed method-
ology is based on a spatial and spectral analysis and the main advantage of the method
is that especially text regions are considered for enhancement. The second part of this
work deals with a robust method for the separation of text from background. The pro-
posed statistical framework incorporates spatial and spectral features in the context of
a higher-order Markov Random Field. Spectral information is extracted from the spec-
tral behavior of the multispectral images and the spatial dependencies are captured by
means of stroke properties. Providing a strong local minimum and the potential of using
arbitrary potential functions, a modified version of belief propagation is applied for the
optimization of the higher order model. The proposed method requires no training and
is independent of script, size, and style of characters.



Contents

1 Introduction 1
1.1 Foreground-Background Separation in Multispectral Images . . . . . . . . 2
1.2 Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Foreground-Background Separation and Document Image Restoration . . . 7

2.1.1 Global and Adaptive Thresholding . . . . . . . . . . . . . . . . . . 8
2.1.2 Binarization Based on Color Clustering . . . . . . . . . . . . . . . . 9
2.1.3 Binarization Based on Spatial and Spectral Information . . . . . . . 10
2.1.4 Probabilistic Approaches . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Summary of Foreground-Background Separation in DIA . . . . . . 12

2.2 Higher-Order Markov Random Fields . . . . . . . . . . . . . . . . . . . . . 12
2.3 Innovative Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Multispectral Imaging 17
3.1 Multispectral Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Illumination and Electromagnetic Radiation . . . . . . . . . . . . . 18
3.1.2 Multispectral Analysis of Ancient Manuscripts . . . . . . . . . . . . 18

3.2 Missale Sinaiticum (Sin. Slav. 5/N): Acquisition Setup . . . . . . . . . . . 20
3.3 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Image Enhancement Results . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Probabilistic Graphical Models 32
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Prior Model Pr(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Likelihood Pr(y|x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Posterior Energy Pr(x|y) . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



4.4 Higher-Order Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Energy Minimization 42
5.1 Iterated Conditional Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Energy Minimization using Graph Cuts . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Pairwise Based Prior . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Solving Energies with Higher-Order Cliques . . . . . . . . . . . . . 47

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Foreground-Background Separation based on Higher-Order MRFs 49
6.1 Higher-Order Energy Function . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Potential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Unary Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.2 Pairwise Potential Function . . . . . . . . . . . . . . . . . . . . . . 52
6.2.3 Higher-Order Potentials . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1 Standard Belief Propagation for Pairwise Models . . . . . . . . . . 54
6.3.2 Belief Propagation for Higher-Order Models: BPn . . . . . . . . . . 55

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Experiments and Results 59
7.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Energy Function and Weighting Parameter . . . . . . . . . . . . . . . . . . 62
7.4 Overview of the Binarization Methods . . . . . . . . . . . . . . . . . . . . 62
7.5 Influence of the Higher-Order Stroke Model . . . . . . . . . . . . . . . . . 63

7.5.1 Missale Sinaiticum . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.5.2 DIBCO 2009 Images . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5.3 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.6 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.7 General Comparison of the Methods . . . . . . . . . . . . . . . . . . . . . 86

7.7.1 Missale Sinaiticum . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7.2 DIBCO 2009 Images . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.8 Summary of Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 95

8 Conclusion and Outlook 98
8.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Acronyms and Symbols 103

B List of Notation 105

Bibliography 106

ii



Chapter 1

Introduction

MultiSpectral Imaging (MSI) has proven a capable technique for the analysis and preser-
vation of ancient or damaged documents. Especially images in the UltraViolet (UV)
and InfraRed (IR) light range reveal additional information such as latent texts or faded
passages [23].

The multispectral images obtained are not only used for visual inspections, they also
serve as input data for a computer based analysis, as is the case in enhancing the under-
written text in the Archimedes palimpsest1 [24] or, for instance, to distinguish between
the underwritten and the new text in the same manuscript [90].

While most of the recent studies in MSI of historical manuscripts attempt to separate
the different writings in palimpsests [90, 85], the topic of this thesis considers a more gen-
eral restoration process of partially damaged and decayed manuscripts. Two approaches
for the examination of multispectral images are proposed in this thesis. The main topic
deals with Foreground-Background Separation (FBS) in document images. FBS consti-
tutes a major part in Document Image Analysis (DIA) and enables the use of simplified
analysis techniques for subsequent algorithms like Optical Character Recognition (OCR)
or page layout segmentation [45]. Therefore, we propose a robust binarization method
which is especially designed for the multispectral image data of document images. The
requirements for the proposed approach include a general applicability, i.e. independence
of hand written or machine printed text, and a certain robustness, i.e. independence of
image noise.

The second goal of this thesis follows a general legibility enhancement of damaged
documents. Foundation for both methods is the simultaneously utilization of spatial and
spectral features of the multispectral image data. In both cases we incorporate the full
range of multispectral information.

1A palimpsest is a document which was rewritten after the first text had been erased. It was a common
practice in medieval ecclesiastical circles to rub out or wash off the writings on parchment, in order to
prepare it for new texts.
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1.1 Foreground-Background Separation in Multispec-

tral Images

An important step in DIA is image binarization, which divides page content like charac-
ters, ligatures, or decorations from the background [29]. FBS is, besides noise reduction
or skew correction, a fundamental pre-processing step [17], which enables the use of sim-
plified analysis techniques in subsequent computations [45]. The resulting binary images
may serve as input data for

1. character segmentation2 [16],

2. Optical Character Recognition (OCR) [76] or local approaches for script identifica-
tion [96],

3. the restoration of broken characters [3],

4. line segmentation [68], or

5. the estimation of the stroke trace or pen trajectory [62].

Consequently, binary images are the prevalent input for consecutive steps in DIA and
fast and accurate document image binarization is becoming increasingly important [98],
since errors like touching or broken characters may lower, for instance, the performance
of OCR systems [41].

Foreground-background separation in digital representations of degraded documents
is not an easy task [29]. Even though document image binarization has been studied for
many years, the thresholding of historical document images is still an unsolved problem
due to the high variation within the document foreground and background [98]. Specific
reasons range from shortcomings in the image acquisition setup including illumination,
camera setup, etc., to degradations caused by manuscript decay. The latter may include
a non-uniform appearance of the writing and the background, a blur of the background,
a faded ink, mold, water stains, or humidity [74].

MSI has already provided promising results for the analysis of decayed documents [26].
Nevertheless, in most of the cases, FBS for damaged manuscripts is based on sophisticated
image processing techniques applied on gray level images [95].

In this thesis, we propose a robust method for FBS in multispectral images of degraded
documents. The innovation of the proposed method is the simultaneously combination of
spatial and spectral information of the multispectral image data in order to improve the
segmentation performance. This combination is of great importance to correct and refine
segmentation errors [102]. Recent studies already exploit the combination of spatial and
spectral components but treat the two components successively, e.g. [28] or [107]. In con-
trast to previous studies we arrange the combination of spatial and spectral components
simultaneously. Therefore, we utilize a Markov Random Field (MRF) and consequently

2Character segmentation seeks to decompose an image of a sequence of characters into subimages of
individual symbols.
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a Conditional Random Field (CRF), which provide a probability theory for analyzing
spatial and contextual dependencies [67].

Since high quality text is not available for the manuscript given, a specific training of
the prior in the MRF is, as proposed in the study from [15], not possible. In contrast
to approaches with previously learned prior models, we resort to a general adaptive prior
model, making the approach independent of machine or handwritten text, as well as
script, font, style, or the size of characters. Therefore, the prior model includes spatial
correlations of characters and of strokes, respectively, and will be expressed within a
stroke model. These spatial dependencies are modeled by incorporating a higher-order
MRF model. Since the stroke properties and the Gaussian parameters for the imaging
model are evaluated automatically, the proposed method requires no training data and
is applicable as conventional binarization techniques, like Otsu’s method [80] or adaptive
image binarization proposed by [91].

For the optimization of the MRF energy equation, we propose to use local methods
like Belief Propagation (BP) [27], which has a strong local minimum property [100] and
works for arbitrary potential functions [84]. BP is generally applicable and independent
of the graphical model and the form of potentials. We will show in the results, that local
methods are superior to global optimization methods for the application given.

Originally designed for models with pairwise connections we adapt the standard formu-
lation of BP and include higher-order functions [51] to incorporate the stroke properties.
Following the higher-order potential functions P n proposed by [50], the proposed algo-
rithm will be referred to as BPn. The higher-order potential functions are included in a
new formulation of the message update rule from the standard BP algorithm.

The proposed FBS process is based on three innovations:

1. spatial and spectral based FBS in document images,

2. higher-order MRF for incorporating stroke characteristics, and

3. local inference for local optimization problems (BPn).

Figure 1.1 illustrates the idea and innovative points within a diagram. The top circle of
our philosophy refers to the simultaneously combination of spatial and spectral features
for FBS in digital document images to correct and refine segmentation errors. Spectral
features correspond to the spectral component of the multispectral image and spatial
features incorporate stroke characteristics by means of the stroke width. The spatial
components are incorporated within a higher-order MRF, shown in the lower left circle.
The MRF model for FBS will be presented in Section 6.2. Finally, we propose to use
a local inference method for the separation of characters. Therefore, we introduce an
adaptation of the standard BP algorithm, which will be presented in Section 6.3.2.

The proposed method is tested on a set of folios from a historic manuscript and the
results are compared to state of the art FBS methods like serialized k-means clustering
[66] or adaptive binarization [91]. Furthermore, we compare the proposed method to the
algorithm from [98], which is an advanced version of the best algorithm from the 2009
Document Image Binarization Contest (DIBCO 2009). This competition was organized
within the framework of the Tenth International Conference on Document Analysis and
Recognition (ICDAR 2009) in Barcelona, Spain.
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The evaluation metric is based on an objective computer algorithm, the precision and
recall rate [29]. Therefore, we generated ground truth data manually for a set of degraded
documents. Further test are applied on images from the DIBCO 2009 where ground truth
data is already available. Our systematic evaluation shows that the combination of spatial
and spectral features offers a robust method for FBS especially in the presence of noise
or when degraded documents with low contrast are given.

Higher-order
MRF model

to incorporate
stroke

characteristics
(Section 6.2)

Local inference
for local

optimization
(Section 6.3.2)

Spatial and
spectral

based FBS
in document

images

Figure 1.1: Our proposed method for FBS in document images is based on spectral obser-
vations and stroke features. Concerning the spectral features, the method can incorporate
the full range of spectral information from multispectral images, but panchromatic im-
ages may also serve as input data. The second type of features, spatial characteristics or
stroke properties, are based on the stroke width. Since the spatial information requires an
extended neighborhood, we apply a higher-order MRF to incorporate spatial and spectral
features. For statistical inference in the higher-order model, we propose to apply a local
method since characters in document images are distributed locally.

1.2 Image Enhancement

To support philological studies for the transcription of partially undecipherable manu-
scripts, the second goal of this study is a general enhancement of the multispectral image
data. In contrast to previous studies which focus on the enhancement of the underwritten
texts in palimpsests, e.g. [90], our preference is a general enhancement of the readability
in multispectral images of degraded manuscripts.

Multispectral image data is often highly correlated [86]. The Principal Component
Analysis (PCA) is a well known method to remove this redundancy [22, 86]. For instance,
[24] applied PCA to produce pseudo-colored images of the multispectral data from the
Archimedes Palimpsest.
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To enhance the legibility, we focus on the multispectral image data and the spectral
signature as well as the spatial correlation in the spectral images. Multivariate Spatial
Correlation (MSC) constitutes an alternative approach to PCA in order to remove this
correlation. Originally designed for the analysis of geographical data, [108] showed the
robustness of the method in the presence of noise. The innovation for the adaptation to
image enhancement in degraded documents is the possibility to remove the correlation
with a simultaneous emphasis on text regions.

In Section 3.3.2 we show some experiments and compare the output of the MSC to the
results of PCA. The evaluation of the two different methods is executed on multispectral
images of an medieval Slavonic manuscript, the Missale Sinaiticum (Sin. Slav. 5/N), and
the assessment is based on a human reader. Furthermore, we evaluate the general benefit
of the multispectral images by counting the number of characters detected in the original
data set (i.e. the RGB images) and in the multispectral images after enhancing with the
proposed method.

1.3 Thesis Structure

Chapter 2 provides an overview of existing methods for FBS in DIA. Since previous
categorizations cover especially algorithms for panchromatic images, we arrange the
individual methods in a new categorization. The second topic in Chapter 2 concerns
MRFs and provides an overview on recently published methods. Main focus is based
on inference in higher-order models which are only present for a short time.

Chapter 3 provides background information on MSI, including physical background,
acquisition methods and acquisition setup. Furthermore, we show the results of
the digitization of a historic manuscript, the so called Missale Sinaiticum, which
constitutes the main data set for our investigations including image enhancement
and FBS. Post-processing methods including image registration and the proposed
enhancement algorithm are presented in the third part of this chapter.

Chapter 4 explains the formulation of MRFs starting from Bayesian classification, to
Maximum A Posteriori estimation and CRFs. Higher-order models are explained in
the second part of the chapter.

Chapter 5 explains standard methods for probabilistic inference in MRFs including a
local method and a global method.

Chapter 6 introduces the proposed approach for FBS in digital document images. The
first part shows the potential functions used for unary potentials, pairwise potentials,
and the higher-order functions. Main focus is set on parameter free functions to
avoid training. In the second part of the chapter, we introduce an adapted version
of BP to incorporate higher-order functions.

Chapter 7 presents the experiments based on three data sets: the first one includes
digital representatives of the Missale Sinaiticum in multispectral manner, the sec-
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ond set constitutes some representative images from a previously organized image
binarization contest, and the third set constitutes synthetic images.

Chapter 8 concludes this dissertation and gives an outlook to some further improve-
ments of the proposed method.
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Chapter 2

Related Work

Converting digital document images into binary representations and consequently sepa-
rating text from background is a fundamental step in DIA [30]. This fact is reflected
in a large number of publications in this research area [28]. In the following chapter we
provide an overview of methods for FBS in document images. The main focus is based
on approaches using MRFs. Since the spatial information in our FBS process is modeled
with higher-order random fields, we present recent studies on computationally efficient
algorithms for inference in higher-order MRFs and respectively CRFs.

2.1 Foreground-Background Separation and Document

Image Restoration

Efficient binarization methods for FBS in DIA have been a subject of intense research
during the last several years [28]. [28] divides FBS algorithms into the following three
categories :

1. global thresholding,

2. adaptive thresholding, and

3. color clustering.

Traditional methods for image binarization are primarily based on panchromatic images,
in which global or adaptive thresholding methods describe efficient methods. With the
widespread development of input devices for color images, documents are now digitized
preserving the color information. Thus, FBS in color document images has gained con-
siderable attention in recent years [28].

Nevertheless, the categorization above neglects two major approaches. First of all,
some methods are based on sophisticated algorithms considering not only the spectral
component (i.e. gray level or color information), but also spatial components, as is the
case in the Gabor-based approaches from [102]. Such approaches will be referred to as
spatial / spectral methods.

Secondly, methods based on a probability theory, like naive Bayes classifier or MRFs,
can in turn not be assigned to one of the three categories mentioned above. Thus, an
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additional category for algorithms based on a probability theorem will be added to the
categorization from [28]. Including the three primarily categories, our categorization
includes the two following subjects:

4. spatial / spectral approaches and

5. probabilistic approaches.

The following sections give an overview of recent work devoted to global or adaptive
thresholding, color clustering, or on combined approaches for FBS. Furthermore, we
provide, to the best of our knowledge, a complete overview on probabilistic approaches
using MRFs for FBS.

2.1.1 Global and Adaptive Thresholding

The objective of binarization is to automatically choose a threshold that separates fore-
ground and background information. Global and adaptive thresholding techniques use a
threshold T to distinguish between foreground and background in a panchromatic image
I:

BW (i, j) =

{
1 if I(i, j) ≥ T
0 otherwise.

(2.1)

Global thresholding selection methods assume that the gray-level histogram is bimodal
[80]. In adaptive or local thresholding, the threshold values are determined locally and
the threshold is computed for separate pixels or image regions based on local statistics
[91, 30]. Overview papers comparing different global and adaptive methods can be found
in [36, 58, 41, 29].

Depending on the quality of the original image, the resulting binary image may in-
clude gaps in lines, ragged edges on region boundaries, missing characters, or extraneous
pixels in foreground or background regions [45]. Cases including such circumstances are
caused, for instance, by non-uniformly illuminated pages during data capture, low con-
trast between text and background, or the preservation condition of historical or damaged
manuscripts.

In the case of old and degraded documents local methods outperform global methods
[30]. For instance, [91] developed a method for adaptive document image binarization by
determining an individual threshold for each pixel. The main drawback of this window-
based thresholding approach is that the thresholding performance depends heavily on the
window size and hence the character stroke width [98].

For the recognition of highly degraded characters [104] use a Wavelet filtering stage
for denoising, followed by an extraction of individual text lines which are separately con-
verted into a binary image by adaptive thresholding. [7] proposed a multistage approach
based on a initial global threshold which suffices for noise free characters. Then the doc-
ument characters are evaluated and an accurate local method is invoked only on noisy
characters. [30] developed an adaptive degraded image binarization algorithm following
several distinctive steps: Wiener filtering, a rough estimation of the foreground region,
the calculation of the background model, and post-processing methods like shrink and
swell filtering to improve the quality. [94] presented an approach to remove the uneven
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background from historical documents (background light normalization) allowing a global
threshold for a complete page. To accomplish this, they use an adaptive linear function to
approximate the uneven background. The approach is similar to background subtraction
as specified by [58]. [70] estimated the shading of the background by fitting a least square
polynomial surface to a given document image. Combining the gray values of pixels and
the polynomial surface allows to directly threshold the observed image.

However, these binarization methods proposed for gray-scale documents have not been
well tested or extended for color documents [28]. Moreover, most of these approaches
combine different types of image information and domain knowledge and are often complex
and time consuming [98, 95].

A very recent and high performing binarization method especially designed for histor-
ical document images was presented by [98]. Applied to a document image, this technique
constructs a contrast image and then detects the high contrast image pixels, which usu-
ally lie around the text stroke boundary. The document text is then segmented by using
local thresholds that are estimated from the detected high contrast pixels within a lo-
cal neighborhood window. The technique was tested on the DIBCO 2009 dataset and
showed superior performance [98]. A preliminary version of this method showed the best
performance in the DIBCO 2009 competition and has beaten thirty-five other competitors
[29].

2.1.2 Binarization Based on Color Clustering

Text or character extraction techniques proposed for color document images are based on
clustering or color segmentation and exclusively consider the color or spectral component
[28]. The methods perform clustering in the 3D feature space [71] and the segmentation
process is based on the assumption that characters are printed in a visually single color
as seen in most text passages in color documents [40].

For instance, [97] extract blobs consisting of similar color pixels by clustering. A
subsequent Support Vector Machine (SVM) classifies these blobs into character or back-
ground patterns based on several textural features. An adaptive method based on the
k-means algorithm was proposed by [66]. This approach was developed for digitized an-
cient manuscripts and is based on a serialization of the k-means algorithm. The clustering
is applied sequentially within a sliding window and the algorithm reuses information about
the clusters from previous classifications to adjusts the centers. This reutilization adapts
the classifier to local modifications of colors or varying illumination conditions.

[40] propose a color segmentation for the L*a*b* color space by initially observing
the color distribution in character areas. This method extracts representative colors
based on a histogram analysis of the color space. [28] propose a chain of processing
steps for FBS in low quality images applicable for color and panchromatic images. An
initially connected component labeling captures spatially connected pixels of similar color.
After the identification of the dominant background color, rectangular blocks are formed
around the identified uniform background regions. Then, bicolor clustering (k-means) is
performed within the rectangular blocks to extract the foreground regions.

By means of the preceding connected component labeling algorithm the method pro-
posed by [28] analyzes spatial connectivity of similar text and background pixels addi-
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tionally to color clustering. This approach is already a step forward to the combination of
spatial and spectral features. Approaches which are especially based on the combination
of spatial and spectral information will be highlighted in the following section.

2.1.3 Binarization Based on Spatial and Spectral Information

Although the combination of spatial and spectral components for FBS was exploited in
recent studies [28, 107, 31], spatial and spectral components are examined in a successive
way. [28] use a preceding connected component labeling to capture spatially connected
similar color pixels. Afterwards, they divide the image into blocks to perform local clus-
tering. [107] combined edge information, watershed transformation, and clustering for
character segmentation in color images. The watershed transformation is executed on the
edge images to obtain basins of uniform color which are afterwords divided into text and
background by a clustering scheme. The incorporation of edge detection is also examined
by [31]. The method is a combination of several techniques including edge detection,
pre-processing, a combination of several state-of-the-art binarization methodologies, and
post-processing resulting in a number of parameters. However, edge detection is difficult
in old document images since the stroke intensity is very variable and the edges are very
weak [75].

[75] propose a method for the restoration of single sided low quality document images
based on a multi-level classifier. The multi-level classification provides a robust and
adaptive labeling method and includes four meta levels: pixel, regional, content, and
global. For the pixel level, the gray value is used for classification. The regional level
determines whether a pixel belongs to a boundary in the image or not. At the content
level, stroke related classifiers like the proposed stroke map or stroke profile are introduced.
Finally, a global level is developed to provide an overall estimate of the background.

[102] use color clustering and subsequently a Gabor-based filter to combine color with
spatial information. The Gabor-based filter simultaneously handles spatial information
to locate characters in the image, and frequency information to use illumination variation
to detect character edges. This method is already an attempt to combine spatial and
frequency information simultaneously. But [102] note in the conclusion that images with
very low resolution and poor contrast cannot be segmented by the proposed method and
refer to supervised methods. However, supervised models require training data and lack
of general applicability. Thus, methods with trained prior are not independent of script
or characters size.

2.1.4 Probabilistic Approaches

Approaches based on a probabilistic model estimate the probability of an event on the
basis of known data. Therefore, these approaches require a training phase and respec-
tive training data. Probabilistic approaches for FBS include, for instance, Independent
Component Analysis (ICA) to separate different layers in digital documents [104, 90] or
a Gaussian distribution and expectation-maximization for degraded document enhance-
ment [1]. However, ICA ignores the two dimensional relations between gray levels on the
image which is considered to constitute a one-dimensional signal [18].
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There have also been some attempts using MRFs for FBS in DIA. For instance, one
of the first approaches using MRFs for FBS in document images was presented by [20] to
binarize car license plates from gray scale images using 2× 2 cliques. [103] use 3× 1 and
1× 3 cliques to restore bimodal text from low resolution samples. Both approaches used
an MRF to model the prior for noise removal and to augment small straight strokes.

In order to include more complex models, image patches modeling prior knowledge by
considering spatial constraints are included [27, 15]. However, these kind of probabilistic
approaches require training. Consequently, the algorithms are not independent of script,
size, or font in machine printed text and cannot model handwritten text [15].

The patch based topology was introduced by [27] and divides both the image and
the scene into patches. The Markov network is based on a graph based topology where
nodes are connected by lines which indicate statistical dependencies. Each scene patch
is connected to its corresponding image patch and to its spatial neighbors. The scene
patches have to be learned from training data and are tuned to cover common shapes
or details from individual characters [15, 38, 6, 59]. An example of patches for image
restoration is given in Figure 4.5. The figure shows 114 representatives of shared patches
obtained from clustering. For the training of these patches, completed binarized images of
high quality are decomposed into 5× 5 regions. Using k-means clustering, the dominant
cluster centers of the patches are taken as representatives.

[55] modeled the prior as a generalized Potts model to produce smooth labeling results
by considering a 4-connected neighborhood system. A more sophisticated model exploit-
ing the properties of text characters was presented by [112]. The observation model within
the Bayesian framework depends on the mean and variance of the gray value distribution
of text and background, and the prior is defined by sixteen 4× 4 cliques. The individual
cliques and potentials are able to repair damages in characters, text curves, and serifs.
However, the results do not improve existing methods and the MRF model produces also
errors like extra serifs [36].

A learning based method for restoring and recognizing images of digits at the same
time was presented in [37, 38]. The study covers the restoration (binarization) and recog-
nition of blurred images of license plates, based on a multilayer MRF containing separate
layers for recognition and restoration. The method requires a priori knowledge of each
object category which is straightforward for the recognition of digits. The main inno-
vation of the study is that restoration and recognition work without prior segmentation
of individual digits by encoding the information on spatial relationships between patches
(segmentation) and their semantic meaning (recognition). However, this scheme cannot
be directly applied to unconstrained handwriting because of the larger number of classes
and the low performance of existing handwriting recognition algorithms [15].

[14, 15] propose a pre-processing approach for handwritten carbon forms using MRFs.
In addition to binarization using histogram thresholding, the prior, represented by an
MRF under local dependence assumption, provides constraints of connectivity and smooth-
ness. The prior probability is learned from a high quality training set of already binarized
images. The observation probability density is learned from the gray level histogram of
the input image. The patch based topology is based on 5 × 5 nonoverlapping blocks.
Figure 4.5 shows the whole set of image patches which are trained from high quality
images.
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[79] propose an MRF approach for historic typewritten document images. In contrast
to the methods stated above, the proposed approach employs an off-line estimation process
and the patch initialization is data dependent. The patches are trained as proposed in
[14] and the probability distribution of the foreground and the background is learned
from labeled training data. Variations in paper quality or color limit the accuracy of the
results.

Another approach for the binarization of seriously degraded documents based on an
MRF model was presented by [59]. The model parameters are learned from training data
or computed using heuristics. The prior model represents the contextual information
introduced by the Markov model. Potential functions Vd(z) based on simple heuristic rules
are associated for each clique configuration, which is defined by the sum of two different
terms V 1

d (z) and V 2
d (z). The first one is introduced to remove noise and the latter is used to

improve character connectivity based on simple pairwise connections. A similar approach,
where the text model is learned from the degraded document itself is proposed by [6]
making the separation independent of script, font, and style, but require a large training
set. A first stage of the algorithm involves the estimation of ideal prototype patches. In a
second stage, the restoration of degraded or broken characters is based on the estimation
of the most likely set of patches (from the set above) that generates the observed patches
using an MRF. The requirement of a large dataset needed is disadvantageously and the
method focuses on broken characters.

2.1.5 Summary of Foreground-Background Separation in DIA

An overview of the reviewed literature is given in Table 2.1. Each of the categories defined
includes some representative studies, advantages and disadvantages.

As stated by [102], FBS in images with low resolution and poor contrast cannot be
segmented with unsupervised methods. However, supervised models require prior knowl-
edge and consequently training data which makes the approaches not generally applicable.
Given all different types of text whether handwritten or typewritten in all possible vari-
ations of font, size, style, color, etc., it is difficult or nearly impossible to create an exact
model of text which fits all virtually possible observations [112]. Hence, we restrict our
method to a low level model by incorporating stroke properties. In contrast to the first
order MRFs used for the patch based topology in the studies above, we resort to higher-
order models to define spatial relationships of strokes. Higher-order models have been
avoided for a long time due to their computational complexities [49]. However, [50] and
[83] present computationally efficient methods for higher-order MRF models, which will
be explained in the following section.

2.2 Higher-Order Markov Random Fields

MRFs provide a probability theory for analyzing spatial or contextual dependencies [67].
The practical use of MRF models is based on the Hammersly and Clifford theorem stating
the equivalence of MRFs and Gibbs distribution [8]. The MRF-Gibbs equivalence theorem
points out that the joint distribution of an MRF is a Gibbs distribution, the latter taking
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Table 2.1: Summary of FBS in DIA, category 1-3 from [28].

Category Approach with references to
some important works

Pros and cons

Global threshold-
ing (panchromatic
images)

Assume histogram is bimodal
[80]

Simple to implement and often
effective, unable to find a global
threshold in nonuniform illu-
mination, noise, and degraded
documents

Local threshold-
ing (panchromatic
images)

Compute threshold for each
pixel or regions based on lo-
cal statistics [91], background
subtraction [58]

Several methods are compu-
tationally expensive, combina-
tion of several methods, re-
quires individual parameters

Color clustering
(color images)

Color clustering like k-means
is involved [66], color segmen-
tation based on L*a*b* color
space [40]

Mostly designed for characters
with similar colors, breaks in
degraded documents

Spatial and spectral,
composite (color im-
ages)

E.g. clustering and Gabor
filter [102], combination of
edge information and cluster-
ing [107], multi-level classifi-
cation [75]

Computationally expensive,
treats color and spatial com-
ponents successively, mostly
designed for characters with
similar colors, combination
of several (pre-processing)
methods, requires individual
parameters

Probabilistic ap-
proaches (particu-
larly for panchro-
matic images)

MRF [15, 112], ICA [104],
restoring and recognizing dig-
its [38]

Training and high quality data
required, dependency of script,
size, etc., reconstruction of de-
graded characters possible
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a simple form providing mathematically tractable means for statistical image analysis [67,
32]. Applications in computer vision like color image segmentation [46], stereo matching
[101, 25], image inpainting [88], or image denoising [57] can be elegantly expressed by
means of MRF models. The effectiveness of MRFs in DIA was already mentioned in the
previous section.

MRFs are modeled within a probabilistic graphical framework, where the random
variables are represented as nodes. Links between the nodes express probabilistic re-
lationships. The sites are related to one another via a neighborhood system to model
context dependent entities. The probability of one site in the MRF model depends on
its neighbors. However, MRF priors typically exploit only small neighborhood systems,
typically a standard 4-connected neighborhood systems, which limits the expressiveness
of the models and only crudely captures the statistics of natural images [88]. Due to its
often extreme computational demands, traditional inference algorithms are computation-
ally expensive for higher-order cliques and their usage has long been avoided [51]. An
overview of energy minimization methods for pairwise MRF is given by [100].

The most common methods for probabilistic inference are BP and Graph Cut (GC).
BP is a message passing algorithm for energy minimization in graphical models. Originally
designed for graphs without loops [81], [110] proves the correctness of local probability
propagation in graphical models with loops. [25] propose an efficient version of the stan-
dard BP in pairwise models to compute the message update in linear time.

A rather simple approach to utilize higher-order potentials in BP is proposed for
the application of scene text detection by [116]. The message update rule is expressed
by the combination of the messages from two neighboring nodes to one message. The
clique potential function involves only three nodes and is based on the minimum angle or
maximum color distance of the observations.

The idea of formulating image priors over a large neighborhood as higher-order MRF
was also proposed by [87, 88]. The main idea of their study is a framework for learning
expressive image priors, in the size of 2 × 2 or 5 × 5, to capture the statistics of natural
scenes. The resulting Field of Experts (FoE) models the prior probability of an image.
The model is trained on a standard database of natural images and is applied to image
inpainting and image denoising.

[57] propose approximation methods for BP to make inference possible in higher-order
MRFs. The method is based on models using the FoE [88] framework. For higher order
MRFs (2× 2) they use an adaptive state space to handle the increased complexity.

[115] propose the Generalized Belief Propagation (GBP) algorithm, which considers
the message passing mechanism between clusters of nodes. The problem of how to form
the appropriate clusters remains. Still first-order constraints are modeled between the
clusters and sometimes it is more desirable to retain the original graph structure [43]. An
extension of this study is presented by [78]. They avert the regular pixel lattice of image
graphs, which results in a highly connected graph with clusters and fewer nodes. Their
hypergrah has clusters as nodes and hyperedges exist between the generated hypergraph.
Since standard BP is not guaranteed to converge in this graph, they propose (BP)2, which
is an extension of GBP, in order to propagate messages between clusters. [43] generalize
the BP algorithm to consider second-order constraints for object localization. Instead of
clustering graph nodes, they extend the message variables to consider relations between
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three nodes by means of hyperedges.
[2] explore a link between pairwise and higher-order models. They show how a higher-

order potential energy can be efficiently transformed into polynomial form in order to
subsequently reduce the higher-order polynomial to a specific quadratic function. [54]
introduce a higher-order MRF optimization framework based on a master-slave message
passing algorithm. It relies on the idea that higher-order MRFs can be decomposed into
MRF subproblems.

Finally, [83] propose a technique to compute BP messages in time linear with respect
to clique size. The graphical model is based on a factor graph, in which each potential
function is represented by a factor node, see also [84]. However, a 5 × 5 clique model,
for instance, has maximal cliques with 25 variables. Every factor node in a factor graph
representation of an MRF, on which the message passing scheme is based, subsumes 25
pixels. Using major label sets makes it intractable to store the beliefs and messages [88].

Traditional inference algorithms based on BP are computationally expensive for higher-
order cliques [50]. [50] provide a characterization of energy functions defined by cliques of
size three (P 3) or more (P n). They prove that the GC algorithms, α-expansion and αβ-
swap, for this class of higher-order functions can be computed in polynomial time. They
introduce a new family of higher order potential functions, referred to as the P n Potts
model, and show that the optimal α-expansion and αβ-swap moves can be computed by
solving an s/t mincut problem.

2.3 Innovative Aspects

The content of this thesis is the development of a robust method for FBS in multispectral
images of degraded documents. The approach is based on three main contributions.

FBS is applied particularly on panchromatic images and either based on spectral or
spatial features. For instance, clustering algorithms work only in the spectral feature
space while our segmentation model considers the spatial relationship of pixels in the
image domain additionally. Only a few benefit from the combination, but utilize the
combination one after another, e.g. [107, 102]. We are going to treat the combination of
spatial and spectral features simultaneously within the framework of an MRF.

In order to incorporate spatial features, we introduce the stroke model of fixed shape
which models the spatial correlation of strokes and respectively characters. This stroke
model is incorporated within a higher-order MRF. The main advantage of the proposed
method is that a preceding training and the requirement of high quality training data
is avoided. This allows a general applicability, independent of font, style, or size of
characters. The method is especially profitable when historical manuscripts are applied,
where the paper or text quality may even vary within one page.

However, higher-order models have been avoided for a long time due to their com-
putational complexities. Indeed, GC based approaches, like α-expansion and αβ-swap,
show high performance for inference in higher-order models [51], but the optimization
technique seeks for a global optimum. We propose using a local optimization method for
FBS in DIA and employ BP which handles arbitrary potential functions and provides a
strong local minimum. In order to prepare the standard BP algorithm for higher-order

15



models, we propose the BPn algorithm to incorporate the higher-order potentials.
The results show that the combination of spatial and spectral features provides a robust

binarization method and that the assumption of local inference for energy minimization
is more appropriate for the incorporation of the stroke model than a global method.

2.4 Summary

This chapter provided an overview of state of the art methods for FBS in DIA. We divided
the approaches into five categories, including global thresholding, adaptive thresholding,
color clustering, approaches based on spatial and/or spectral features, and probabilistic
approaches. Particular attention was given on probabilistic approaches using MRFs.
Since we incorporate higher-order models, efficient methods for statistical inference in
higher-order models were presented in the second part of this chapter.
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Chapter 3

Multispectral Imaging

Multi- or hyperspectral imaging has high potentials for the non-destructive analysis of
objects of artistic and historic value like ancient manuscripts, panel paintings, or archae-
ological objects [39]. Originally utilized in remote sensing applications, e.g. for earth
observation and region classification [86], researchers started at the beginning of this mil-
lennium to apply MSI for the examination of historical documents [24, 35, 33, 39, 60, 95, 5].
The aim of the multispectral digitization process includes, along with the detailed exam-
ination, preservation to ensure a long term availability of the documents, information
retrieval, and the potential for further computer based investigations. The main advan-
tage of analyzing multiple and different spectral ranges, including the UV and IR light,
is the ability to examine text regions which are not visible to the human eye [72].

Applied on ancient manuscripts, [24] were the first to capture and enhance the erased
underscript of the Archimedes palimpsest using MSI. The Archimedes palimpsest is a
manuscript which was disbound, erased, and finally rewritten with the text of a Chris-
tian prayer book [24]. By means of MSI, the erased Archimedes text was uncovered
under long wave UV illumination. The revisualization of the erased text is possible due
to the fluorescence of the parchment when illuminated with this wavelength. Using a
constrained least square algorithm, the underwritten text was separated from the super-
scribed text and highlighted [24]. MSI was also applied to improve the legibility of the
Codex Sinaiticus and the Herculaneum papyri [35], or, for instance, for the analysis of
Caucasian palimpsests written in the V. to VIII. century [33]. It became apparent that
the application of spectral images can improve the readability, especially of damaged
manuscripts better than conventional color imaging procedures [85].

This chapter gives background information on MSI and describes the acquisition setup
used for the digitization of the Missale Sinaiticum. Finally, we introduce post-processing
techniques to improve the readability of decayed manuscripts.

3.1 Multispectral Images

A multispectral image is the same image of one scene in multiple spectral ranges. Applied
in the spectral range from UV, via VISible light (VIS) up to the Near InfraRed (NIR)
range, it combines conventional imaging and spectrometry to acquire both, spatial and

17



spectral information from an object. Each spectral image is a panchromatic image cover-
ing a specific spectral range. Figure 3.4 illustrates the schema of a multispectral image.

Provided an appropriate illumination and an adequate imaging system, multispectral
images can be obtained in different manners:

Individual illumination An MSI device, operating as a reflectance spectrometer, records
a sequence of digital images of an object illuminated with monochromatic light. This
monochromatic light may irradiate from a tunable light source ranging from UV to
NIR [95]. Another possibility to obtain images in different spectral ranges is the use
of different Light Emitting Diodes (LEDs) as a narrow band light source as applied
on investigations on the Archimedes palimpsest [24].

Optical filters The traditional way of obtaining multispectral images is the use of optical
filters to capture specified wavelengths [39]. In order to facilitate the acquisition,
one can use liquid crystal tunable filters to achieve images in very narrow (10nm)
wavelength bands spanning the visible spectrum from roughly 400nm to 700nm.
Another possibility is to use optical filters mounted in front of the camera. Using a
filter wheel improves the change of filters [61].

3.1.1 Illumination and Electromagnetic Radiation

Light is electromagnetic radiation of any wavelength. Electromagnetic radiation is a
self-propagating wave in space with electric and magnetic components oscillating perpen-
dicularly to each other and to the direction of propagation. A photon is the elementary
particle responsible for electromagnetic phenomena and the carrier of electromagnetic
radiation of all wavelengths, including gamma rays, X-rays, UV light, or VIS light.

Electromagnetic radiation is characterized by its wavelength λ, the frequency f , and
the propagation speed v with v = fλ. The speed of light is fixed by definition and
constitutes c = 299.792, 459km/s in vacuum [92]. The energy E of a photon can be
calculated by Planck’s equation

E = hf = hc/λ, (3.1)

where h constitutes a physical constant called Planck’s constant (h = 6.626∗10�34Joule�
seconds). As Equation 3.1 shows, the energy content of electromagnetic radiation is
determined by its frequency and wavelength. The electromagnetic spectrum encompasses
all possible wavelengths of electromagnetic radiation and extends from electric power at
the long-wavelength end, to gamma radiation at the short-wavelength end, see Figure 3.1.
The human eye is sensitive to electromagnetic radiation between approximately 380nm
(corresponding to blue) and 780nm (corresponding to red). The range of interest for the
investigation of objects of artistic and historic value ranges from long wave UV ( 350nm)
to the NIR range ( 2500nm). Short wave UV might destroy objects [72].

3.1.2 Multispectral Analysis of Ancient Manuscripts

MSI applied on manuscripts allows, for instance, the visualization of underwritten text in
palimpsests or legibility enhancement of decayed manuscripts [39]. Important acquisition
methods are arranged by the following configurations:
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Figure 3.1: The electromagnetic Spectrum, from [4].

UV reflectography visualizes UV radiation reflected from the object. These reflections
are not visible to the human eye and require cameras and sensors to be UV sensitive.
In order to focus on the long wave UV light, the visible range of light has to be
excluded. This is achieved by applying Short-Pass (S-P) filters and exclusively using
UV light sources. UV reflectography can provide clues about material composition
such as pigments or to earlier retouchings [72].

UV fluorescence visualizes UV fluorescence radiation radiated from an object. Scholars
use UV illumination to read palimpsests, because the organic material in parchment
fluoresces under UV illumination [23]. Fluorescence is a kind of luminescence (emis-
sion of light) by which a substance (e.g. a pigment) emits light of visible color when
illuminated by e.g. UV light. UV fluorescence can be used to enhance the read-
ability of palimpsest texts, since old paint or varnish layers emit more fluorescence
light compared to newly applied materials (repainting or retouching area) [39]. The
emitted radiation after excitation by a UV radiation source has either a shorter, a
longer or equal wavelength compared to the incident wavelength [72].

A UV fluorescence facility consists of a UV illumination (e.g λ = 375nm), a barrier
emission filter which cuts off wavelengths overlapping UV radiation, and a conven-
tional camera (no UV sensitive sensor required).

IR reflectography requires a sensor which is sensitive to NIR radiation (0.8 � 2µm) and
illumination in the NIR range. The method can be applied to the investigation of
underdrawings1 of panel paintings. IR reflectography allows to look through the
covering paint layers of a painting and consequently a visualization of the under-
drawing, since NIR radiation incident on carbon-based drawing materials is strongly

1Underdrawings are the preliminary drawings on a panel that has been prepared for painting and
occur frequently in XV. and XVI. century European paintings.
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absorbed [39].

3.2 Missale Sinaiticum (Sin. Slav. 5/N): Acquisi-

tion Setup

Our objects of investigation consist of two parchment codices of the Old Church Slavonic
canon dating from the 11th century, the so-called Missale Sinaiticum (Sin. slav. 5/N)2

and the new part of the Euchologium Sinaiticum (Sin. slav. 1/N), both in the Cyril-
lic and Glagolitic3 script. Both fragments belong to the complex of new findings from
St. Catherine’s Monastery on Mt. Sinai in 1975. They show extensive damages like faded
ink, blurring of the ink, staining due to mold or humidity, degradations of the parchment
including chipping and fragmentation, or contortion of pages. The data corpus including
cultural history and philological aspects is described in [74].

The multispectral digitization of the manuscripts was executed in situ in September
2007. The acquisition setup consists of a digital single-lens reflex camera and a digital
high-resolution scientific camera. Color images and UV fluorescence images are captured
with a Nikon D2Xs digital camera providing a resolution of 4288 × 2848 pixels. These
images are particularly intended for visualization purposes and facsimile prints. MSI is
performed with a Hamamatsu C9300-124 camera with a spectral sensitivity from UV to
NIR (330nm � 1000nm) and a resolution of 4000 × 2672 pixels. A filter wheel mounted
in front of the camera selects different spectral ranges. Figure 3.2 shows the setup of
the acquisition system. For the spectral ranges selected, we use four Band-Pass (B-P)
filters with peaks of 450nm (blue), 550nm (green), 650nm (red), and 780nm (NIR),
two Long-Pass (L-P) filters with a cut-off frequency of 400nm (UV fluorescence) and
800nm (IR reflectography), and a short-pass filter with a cut-off frequency of 400nm (UV
reflectography). Using different illumination (UV and VIS/NIR), we obtain nine different
spectral images with a radiometric resolution of 12 bit and a spatial resolution of 565 dpi.
The filters are summarized in Table 3.1 and their spectral transmittance is visualized in
Figure 3.3 on the left hand side. Figure 3.4 illustrates the schema of the multispectral
images and denotes the spectral components by its notation. It shows a detail from folio
41 recto from the Missale Sinaiticum in different spectra ranging from UV to NIR.

Since each folio is captured with both cameras, a shift of the page between the cameras
is necessary. Due to the shift and the use of optical filters an image registration process
is necessary to align one image to the other [13]. The registration process is summarized
in Section 3.3.1.

Figure 3.5 provides an example to illustrate the condition of the manuscripts. The
figure shows the RGB color image from folio 29 recto from the Missale Sinaiticum. It
can be seen that especially the upper part of the text is highly degraded. Staining due to
e.g. mold or humidity can be observed in the lower right part of the page. The folio shows
degradations of the parchment itself especially on the right hand side of the page. The
corresponding RGB color space is given below in Figure 3.6. It can be seen that there

2A missal is a liturgical book.
3This is the oldest known Slavic script [73].
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Figure 3.2: This figure illustrates the acquisition setup. The multispectral images are
obtained with a Hamamatsu C9300-124 high resolution camera. A filter wheel in front of
the lens including seven different filters captures nine different spectral images which are
listed in Table 3.1.

Table 3.1: Description of the spectral images containing filter, type of illumination, and
image. A filter type S-P denotes a short-pass, L-P is a long-pass, and B-P is a band-pass
filter. Using UV light or illumination ranging from VIS to NIR, we obtain nine different
spectral images.

No. Filter type Illumination Image
1 S-P 400 UV UV reflectography
2 L-P 400 UV UV fluorescence
3 L-P 400 VIS-NIR VIS, reduction of UV reflections
4 none VIS-NIR image without filter
5 B-P 450 VIS-NIR blue
6 B-P 550 VIS-NIR green
7 B-P 650 VIS-NIR red
8 B-P 780 VIS-NIR red, NIR
9 L-P 800 VIS-NIR IR relectography

is no typical cluster for the background region nor for the text. This effect complicates
simple thresholding or clustering in order to separate text from background.

Results and performance of MSI are illustrated on line 9 from folio 29 recto from the
Missale Sinaiticum, see Figure 3.7. Note that some parts of the fragments are readable,
but most of the text is hard to detect, or almost invisible, since the ink on the parch-
ment has vanished (cf. the conventional RGB image in the first row). It can be clearly
seen that wavelengths shorter than 650nm are highly absorbed by the ink, including the
vanished parts which appear darker than in the conventional color image. Notice that
the right outermost characters become transparent as the wavelength increases. This
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Figure 3.3: Illustration of the spectral ranges of the camera and the filters. The camera
has a spectral sensitivity between 330 and 1000nm. Seven different filters in front of the
lens capture specific spectral ranges: a short-pass filter for UV reflectography images,
two long-pass filter for UV fluorescence and IR reflectography images, and four band-pass
filters capture narrow band images in the visible range of light. Table 3.1 lists the images
in more detail. Illustration from [48].

effect is generated from the parchment itself. The organic material in parchment fluo-
resces under UV illumination, i.e. the parchment absorbs the short UV light and re-emits
longer-wavelengths, which are already in the visible region of the spectrum. The faded
original text attenuates both, the incoming UV light and the exiting visible light. This
double-pass attenuation enhances the visibility of the original text in images taken in blue
light under UV illumination [23]. The text or ink vanishes in the spectral images of the
IR range. A schematic illustration of the spectral signature of a particular ink and back-
ground pixel (blank parchment) can be seen in Figure 3.8. It shows the approximate plot
of the spectral reflectance by means of gray level distribution within one spectral band.
The blue line depicts the spectral reflectance of parchment and the green one corresponds
to ink. The disparity between the lines is clearly visible. In the case of vanishing ink, this
distinction is less sensitive and exclusively noticeable in the UV ranges.

Generally, the spectral behavior of various inks depends on the illumination and the
multispectral bands [72]. In the case of the Slavonic manuscripts an X-ray fluorescence
(XRF) analysis denoted only iron gall inks of various chemical compositions [74].

3.3 Post-Processing

Due to the use of optical filters the images must be registered on top of each other
before further processing [13]. While measurement of the radiation in various wavelengths
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Figure 3.4: A multispectral image is the same image of one scene in multiple spectral
ranges. The image shows a detail from folio 41 recto from the Missale Sinaiticum in
different spectral ranges. Each spectral range reveals different properties of the source
document. The images illuminated with UV light appear, due to its low illuminance
very dark. However, due to fluorescence of the organic material in parchment under UV
illumination, vanished parts of ink reveal additional information.

provides more information about the material in a scene, the resulting imagery does not
lend itself to simple visual assessment [93]. Sophisticated processing of the imagery is
required to extract all of the relevant information contained in the multitude of spectral
bands.

In this section we summarize the process of image registration and propose an alterna-
tive to PCA to decorrelate the multispectral data [60]. The combination of several spectral
bands improves considerably the readability of the Missale Sinaiticum when compared to
conventional RGB images [74].

3.3.1 Image Registration

Image registration is the process of overlaying two or more images of the same scene taken
at different times, from different viewpoints, and/or by different sensors [117]. Since the
manuscript pages are repositioned between the two cameras and the use of filters in
different wavelengths [13], a registration process is necessary in order to combine the
spectral images and to remove distortions.

The registration process is also necessary for further image processing methods which
utilize the information gained by the different spectral bands. Therefore, the images from
the Nikon camera and the images from the Hamamatsu camera (they are originally rotated
by 90◦) are coarsely aligned on each other using rotationally invariant features [69] and
an affine transformation. Afterwards, the similarity of the different images is computed
by means of the normalized cross correlation. Finally, the images are accurately mapped
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Figure 3.5: RGB color image from folio 29 recto from the Missale Sinaiticum.

to each other by the local weighted mean transformation. The registration process is
explained in more detail in [21].

3.3.2 Image Enhancement

[24] use the PCA to produce pseudo-colored images from multispectral images of historic
manuscripts. In this study, we propose an alternative approach by using a combina-
tion of spatial and spectral information of the multivariate image data to enhance the
readability of the degraded text. The basis for this investigation is Multivariate Spatial
Correlation (MSC) proposed by [109]. [108] applied this method to remotely sensed data
and showed the effectiveness of the method in contrast to PCA. Consequently, we use
MSC to enhance the readability of the varying appearance of text [60]. The benefit of this
method is the possibility to consider especially text regions in document images. This
spatial information is based on weighting relevant text regions. Therefore, we calculate
the ruling scheme which forms the required weight factor for the MSC.
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Figure 3.6: Corresponding RGB color space from folio 29 recto in Figure 3.5. It can be
seen that there are no clusters for text or background which makes simple thresholding
or clustering difficult. Therefore, we propose to combine spatial and spectral information
for a general enhancement of the readability (Section 3.3.2) and for FBS (Chapter 6).

Multivariate Spatial Correlation

Multispectral image data is often highly correlated, i.e. they are visually similar [86]. The
correlation arises through sensor band overlap and material spectral correlation. PCA
removes this redundancy:

x′ = At(x� µ), (3.2)

where A denotes the transformation matrix, x denotes the multivariate data and µ is
the d-dimensional mean vector [22]. The transpose matrix of A is denoted by At . The
columns of A consist of the k most valuable eigenvectors which are computed from the
d× d covariance matrix.

MSC is a method for quantifying spatial autocorrelation in multi band data [108]. [109]
extended a common univariate method of spatial correlation analysis for multivariate
data. MSC was primarily used for geographical analysis, but [108] uses the method
for the analysis of remotely sensed data and shows the robustness in the presence of
noise. Compared to the results of synthetic data, the MSC matrix explained 99% of the
MSC, whereas the first three components of PCA explained only 75% [108]. The spatial
correlation methodology can be regarded of as a part of a generalized principal component
analysis, for details see the Appendix in [109]. The MSC matrix of a d band n×m image
is defined as follows:

M = ZWZ ′, (3.3)

where Z is a d × nm matrix containing the multivariate image data, W is a nm × nm
weight matrix and Z ′ denotes the transpose of Z. The nm × nm weight matrix W is in
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(a) RGB image.

(b) Single band image S-P 400 - UV.

(c) Single band image L-P 400 - UV.

(d) Single band image L-P 400.

(e) Single band image without any filter.

(f) Single band image B-P 450.

(g) Single band image B-P 550.

(h) Single band image B-P 650.

(i) Single band image B-P 780.

(j) Single band image L-P 800.

Figure 3.7: Line 9 from folio 29 recto from the Missale Sinaiticum in nine different spectral
ranges. The contrast of each spectral image is increased with the MATLAB command
imadjust. In accordance to Figure 3.8, the contrast of the images in the red and NIR
range is low.
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Figure 3.8: Sample for the spectral reflectance of ink and parchment. The figure shows
that ink absorbs more incident light than parchment. In the NIR range of the spectrum
(780�100nm) the contrast between ink and parchment is very low. When no illumination
is mentioned beside the filter name, VIS-NIR light is applied.

the simplest case an adjacency matrix with wij = 1 if i and j are adjacent (e.g. dij < c
where c denotes a critical distance), otherwise wij = 0. The matrix is standardized so
that its sum is equal to 1.

We utilize the positions of the text lines in order to generate the weight matrix for
the calculation of the MSC matrix. The algorithm developed, has a pre-processing stage,
which comprises a skew estimation, adaptive image binarization, and noise removal on a
single band of the spectral images. After these pre-processing steps the text components
(words, characters, etc.) are segmented and finally grouped to extract the text lines.
The created binary mask highlights text regions and serves as the weight matrix for the
calculation of the MSC. A following eigenvalue decomposition of the MSC matrix [108]
and the creation of the transformation matrix similar to PCA enhances the readability.
Figure 3.9 shows the mask from a detail from folio 29 recto from the Missale Sinaiticum
in Figure 3.5. The left hand side shows the B-P 450 image detail superposed to the binary
mask and the right hand side shows the binary mask itself.

The spatial correlation matrix M , which is in quadratic form, can again be decomposed
into orthogonal components using eigenvector analysis [109]:

x′′ = Bt(x� µ), (3.4)

where the columns of B consist of the eigenvectors which are computed from the d × d
MSC matrix M . The components reflect the distribution of variations, comparable to
PCA. In this case, the result is spatially weighted throughout the multivariate field.
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Figure 3.9: Mask image for a detail from folio 29 recto from the Missale Sinaiticum. The
mask images serves as weighting matrix for the MSC.

3.3.3 Image Enhancement Results

We demonstrate the method on folio 29 recto from the Missale Sinaiticum and compare
the results to PCA. Since the weight matrix achieves a size of nm× nm where n and m
depict the original image size, we use only fractions of the image. Figure 3.10 shows the
distribution of the eigenvalues from MSC compared to PCA. It can be seen that the first
eigenvalue from the MSC matrix includes more than 99%, while the eigenvalues of the
PCA extend only 91.3% in the first and 4.8 % in the second component.
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Figure 3.10: Distribution of the Eigenvalues after performing PCA and MSC. It can
be seen that the first eigenvalue from the MSC matrix includes already more than 99%,
while the eigenvalue of the PCA extend only 91.3% in the first and 4.8 % in the second
component.

Resulting images from PCA and MSC can be seen in Figure 3.11 and Figure 3.12. The
images are shown without any post-processing algorithms. Figure 3.11 shows the results
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obtained with PCA. Here, the first two components contain visible characters, which
in turn corresponds to the distribution of the eigenvalues from the covariance matrix.
The MSC results can be seen in Figure 3.12. Regarding the second band obtained from
the MSC transformation, the visibility of the characters is clearly enhanced. The third
and fourth band of the MSC contain no useful information, as the distribution of the
eigenvalues shows.

In a final evaluation, we demonstrate the advantage of the multispectral images com-
pared to conventiopnal RGB images or the original manuscript. Therefore, we compared
the number of characters transcribed from the original or RGB image of the whole corpus
of the Missale Sinaiticum with the number of characters detected in the enhanced multi-
spectral images. In the evaluation, we counted the number of characters transcribed from
the RGB image, which denotes 24.448 characters. The number of additional characters
detected in the enhanced images constitutes 12.459, which represents a rise of approx-
imately 51%. The evaluation was executed in a conventional text editing program by
collecting first the characters in black font referring to the original readable text, and af-
terwards the characters in red font which refer to the text transcribed from the enhanced
images. Figure 3.13 demonstrates an example of a transcribed page.

Figure 3.11: PCA results. The first row shows the first and second component and the
second row displays the third and fourth component.

3.3.4 Discussion

MSI supports the investigation of ancient manuscripts where the text is hardly visible
in conventional RGB images or for the human eye. A drawback of the method is the
assemblage of highly correlated image data and the need for registration. The PCA is
a method to reduce the spectral image data and to produce pseudo-colored images. In
this section, we presented an alternative approach for the enhancement of the readability
in ancient documents. The MSC matrix includes spatial and spectral image data to
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Figure 3.12: Example for MSC results. In the images given, the second component
highlights the vanished characters best. Compared to PCA, especially the characters in

the first row, e.g. , , and , are easier to detect.

Figure 3.13: Transcription results of a detail from folio 16 verso from the Missale
Sinaiticum. The left hand side gives the RGB image from the Nikon camera and the
right hand side shows a transcription from philologists specialized in the objects given.
Black characters represent information gathered from the original manuscript (cf. also the
RGB image on the left hand side) and red characters are detected in the enhanced image
with the proposed algorithm for readability enhancement. An evaluation of the transcrip-
tion from the original data set and the enhanced images results in a rise of identifiable
characters by approximately 51%.

remove spectral correlation. The benefit of the MSC based approach is that especially
the text regions are considered for the enhancement. The experiments demonstrated the
performance of combining spatial and spectral information for contrast enhancement.
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3.4 Summary

The benefit of MSI for the investigation of ancient manuscripts was presented in this chap-
ter. MSI has a high potential for the non-destructive analysis of old and degraded manu-
scripts. Multispectral analytical techniques benefit from a larger number of wavebands.
The main advantage is additional information when using UV and IR bands additionally.
In this chapter we explained multispectral images with background information on illu-
mination and radiation, and we have shown three configurations for analyzing objects of
artistic and historic value : UV reflectography, UV fluorescence, and IR reflectography.
Afterwards, we explained the digitization of the Missale Sinaiticum which constitutes the
main data set for our investigations and finally, we summarized the image registration
process and proposed an approach for the enhancement of the readability in degraded
document images.
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Chapter 4

Probabilistic Graphical Models

MRFs and CRFs are probabilistic graphical models providing a probability theory for
analyzing spatial and contextual dependencies [67]. Probabilistic graphical models allow
the combination of graph theory and probability theory where nodes or vertices in a given
graph represent random variables, and the links or edges express probabilistic relationships
between these variables [44]. They provide a simple way to visualize the structure of a
probabilistic model and can be used to design new models [9].

As already mentioned, our main motivation for using MRF and CRF for FBS, is the
potential to simultaneously model spatial characteristics of strokes and contextual con-
straints by means of their spectral signature. MRF models usually used for object seg-
mentation are characterized by energy functions defined on unary and pairwise potentials
[49]. Unary potentials cover, for instance, color or texture features [46] and the pairwise
potentials consider spatial dependencies typically in a regular 4-connected neighborhood.
In addition, we incorporate higher-order potentials, for instance, regions of 5 × 5 pixels,
to include spatial characteristics of strokes. This higher-order model allows major spa-
tial formulations compared to traditional 4-connected graphs to enforce label consistency
within local regions [50].

In standard MRFs the observations are assumed to be conditionally independent given
the labels. However, this assumption limits its modeling ability since spatial relations
depend only on the labels of neighboring pixels but not on their observation [114]. A
different non-generative approach is to model the conditional probability of labels from
given images within a CRF [56].

This chapter gives basic knowledge in graphical models and demonstrates the func-
tionality of MRFs and CRFs, respectively. The focus is based on higher-order models.
Inference methods for optimization are presented in Chapter 5.

4.1 Fundamentals

Probabilistic graphical models are graphs in which nodes represent random variables
and links between the nodes probabilistic relationships. A graphical model is a graph
G = (V , E) where V is a set of nodes in one-to-one correspondence with a set of random
variables X and E is a set of edges or links connecting the nodes. The edges e ∈ E
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of the graph can either be directed or undirected. An example for directed graphical
models are Bayesian networks which are able to represent induced dependencies. Induced
dependencies cannot be represented in undirected models, which in return are able to
represent cyclic dependencies. MRFs are representatives of undirected models. Directed
and undirected models allow functions to be defined on a set of several variables to be
expressed as a product of factors over variables. Factor graphs make this decomposition
explicit by introducing additional nodes for the factors themselves in addition to the
nodes representing the variables [9]. Such sets of variables, or in a broader sense factors,
allow the formulation of local relations which is the concept of MRFs. Figure 4.1 shows
a directed, an undirected, and a factor graph.

xc

xb

xa

xc

xb

xa

xc

xb

xa

f

(a) (b) (c)

Figure 4.1: Directed (a), undirected (b) and a factor graph (c) with an additional node
f .

4.2 Markov Random Fields

Let X be a random field defined over a finite rectangular lattice V = {1, 2, . . . , N}. Each
random variable Xi in the random field X is associated with a lattice point i ∈ V . A
labeling or configuration x assigns a label lk from the label set L to each of the random
variables Xi, i.e. x takes values from the set L = LN . The probability of any labeling x,
denoted as Pr(X = x), will be referred to as Pr(x).

What we want to infer in FBS of digital document images is a binarized version of the
input image y, where the text consisting of characters and initials is separated from the
background. For a given image data y = {y1, . . . , yN}, we seek to estimate the underlying
scene by estimating a labeling x ∈ L which separates the character or text pixels from
the background. The label set is given as L = {lt, lb}, where lt depicts text and lb is the
label for background.

A widely accepted approach is to cast this labeling problem within a Bayesian frame-
work [46]:

Pr(x|y) =
Pr(y|x) Pr(x)

Pr(y)
∝ Pr(y|x) Pr(x), (4.1)

where Pr(x|y) is the posterior probability of a labeling x given the observations y, Pr(y|x)
is the likelihood function of x, Pr(x) denotes the prior probability of a labeling, and Pr(y)
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is the evidence given by:

Pr(y) =
∑
i∈N

Pr(x|yi) Pr(yi). (4.2)

Given an image y we want to estimate the labeling x with the highest probability, i.e. the
labeling which approximates the true labeling x? best. The labeling x̂ which maximizes
the posterior probability Pr(x|y) can be found via the Maximum A Posterior (MAP)
estimate:

x̂ = arg max
x∈L

Pr(y|x) Pr(x). (4.3)

Smoothness assumes that physical properties in a neighborhood of space present some
coherence and generally do not change abruptly [67]. For instance, in the domain of
document images, neighboring character or background pixels have similar properties
like intensity or color. Thus, in the presence of spatial context, the labels are mutually
dependent. MRFs are a probabilistic model which capture such spatial constraints by
defining a neighborhood system N in the random field X.

Definition 1 A random Field X is said to be an MRF on the sites i ∈ V with re-
spect to a neighborhood system N , if and only if the two following conditions are satisfied:

Pr(xi) > 0,∀i ∈ V (positivity), (4.4)

Pr(xi | xV\{i}) = Pr(xi | xNi
),∀i ∈ V (Markovianity), (4.5)

where xV\{i} denotes the set of labels at the sites V without {i} and xNi
is the set of labels

neighboring i.

Condition 4.5 implies that the label of a pixel i depends on its neighbors Ni. The
neighborhood system N in the random field X is defined as

N = {Ni|∀i ∈ V}, (4.6)

where Ni denotes the set of all neighbors of the variable Xi. For a regular lattice V , the
neighbor set Ni of i is defined as the set of nearby sites within a radius r:

Ni = {i′ ∈ V| [dist(xi, xi′)]2 ≤ r, i′ 6= i}, (4.7)

where dist(xi, xi′) denotes the Euclidean distance between two pixels xi and xi′ [67]. The
neighborhood of a first order MRF involves the four directly connected pixels in both the
horizontal and vertical direction (standard 4-connected neighborhood system), a second
order MRF involves its eight neighbors, and so on. Figure 4.2 illustrates the neighborhood
system or the order of an MRF. The numbers n = 1 . . . 5 indicate the neighboring sites
of a n-th order neighborhood system.

A clique c is defined as a set of random variables xc which are conditionally dependent
on each other. A clique can consist of a single site, a pair of neighboring sites, a triple
and so on:

xc = {xi|i ∈ c}. (4.8)
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Figure 4.2: Neighborhood system and order of MRFs.

4.2.1 Prior Model Pr(x)

Having defined a neighborhood system and cliques, we can pass over to the realization of
MRFs and the Hammersley-Clifford theorem. This theorem proves that a random field
X is an MRF if the prior distribution Pr(x) follows a Gibbs distribution [32]:

Pr(x) =
1

Z
exp(� 1

T
U(x)), (4.9)

where Z =
∑
x∈X

exp (�U(x)) is a normalizing constant called the partition function, T is

a constant called temperature, which shall be assumed to be 1, and U(x) is the energy
function defined as:

U(x) =
∑
c∈C

ψc(xc). (4.10)

The energy function U(x) is the sum of clique potentials ψc(xc) over all possible cliques
C and ψc(xc) denotes the potential function or clique potential of clique c having the
label configuration xc. Since the distribution of Gibbs Random Fields is equivalent to
the distribution of MRF we can use Gibbs distribution to calculate the prior Pr(x) in the
MRF [67].

The prior Pr(x) in the MRF represents the fact that the segmentation is locally ho-
mogeneous. It can be interpreted as the probability of a labeling xi given the surrounding
neighbors of pixel i. For pairwise connections, the clique potentials ψc follow the Potts
model and favors similar configurations of neighboring pixels xi, xj ∈ Ni:

ψc = δ(xi, xj) =

{
1 if xi 6= xj
0 otherwise.

(4.11)

Incorporating Equation 4.11 into Equation 4.9, the full prior for pairwise MRFs is given
by:

Pr(x) =
1

Z
exp

(
�
∑
i,j∈C

δ(xi, xj)

)
. (4.12)
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4.2.2 Likelihood Pr(y|x)

The likelihood is based on the observation model which is assumed conditionally inde-
pendent even though the underlying observation model is not as simple [67]. This yields
to the following simplified form of the likelihood:

Pr(y|x) =
∏
i∈V

Pr(yi|xi). (4.13)

The observation model or image process y can be formalized as follows: Pr(y|x) follows a
normal distributionN (µ,Σ) [46]. Each class lt and lb (text and background) is represented
by its mean vector µl and covariance matrix Σl

N (µl,Σl) =
1√

(2π)d |Σl|
exp

(
�1

2
(y � µl) Σ�1l (y � µl)T

)
, (4.14)

where d is the dimension of the MSI. Thus, the likelihood is given by

Pr(y|x) =
∏
i∈V

Pr(yi|xi) =
∏
i∈V

1√
(2π)d |Σxi |

exp

(
�1

2
(yi � µxi)Σ�1xi (yi � µxi)T

)
. (4.15)

The entities are modeled by a Gaussian mixture model (GMM). Given a GMM, the
goal is to maximize the likelihood function with respect to the parameters µ and Σ. An
elegant and powerful method for finding maximum likelihood solutions for models with
latent variables is the Expectation Maximization (EM) algorithm [46, 22]. Applying EM
on the multispectral image data, we obtain µt and Σt for the characters as well as µb and
Σb for the background.

4.2.3 Posterior Energy Pr(x|y)

In the MAP estimation of an MRF, denoted as MAP-MRF framework, the optimal con-
figuration is the maximum of the posterior Pr(x|y) or equivalently of the joint probability
Pr(x,y). The posterior Pr(x|y) can be simplified by including the contribution of the
likelihood term via the singletons, i.e. the pixel sites i ∈ V . The singleton energies re-
flect the probabilistic modeling of labels without spatial context and doubleton potentials
express relationships between neighboring pixel labels [46]. Thus, after dropping the
normalization constant, we get

Pr(x|y) ∝ exp(�U(x,y)) = exp

(
�

(∑
i∈V

Vi(xi, yi) + β
∑
i,j∈C

δ(xi, xj)

))
, (4.16)

where β > 0 is a weighting parameter controlling the prior, i.e. the influence of the neigh-
borhood connectivity, and Vi(xi, yi) are the singleton potentials. The singleton potentials
of pixel sites i are obtained from Eq. 4.15 by

Vi(xi, yi) = ln(
√

(2π)d|Σxi|) +
1

2
(yi � µxi)Σ�1xi (yi � µxi)T . (4.17)
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Now, the energy function U(x,y) of the MRF model has the following form:

U(x,y) =
∑
i∈V

(
ln(
√

(2π)d|Σxi|) +
1

2
(yi � µxi)Σ�1xi (yi � µxi)T

)
+ β

∑
i,j∈C

δ(xi, xj). (4.18)

This energy function can be shortly expressed as

U(x,y) =
∑
i∈V

Vi(xi, yi) + β
∑
i,j∈C

δ(xi, xj). (4.19)

Maximizing the posterior probability is equivalent to minimizing the energy, see Eq. 4.3,
and the highest probability x̂ can be found via

x̂ = arg max
x∈L

Pr(x|y) = arg min
x∈L

U(x,y). (4.20)

[11] formulated the energy function E(x,y) as

E(x1, x2, . . . , xN , y1, y2, . . . , yN) =
∑
i

Di(xi, yi) +
∑
i,j

V (xi, xj), (4.21)

where the functions V (.) and D(.) are energy functions. Generally, Equation 4.19 and
Equation 4.21 can be expressed for pairwise connections in first order MRFs as:

E(x,y) =
∑
i∈V

ψi(xi, yi) +
∑
i,j∈E

ψij(xi, xj), (4.22)

where ψi(xi, yi) is the local evidence for node i and the negative log of the likelihood of a
label being assigned to pixel i. Generally, ψi denotes the unary compatibility function or
data cost using learned foreground and background models. This data energy measures
how well the label xi fits to pixel i given the observation yi. Data penalties ψi indicate
individual label preferences of pixels, based on observed intensities and a pre-specified
likelihood function [12]. We can write ψi(xi) as shorthand for ψi(xi, yi).

The pairwise terms or smoothness term ψij modeled via the prior, denotes pairwise
compatibility functions where (i, j) indicates neighboring nodes i and j. As already
mentioned, the prior represents the fact that the segmentation is locally homogeneous
and labels depend on each other within a local neighborhood.

The Markov network topology can be seen in Figure 4.3. Each scene xi is connected to
its neighbors and to its underlying observation yi. This topology provides the information
about the observed data at any position i, because xi has the only link to yi, and gives
information about nearby scenes neighbors.

However, the assumption for conditional independence of observations (cf. Equation
4.13) limits its modeling ability since spatial relations depend only on the labels of neigh-
boring pixels but not on the observation [114]. A very different non-generative approach
is to directly model the conditional probability of labels given images [42]. This is the
key idea of a CRF. A CRF relaxes the strong independence assumption and captures
contextual dependencies along observations [114].
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Figure 4.3: Markov network for vision problems. The nodes in the network describe obser-
vations y or hidden variables x. Each observation yi has a underlying scene explanation
xi. Links between the nodes express statistical dependencies. Blue connections indicate
unary costs ψi and black connections pairwise costs ψij.

4.3 Conditional Random Fields

CRFs are a discriminative probabilistic approach which models the posterior distribution
Pr(x|y) directly as an MRF without modeling the prior and the likelihood individually.
Thus, a CRF is a random field globally conditioned on the observations y. This approach
allows one to capture arbitrary dependencies between the observations without resorting
to any model approximations [42, 49].

Definition 2 Let G = (V , E) be a graph such that X = {Xi|i ∈ V}, i.e. X is indexed
by the vertices of G. Then (x,y) is a CRF in case, when conditioned on y, the random
variables Xi obey the Markov property with respect to the graph: Pr(xi | y, xV\{i}) =
Pr(xi | y, xNi

),∀i ∈ V [56].

In a CRF, the posterior distribution Pr(x|y) over the configurations is a Gibbs distri-
bution and can be written as:

Pr(x|y) =
1

Z
exp

(
�
∑
c∈C

ψc(xc)

)
, (4.23)

where ψc(xc) are potential functions defined over the variables xc = {xi, i ∈ c}, C is the
set of cliques c, and Z is a normalizing constant [49].

Taking the log of Equation 4.23 the corresponding Gibbs energy is defined as:

E(x,y) = � log Pr(x|y)� logZ =
∑
c∈C

ψc(xc), (4.24)

which can be expressed as first order model composed of unary and pairwise cliques:

E(x,y) =
∑
i∈V

ψi(xi) +
∑
i,j∈E

ψij(xi, xj). (4.25)
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In contrast to an MRF, the unary potential ψi of a CRF at site i is a function of
all the observation data y = {y1, . . . , yN} as well as that of the label xi and not only of
the observation yi. Furthermore, the pairwise potential ψij for each pair of sites i and
j is independent of the observation in an MRF. In a CRF ψij is also a function of all
observations {y1, y2, , . . . , yN} as well as that of the labels xi and xj.

4.4 Higher-Order Models

Due to computational complexity, the priors in MRFs typically exploit pairwise-connected
models in a standard 4-connected neighborhood system [49] and the resulting energy func-
tion is constructed of unary and pairwise cliques potentials, cf. Equation 4.25. However,
pairwise interactions are often insufficient to capture the full spatial statistics of an image
[84]. Higher-order clique potentials have the capability to model complex interactions
of random variables and thus could overcome this problem [50]. Even, a prior model of
natural images using 2 × 2 MRF cliques outperforms pairwise-connected models in the
study from [84].

However, the use of higher-order models has been quite limited due to the lack of
efficient algorithms for minimizing the resulting energy functions [49]. Recently, [50]
introduced move making algorithms for minimizing energy functions involving higher-
order cliques and presented a set of potential functions based on higher-order cliques to
enforce label consistency [49].

As already stated, the stroke characteristics are modeled by incorporating higher-
order cliques forming the proposed stroke model. In order to solve higher-order functions,
several studies incorporate additional and more extensive connections by means of highly
connected graphs, e.g. [99, 89]. Such energy functions on graphs with larger connectivity
are becoming increasingly important in vision [52]. They typically arise in stereo vision,
when two images need to be matched. Pixels (or features) in one image can potentially
match to many pixels (features) in the other image, which yields to a highly connected
graph structure [52]. However, the energy function of highly connected graphs is still
based on pairwise connections as defined in Equation 4.25.

In contrast, higher-order models consider several pixels within a clique c in order to
incorporate spatial probabilities in an extended range. Researchers recognized this fact
and have used higher-order models to improve the expressive power of MRF and CRF
frameworks [57, 88, 49].

The difference between pairwise, highly connected and higher order connections is
illustrated in Figure 4.4. The illustration on the left hand side shows a graph with
pairwise connections. Each random variable Xi is connected to its 4 directly horizontal
and vertical neighbors. In the highly connected graph, the random variables can be
connected to arbitrary sites in the graph, in the case of the illustrated graph, xi is linked
to its 8 neighbors. Higher-order cliques exploit segments of pixel sites or pixels within a
clique c to analyze mutual behavior.

In expansion to Equation 4.24 and Equation 4.25 the Gibbs energy for higher-order
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Figure 4.4: Graph construction for pairwise, highly connected, and higher-order models.
In the pairwise model on the left hand side, xi is connected to its 4 directly horizontal
and vertical neighbors. Potentials between the nodes are based on pairwise functions ψij.
The highly connected graph in the middle illustrates an MRF of second order, where
xi depends on its 8 neighbors. The potentials between the nodes are still based on the
pairwise potential function ψij. Higher order cliques xc include an arbitrary number of
sites within an additional potential function ψc.

random fields can be written as [49]:

E(x,y) =
∑
i∈V

ψi(xi) +
∑
i,j∈E

ψij(xi, xj) +
∑
c∈S

ψc(xc), (4.26)

where S refers to image segments and ψc are higher-order potentials defined on these
segments. The robust Pn model for higher-order cliques proposed in [49] is defined as:

ψc(xc) =

{
γk if xi = lk, ∀i ∈ c
γmax otherwise,

(4.27)

where γk and γmax are learned parameters with γmax ≥ γk.
Some studies for FBS in DIA use the patch based topology introduced by [27]. For

instance, [15] and [38] use 5 × 5 or 4 × 4 cliques learned from training data. These
patches can also be interpreted as an extended spatial context to model the prior. An
example of patches can be seen in Figure 4.5. The figure shows 114 patches obtained
for the restoration of handwritten characters. The patches are trained from high quality
document images and represent the most frequent occurrence of these patterns [15].

The topology can be interpreted in that way, that the nodes xi are 5×5 scene patches
and the observations are 5 × 5 image patches. The topology of the MRF model is the
same as for the pairwise model in Figure 4.3. However, training is time consuming, it
requires an adequate amount of training data, and omits a general use in FBS.

In order to omit learning we prefer a more general approach without training. Instead,
we incorporate a model of the stroke characteristics and not of characters themselves.
Therefore, we utilize a higher-order MRF and CRF to model spatial dependencies of
strokes.
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Figure 4.5: Examples for learning a prior model by means of image patches. The image
patches are trained from high-quality binarized handwriting images. Therefore, the images
are subdivided into 5 × 5 image patches and the most representatives are learned by
clustering. The remaining 114 patches serve as the hidden nodes for the binarization of
handwritten reports, from [15].

4.5 Summary

This chapter explained the concept of MRFs and CRFs and showed the framework in
detail. We started with fundamentals of probabilistic graphical models and explained the
details of MRFs and CRFs in the subsequent section. The main motivation to model our
FBS approach by means of an MRF, is the possibility of simultaneously incorporating
spatial and spectral features of the multispectral image data. Spatial characteristics
are modeled within higher-order MRFs where efficient inference algorithms have been
developed in recent years. The main difference of higher-order models in contrast to
pairwise and highly connected ones is the additional potential function for separate image
cliques. Potential functions for FBS and efficient inference algorithms for higher-order
models will be described in the next two chapters.
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Chapter 5

Energy Minimization

Probabilistic inference serves to find the solution of the maximum posterior probability
Pr(x|y) in the MRF framework. As we have seen in Section 4.2, finding the MAP estimate
is equivalent to minimizing the energy function E(x,y) in Equation 4.22. In general,
the loopy structure of the underlying MRF graph makes exact inference NP-hard [88].
Therefore, methods which approximate the solution must be used.

Energy optimization to find MAP-MRF solutions can be done either by local or global
methods. Popular inference methods include Iterated Conditional Modes (ICM) [8],
Simulated Annealing (SA) [47], Belief Propagation (BP) [27], Tree-Reweighted Message
Passing (TRW) [106], or Graph Cut (GC) based algorithms [11]. An overview of energy
minimization methods for MRF with smoothness based priors is given in [100].

Inference in higher-order models is, due to the larger size of the cliques, particularly
demanding. Thus, only pairwise interactions have been used for a long time. However,
since higher-order models offer advantages compared to pairwise connections, some effi-
cient methods for higher-order models have been published recently, e.g. [51] or [84].

Submodular set functions play an important role in energy minimization as they can
be minimized in polynomial time [50]. However, common applicable methods can handle
arbitrary potential functions [84] and need not consider the submodularity.

In this chapter, we describe two approaches for inference in MRFs. Since we have to
deal with local minima, we prefer local energy minimization methods and compare in our
experiments two of them, ICM and BP, with GC. We describe the two most popular GC
algorithms, α-expansion and αβ-swap [100] as well as the adaptation from [50] for the
minimization of higher-order potentials. BP and the proposed extension for higher-order
models is presented in the next chapter.

5.1 Iterated Conditional Modes

[8] proposed a deterministic method which maximizes local conditional probabilities se-
quentially. ICM uses a deterministic “greedy” strategy to find a local maximum. Re-
drafted to energy minimization (see Equation 4.22), ICM starts with an estimate config-
uration x0 and iteratively selects a label for each pixel i which gives the largest decrease
of the energy function. The process is repeated until it converges.
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The calculation of the local posterior Pr(xi|y, xV\i) is based on two assumptions. The
first one is the Markovianity (cf. Equation 4.5), i.e. xi depends on the labels in the local
neighborhood, and the second one is that variables y1, . . . , yN are conditionally indepen-
dent given y, and each yi has the same known conditional density function Pr(yi|xi),
cf. Equation 4.13.

Given the observation yi and the neighboring configurations xkNi
, ICM sequentially

updates each xki into xk+1
i by minimizing E(xi|y, xNi

), the conditional posterior energy
w.r.t. xi. The energy function in Equation 4.22 is solved by iteratively minimizing the
function with respect to each pixel i. Algorithm 1 illustrates the process flow of ICM. The
first step in the inner loop calculates the local energy E(xi) for a certain pixel xi in relation
to its neighborhood Ni and selects the label with the minimal corresponding energy. The
process is repeated until a steady state is obtained, i.e. E(x,y)k+1�E(x,y)k ≤ T , where
T is a given threshold.

The pairwise clique potentials ψij are based on the Potts model and favor similar
classes within a neighborhood N :

ψij(xi,xj) =

{
1 if xi 6= xj
0 otherwise

(5.1)

In order to realize higher-order models, the algorithm is adopted to a highly connected
graph and the algorithm iteratively scans all labels in the local neighborhood. The addi-
tional connections are based on the pairwise model.

The quality of the result strongly depends on the initial labeling as a result of the
high number of local minima [100]. A conventional way for the initial configuration is
the maximum likelihood estimator, which ignores spatial dependence of one pixel to the
others. To save computation time, we initialized the image with the result of the adaptive
local thresholding algorithm proposed by [91]. In order to include stroke properties, we
use a highly connected graph to cover all sites within a local neighborhood [65].

Algorithm 1 Iterated Conditional Modes (ICM).

1: Start a good initial configuration x0 and set k = 0
2: repeat
3: for all i ∈ V do
4: for all l ∈ L do
5: xki = arg minxi∈L

(
ψi(xi) +

∑
∀j∈Ni

ψij(xi, xj)
)

6: k = k + 1
7: end for
8: end for
9: until E(x,y)k+1 � E(x,y)k ≤ T

5.2 Energy Minimization using Graph Cuts

[11] present two algorithms based on GC [34] that efficiently find a local minimum with
respect to two large moves called α-expansion and αβ-swap. They are very efficient and
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Figure 5.1: Graph construction for GC and possible cut (green line). Edge costs are
reflected by thickness and the terminal nodes s and t are associated with labels. In the
given binary decision problem, the cut yields some configuration in which the nodes x5
and x8 are segmented as the label given by s, and the remaining nodes as the label given
by t.

are applied to a number of problems [100]. However, their results are limited to only
pairwise functions. [51] provide a characterization of energy functions involving higher-
order cliques, i.e. cliques of size 3 and beyond, for which the optimal moves can be
computed in polynomial time.

Move making algorithms minimize the energy starting with an initial labeling and
making a series of changes or moves to decrease the energy iteratively. At each step, the
optimal move to decrease the energy is computed in polynomial time. In contrast to ICM,
which allow only one pixel to change its label, α-expansion and αβ-swap allow several
sites to change their configuration. Convergence is achieved when the energy cannot be
minimized further.

Let G = (V , E) be a graph of the random field with nodes V and edges E . The node
set contains two additional terminal nodes which are called source s and sink t. Figure 5.1
shows a simple example of the construction. An edge is called t� link if it connects a non-
terminal with a terminal node and n� link if it connects two non-terminal nodes. Here,
t� links refer to the unary costs and n� links to the pairwise costs. The configuration
in Figure 5.1 can only solve a two label problem. Assume two vertices, the source s and
the sink t, have been distinguished. An s/t cut is a partitioning of the nodes in the graph
into two disjoint subsets S and T . The minimum cut problem is to find a cut that has
the minimum of cost among all cuts [10]. Figure 5.1 shows the graph with the random
variables xi and the terminal nodes s and t. Edge costs are reflected by thickness and the
green line illustrates a possible cut which assigns the nodes two different labels.

Computing the optimal move in polynomial time can only be done for a specific class
of energy functions [53]. The optimal move t∗ to get the exact optimum of a binary
labeling can be computed in polynomial time if the energy function Em(t) of a move t is
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submodular:

Ep
m(0, 0) + Ep

m(1, 1) ≤ Ep
m(1, 0) + Ep

m(0, 1), ∀p ∈ V × V . (5.2)

The α-expansion and αβ-swap algorithms are represented as a vector of binary vari-
ables t = {ti, ∀i ∈ V}. A transformation function T (x, t) takes the current labeling x and
a move t, and returns a new labeling x′. The energy of a move is defined as the energy
of the labeling x′, the move induces: Em(t) = E(T (x, t)).

5.2.1 Pairwise Based Prior

[11] show that if the pairwise function ψij defines a metric, the energy function can be
approximately minimized using α-expansion and if the pairwise potential function defines
a semimetric, the energy function can be approximately minimized using a αβ-swap move.

Conditions for αβ-swaps

The αβ-swap is an iterative GC algorithm applicable to situations when the smoothness
term ψij is semimetric.

Semimetric A potential function ψ(a, b) for a pairwise clique of two random variables
is semimetric, if for all a, b ∈ L, it satisfies

ψij(a, b) = 0⇔ a = b (identity of indiscernibles), (5.3)

ψij ≥ 0 (nonnegativity), (5.4)

ψij(a, b) = ψij(b, a) (symmetry). (5.5)

If this condition is satisfied, the αβ-swap is defined as:

Tαβ(xi, ti) =

{
α, if xi = α or β and ti = 0,
β, if xi = α or β and ti = 1.

(5.6)

Conditions for α-expansion

The α-expansion algorithm assumes that the smoothness prior term ψij is a metric, such
that the submodularity condition in Equation 5.2 which is weaker than the aforementioned
is satisfied.

Metric The potential function is metric if in addition to the constraints above it also
satisfies the triangle inequality:

ψij(a, d) ≤ ψij(a, b) + ψij(a, d),∀a, b, d ∈ L. (5.7)

If condition 5.7 is satisfied, the α-expansion move is defined as:

Tα(xi, ti) =

{
xi, if ti = 0,
α, if ti = 1.

(5.8)

Algorithm 2 and 3 illustrate the functionality of α-expansion and αβ-swap.
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Algorithm 2 α-expansion algorithm.

1: Start with an arbitrary labeling x
2: Set flag = false
3: For all label α ∈ L
4: Find x̂ = arg minE(x′) among x′ within one α-expansion of x
5: if E(x′) < E(x) then
6: x = x′ and flag= true
7: end if
8: if flag= true then
9: goto 2

10: end if

Algorithm 3 αβ-swap algorithm.

1: Start with an arbitrary labeling x
2: Set flag = false
3: For each pair {αβ} ∈ L
4: Find x̂ = arg minE(x′) among x′ within one αβ-swap of x
5: if E(x′) < E(x) then
6: x = x′ and flag= true
7: end if
8: if flag= true then
9: goto 2

10: end if
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5.2.2 Solving Energies with Higher-Order Cliques

[51] extend the definition of α-expansion and αβ-swap for the minimization of energy
functions whose clique potentials form a robust Pn model:

ψc(xc) =

{
γk if xi = lk, ∀i ∈ c
γmax otherwise.

(5.9)

where γk and γmax are learned parameters with γmax ≥ γk. The expansion and swap
moves for any energy function composed of these potentials can be found by minimizing a
submodular function [49]. Furthermore, the optimal move for the higher-order potentials
P n can be found by solving a s/t mincut problem.

The P n functions are defined on cliques having a size of at most 2. The clique potentials
take the form:

ψc(xc) = fc(Qc(⊕,xc)), (5.10)

where fc is an arbitrary function of Qc and the clique inconsistency function Qc(⊕,xc) is
a functional defined as:

Qc(⊕,xc) = ⊕i,j∈cφc(xi, xj). (5.11)

φc(xi, xj) is a pairwise function defined on all pairs of pixels in the clique c, and ⊕
is an operator applied to these functions φc(xi, xj). [51] characterize some higher-order
potentials for which the optimal swap and expansion move can be computed in polynomial
time. Therefore, they consider the sum form ⊕ =

∑
and the max form ⊕ = max:

Qc(xc) =
∑
i,j∈c

φc(xi, xj), (5.12)

Qc(xc) = max
i,j∈c

φc(xi, xj). (5.13)

Theorem 1 The optimal αβ-swap move for any α, β ∈ L can be computed in polyno-
mial time if the potential function ψc(xc) defined on the clique c is of the form 5.10, where
fc(·) is a concave non-decreasing function, ⊕ =

∑
and φc(·, ·) satisfies the constraints:

φc(a, b) = φc(b, a) ∀a, b ∈ L (5.14)

φc(a, b) ≥ φc(d, d) ∀a, b, d ∈ L (5.15)

Theorem 2 The optimal α-expansion move for any α ∈ L can be computed in poly-
nomial time if the potential function ψc(xc) defined on the clique c is of the form 5.10,
where fc(·) is a increasing linear function, ⊕ =

∑
and φc(·, ·) is a metric.

If the conditions described are satisfied, the αβ-swap and α-expansion are defined as
follows:

ψc(Tαβ(xc, tc)) =


γα if ti = 0, ∀i ∈ c,
γβ if ti = 1, ∀i ∈ c,
γmax otherwise.

(5.16)
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ψc(Tα(xc, tc)) =


γ if ti = 0, ∀i ∈ c,
γα if ti = 1, ∀i ∈ c,
γmax otherwise,

(5.17)

where γ = γβ if xi = β for all i ∈ c and γ = γmax otherwise.

5.3 Summary

In this chapter, we presented two popular algorithms for statistical inference: ICM and
GC. The focus was based on solving higher-order models, since the stroke properties in
the application incorporate more extensive connections in the graphical model.

In the first section of this chapter, we explained ICM, a well known method used
until the late 1990s, but with poor performance [100]. However, the method is easy to
understand and for demonstrative purposes, we included this method also in our exper-
iments. Nevertheless, the method shows beside its computationally shortcomings good
performance for the separation of text from background.

In the second part, we reviewed two modern energy minimization algorithms based
on GC that efficiently find a local minimum with respect to two large moves, namely,
α-expansion and αβ-swap. The algorithms perform well on a variety of computer vision
problems such as image restoration, stereo, and motion. In the comparative study from
[100] expansion performs best along different benchmarks (such as image denoising and
inpainting, binary image segmentation, or stereo matching). In terms of runtime, α-
expansion was the winner among ICM, BP, and TRW.

However, inference in higher-order models was due to the larger size of the cliques
neglected and only pairwise interactions have been used for a long time. Since higher-
order models offer advantages compared to pairwise connections, [50] recently proposed
expansion and swap moves for higher-order models.

For the experiments, we use on the one side the α-expansion implementation from
[50], and on the other, ICM. Inference based on ICM is based on a highly connected
graph. The advantage of local inference algorithms (ICM and BP), in contrast to global
minimization methods such as GC, is the stronger property for a local minimum [100].
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Chapter 6

Foreground-Background Separation
based on Higher-Order MRFs

In the previous two chapters we provided theoretical background on MRFs and CRFs,
as well as on state of the art methods for statistical inference. MRFs, CRFs, and conse-
quently the optimization methods build the theoretical framework for the proposed FBS
algorithm. In this chapter we introduce the unary, pairwise and higher-order potentials
which build the energy function of the MRF. These functions collect the spatial and
spectral features of the multispectral image data.

In the second part of this chapter, we present an adaptation of the standard BP in
order to optimize higher-order energy functions. Since the complexity of BP is exponential
in the size of the largest clique [84], we introduce a new message update rule to incorporate
higher-order functions and to keep computational efficiency [63].

6.1 Higher-Order Energy Function

The final formulation of the energy function for the proposed FBS approach in digital
document images is defined as (cf. Section 4.4):

E(x,y) = α
∑
i∈V

ψi(xi) + β
∑
i,j∈E

ψij(xi, xj) + γ
∑
c∈S

ψc(xc), (6.1)

where α, β, and γ are weighting parameters for the individual potentials:

• The unary term, also called data term, ψi describes how an individual observation
yi matches a label lk. The unary potential is based on the multispectral behavior of
individual observations and models the spectral component in our approach.

• The pairwise term or smoothness energy ψij represent the fact that a segmentation is
locally homogeneous. The pairwise terms consider pairwise connected observations
and are based on the image gradient. We have a high penalty if two neighboring
sites have different labels and low costs if two connected nodes have the same con-
figuration. Pairwise connections treat the first part of the spatial component of the
proposed approach.
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• The second part of the spatial constraints are modeled by the higher-order term
ψc, which represents the proposed stroke model. These potentials are defined on
cliques c of fixed shape. The higher-order term provides a function to enforce label
consistency within predefined clique sizes, i.e. same site configurations within a
clique obtain low penalties and different configurations receive higher penalties.

In the following section, we define the function for each potential. We start with
the unary potentials, defined by means of a foreground and background model, then we
present the pairwise terms, and finally the higher-order clique potentials and the proposed
stroke model are presented.

6.2 Potential Functions

Potential functions provide the capability to assign predefined values for the configuration
of individual, pairwise, or a set of sites. Since single sites and pairwise connections are,
according to their definition, cliques we can specify the clique potential as the energy
associated with a clique configuration. Generally, we assign a low penalty to a preferred
clique configuration and a high penalty to an undesirable configuration. The following
sections define the potentials which form the higher-order energy function in Equation
6.1.

6.2.1 Unary Potentials

The observation model on the pixel level can be estimated from the distribution of gray-
scale densities of pixels [112]. Thus, the unary potentials ψi are obtained from the obser-
vations yi. The multivariate normal density is typically an appropriate model for most
classification problems where the feature vectors yi for a given class l are continuous val-
ued, mildly corrupted versions of a single mean vector µl [46]. Most approaches use simple
models, e.g. Gaussian noise with zero mean and variance σ2

n.
Observations from this type of distribution tend to cluster about the mean, and the

extent to which they spread around the mean depends on the variance, cf. the RGB color
space of a single page from the Missale Sinaiticum in Figure 3.6. It can be seen that
similar colors are clustered in the RGB metric. This property makes the color space a
good choice when using Gaussian modelization. However, there are no typical clusters for
the foreground region nor the text region since the color distribution merge, at least in a
global observation of the whole page.

It can be observed that the probability densities for text and background change over
an image while the intensity of the background is changing. Therefore, we use local
calculations within windows of size e.g. 64× 64. The resulting unary potential ψi(xi) is a
two dimensional vector measuring how well a label fits an observation yi.

The unary potential follows a normal distribution N (µ,Σ) and each pixel class is
represented by its mean vector µl and covariance matrix Σl

ψi(xi) = N (yi|µl,Σl). (6.2)
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We estimate the densities by modeling each class lt and lb, for text and background,
as a two-Gaussian Mixture Model (2GMM) using the Expectation Maximization (EM)
algorithm. Each class lt and lb is represented by its mean vector µ and covariance matrix
Σ:

N (µ,Σ) =
1√

(2π)d |Σ|
exp

(
�1

2
(yi � µ) Σ�1 (yi � µ)T

)
, (6.3)

where d is the number of the spectral images.
In this study, the observation model for the background and the text is based on

local calculations of µ and Σ in order to avoid changes in the background, like water
stains or mold. Given a Gaussian Mixture Model (GMM), the goal is to maximize the
likelihood function with respect to the parameters µ and Σ. An elegant and powerful
method for finding maximum likelihood solutions for models with latent variables is the
EM algorithm [46, 22]. Applying EM on the multispectral image data, we obtain local
estimates for µ and Σ for the text and the background. Figure 6.1 demonstrates the
output of the potential functions for a detail of folio 29 recto from the Missale Sinaiticum
and shows the unary potentials for text (a) and background (b). It can be seen that the
text model, i.e. unary text, has high penalties within the background region, i.e. a label lt
is preferred, and for the background, i.e. unary back, we obtain high penalties for regions
with text.

(a) Single band image BP450.

(b) Unary text.

(c) Unary back.

Figure 6.1: Single band image B-P 450 from a detail from folio 29 recto from the Missale
Sinaiticum. The second and third row show the output of the unary potential function
ψi for text (unary text) and background (unary back).
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6.2.2 Pairwise Potential Function

The pairwise terms ψij(xi, xj) corresponds to the matching cost computation between
nodes xi and xj. The energy function takes the form of a pairwise Potts model:

ψij(xi, xj) =

{
0 if xi = xj,
ρI(∇I) otherwise,

(6.4)

where the function ρI(∇I) is defined in terms of the image gradient between the pixels
i and j [101]. Thus, when two neighboring pixels xi and xj have similar values we have
a low penalty and in border regions, e.g. background to text, we have an high penalty in
the energy function [11].

6.2.3 Higher-Order Potentials

Since only pairwise potential functions limit the expressiveness of the models, [49] defined
the Pn Potts model for higher-order cliques of size n as:

ψc(xc) =

{
γk if xi = lk, ∀i ∈ c
γmax otherwise,

(6.5)

where γmax ≥ γk, ∀lk ∈ L. In the experiments from [51] on a set of natural images, the
set of higher-order cliques consists of all segments of multiple segmentations of an image.
The image segments are obtained using an unsupervised image segmentation algorithm
such as mean-shift [19].

For the separation of text in digital documents, we propose to use stroke properties
which cover spatial dependencies of characters. For the application of FBS the size n of
the higher-order cliques xc comprises the set of all pixels i within a diameter ∅, where ∅
corresponds to the mean diameter of the strokes on one text page. This predefined prior
model of fixed shape will be referred to as the stroke model. The mean stroke width can
be extracted automatically after a preceding binarization of the input image. Then, the
mean stroke diameter ∅ follows the set of all foreground pixels S and the set of all border
pixels D from characters in BW and can be obtained by

∅ = 2
|S|
|D|

, (6.6)

where |S| and |D| are the number of pixels in S and D [82]. Experiments devoted a mean
width of 5 pixels for the data set given in the corpus of the Missale Sinaiticum. The
proposed stroke model is illustrated in Figure 6.2. It shows the Glagolitic character
including a white circle which corresponds to the average diameter of the stroke. Since
the stroke width of the character given is approximately five pixels, the circle in the figure
corresponds to a fourth order neighborhood system, cf. also Figure 4.2. Thus, the prior
of the proposed stroke model considers a neighborhood set of at least 4th order.

Several potential functions have been proposed in the literature. For instance, [116]
suggested to use the maximum color distance of observations which can be expressed as

ψc(xc) = ‖ycmax � ycmin‖, (6.7)
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Figure 6.2: Glagolitic character with marked neighborhood system of 4th order. The
white circle corresponds to the proposed stroke model with fixed shape.

where ‖ycmax � ycmin‖ depicts the distance from the highest to the lowest value of all
observations yc in a clique c. In this model we obtain high penalties when the observations
yi are different and low penalties for similar observations.

The clique potentials in [51] are defined such that they form a P n Potts model:

ψc(xc) =

{
γ3G(c, s) if xi = s, ∀i ∈ c
γ4 otherwise.

(6.8)

Here, G(c, s) is the minimum difference between the RGB values of a patch Dc and all
patches belonging to the dictionary Ps. Note that the above energy function encourages
the patch Dc which is similar to a patch in Ps to take the label s. Since the clique
potentials form a P n Potts model, they can be minimized using the αβ-swap and α-
expansion algorithms [50]. The proposed parameter setting is γ3 = 0.6 and γ4 = 6.5.

For the separation of text from background we prefer potentials which characterize
the differences from a given observation yi with its neighboring observations yNi

and we
compare the observation yi with the pixels in its local neighborhood

ψc(xc) =

{
0 if xi = lk, ∀i ∈ c
|yi � µNi

| otherwise,
(6.9)

where µNi
is the mean value of the observations in Ni and |yi�µNi

| is the absolute value of
yi�µNi

. The higher-order potential can be interpreted as the deviation from observation
yi to its surrounding sites in Ni.

6.3 Belief Propagation

Originally designed for graphs without loops [81], BP uses the idea of passing local mes-
sages around nodes. BP provides an exact solution when there are no loops in a graph,
but it has also been tried on loopy graphs providing approximate solutions [115, 111].
When applied on graphs with loops, the messages must be updated iteratively and the
algorithm is called Loopy Belief Propagation (LBP). LBP is not guaranteed to converge,
but achieves outstanding empirical results in several studies [84] and has a strong local
minimum property [100].

The main advantage of BP is that it works for arbitrary kinds of potential functions,
including non-regular potential functions, which are not available to GC [84]. A drawback
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is that BP is slow, since it requires messages from each node to its neighboring nodes.
Just like ICM, the number of computations for the messages in higher-order models is ex-
ponential in the number of neighbors, i.e. the runtime complexity increases exponentially
with the size of the largest clique in the random field.

6.3.1 Standard Belief Propagation for Pairwise Models

The standard BP for pairwise grid connections has two versions for the message update
rule, the sum-product and the max-product rule. The max-product formulation has
often been used for pixel labeling problems, whereas the sum-product formulation is more
appropriate for interpolation problems with non-integer solutions [57].

BP works by iteratively passing messages around the graph. Let mt
ij(xj) be the mes-

sage sent from node xi to its neighbor xj at iteration t. Each message mij is a vector of
the dimension given by the number of labels, with each component being proportional to
how likely node i thinks it is having the same state as node j. All entries are initialized
to zero and at each iteration, new messages are computed.

The message update for the sum-product BP is given by:

mt
ij(xj)←

∑
xi

(
ψi(xi)ψij(xi, xj)

) ∏
k∈Ni\j

mki(xi), (6.10)

and the messages for the max-product algorithm are computed in the following way:

mt
ij(xj)← max

xi

(
ψi(xi)ψij(xi, xj)

) ∏
k∈Ni\j

mki(xi), (6.11)

where Ni \ j denotes the neighbors of i without j. Figure 6.3 illustrates the message
update rule from node xi to xj. The incoming messages mki(xi) are passed through node
xi to its neighbor xj. An equivalent computation can be performed with negative log
probabilities, where the max-product becomes a min-sum:

mt
ij(xj)← min

xi

(
ψi(xi)ψij(xi, xj)

) ∑
k∈Ni\j

mki(xi). (6.12)

After t iterations, a belief bi(xi) for each node is computed. The beliefs are an ap-
proximation of the marginal probability Pri(xi) of a node i to be labeled xi. The belief
of a node i is proportional to the product of the local potential ψi(xi) and all incoming
messages mki(xi):

bi(xi) = ψi(xi)
∏

k∈Ni\j

mki(xi). (6.13)

The configuration xi which minimizes bi(xi) individually at each node is selected. We
use the max-product algorithm to compute the MRF-MAP estimate, because it is less
sensitive to numerical artifacts [25] and it directly corresponds to the formulation of the
energy function.

Algorithm 4 explains the processing steps of BP in pseudo code. The first nested for-
loop initializes all messages to zero. The second expression manages the message updates
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xi xj
mij(xj)

∑
k∈Ni\j

mki(xi)

Figure 6.3: Illustration of message passing in the BP algorithm. The message mij from
node xi to xj contains the messages from its neighboring nodes mki, where k denotes all
nodes in the neighborhood of xi except xj, i.e. k ∈ Ni \ j.

mij iteratively for T loops. Finally, the beliefs and the corresponding configurations are
calculated in the last two expressions.

Several variants of the BP algorithm exist. For instance, [25] propose an efficient
version of the standard BP to compute the message update in linear time. The standard
implementation for pairwise connections runs in O(NK2T ) time, where N is the number
of nodes, K is the number of labels for each pixel and T is the number of iterations,
i.e. it takes O(K2) time to compute each message and there are O(N) messages to be
computed in each iteration. For higher-order models, the runtime complexity increases
exponentially with the size of the largest clique in the random field. BP for higher models
has a complexity of O(Kn) where n is the number of neighbors of an image site i.

6.3.2 Belief Propagation for Higher-Order Models: BPn

An intuitive way to incorporate higher-order models is to define messages that propagate
between groups of nodes rather than just single nodes. This is the intuition in GBP [27].
The graph is split into clusters and a hierarchy of regions and sub-regions is created. GBP
propagates messages across clusters of nodes an not only between nodes as in standard
BP. It reduces to standard BP when the clusters consist of only two nodes. GBP provides
accurate solutions on highly connected graphs, however the clusters are hard to generate
[78].

An alternative is to combine messages from two neighboring nodes to one message
[116] or to represent the potential functions ψi(xi) via additional nodes in a factor graph
[84]. However, using major label sets or clique sizes makes it intractable to store the
beliefs and messages in a factor graph [88].

[43] generalized the message-passing process for second order BP as

mijk(xi)←
∑
xj

∑
xk

ψj(xj)ψk(xk)ψijk(xi, xj, xk)
∏

s∈Nj\i

mjis(xj)
∏

s∈Nk\i

mkis(xk), (6.14)

in which second order constraints are modeled. Here, mijk(xi) represents the message
passed from node j and k to node i.
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Algorithm 4 Loopy Belief Propagation (LBP).

for all (i, j) ∈ E do
for all l ∈ L do

set m0
ij = 0

end for
end for
for t = 1 . . . T do

for all mt
ij & l ∈ L do

mt
ij(xj)← minxi

(
ψi(xi)ψij(xi, xj)

) ∑
k∈Ni\j

mt�1
ki (xi)

end for
end for
for all i ∈ V do

for all l ∈ L do
bi(xi) = ψi(xi)

∏
k∈Ni\j

mki(xi)

end for
end for
for all i ∈ V do
xi = arg max bi(xi)

end for

An additional model for higher-order was proposed by [116]. This three node potential
clique feature vector is described by the minimum angle, the consistency of the region
inter-distance, the maximum color distance, and the height consistence of the characters.
The pairwise potentials are characterized by three nodes and are denoted as ψijk:

p(x, y) =
1

Z

∏
ijk

ψijk(xi, xj, xk, yijk)ψi(xi, yi). (6.15)

For the separation of text from background, we propose to incorporate a local opti-
mization problem. Thus, we apply BP [27] for inference which has a strong local minimum
property [100] and works for arbitrary potential functions [84]. In order to include higher-
order potentials ψc(xc), we introduce BP for higher-order MRF models, abbreviated as
BPn, as an extension of the standard BP for pairwise connections. In contrast to the
standard formulation, we update the rule for the message updates mij and include the
higher-order potentials ψc. The model for higher-order MRF is based on Equation 4.18,
which incorporates unary costs ψi observed from the image, pairwise or smoothness costs
ψij, which afford that the segmentation is locally homogeneous, and higher-order costs
ψc, which enforce label consistency within predefined cliques. The cliques may overlap
and each pixel xi receives the higher-order penalty from its surrounding pixels in Ni.
These clique-node messages integrate label properties of cliques. The resulting network
topology can be seen in Figure 6.4. Each node xi receives its unary potential ψi(xi), the
pairwise costs ψij(xi, xj) from its neighbors in the 4-connected grid, and the higher-order
potential ψc(xc), which is composed of the observations yc. Since BP has no feedback
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ψ c

Figure 6.4: Network topology for the proposed higher order BPn algorithm. As in the
standard case, each node xi obtains its unary potentials ψi and pairwise potentials ψij.
Additionally, xi receives the higher order potential ψc, which is based on the observations
yi within a clique c.

of the configurations of the pixels in the corresponding clique, the potential function for
higher oder potentials is based on the similarity of the observations given, see Equation
6.9.

We use the max-product algorithm to compute the MAP estimate of the MRF. Each
message is a vector of dimension given by the number of labels. The message update
mt
ij(xj) passed from node xi to its neighbor xj at iteration t is composed by the unary,

the pairwise, and the higher-order potential:

mt
ij(xj)← max

xi

(
ψi(xi)ψij(xi, xj)ψc(xcj)

) ∏
k∈Ni\j

mki(xi), (6.16)

where k ∈ Ni \ j denotes the neighbors of i without j and xcj is the clique xc around node
j. After t iterations, the belief for each node is computed as:

bi(xi) = ψi(xi)
∏
k∈Ni

mki(xi). (6.17)

The label lk ∈ L which minimizes bi(xi) individually at each node is selected.

6.4 Summary

In this chapter we introduced the individual potential function to form the posterior energy
of the MRF. The unary and pairwise costs are traditional functions and incorporated in
several studies [100, 11]. To incorporate character properties by means of stroke features,
we add higher-order potentials to the traditional formulation of pairwise MRFs. The
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potential function for these higher-order costs are based on the P n Potts model and aim
to favour similar configurations within individual cliques.

Since we prefer local methods for statistical inference for the application of FBS in
DIA, we proposed a new formulation of the standard definition of BP, resulting in BPn.
With the BPn formulation we are able to incorporate the higher-order potentials which
incorporates the stroke model.
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Chapter 7

Experiments and Results

This chapter presents the evaluation of the proposed method for FBS. The experiments
are executed on a set of three different types of document images. The first test set
includes ten selected images from the corpus of the Missale Sinaiticum (cf. Section 3.2).
To evaluate the performance and to compare the results to related methods, we generated
the Ground Truth (GT) data manually. Further experiments are carried out on a set of
representative samples from the DIBCO 2009 test set [29]. This set consists of gray
scale and color images of machine printed or handwritten text. The GT data is already
available and provided by the organizers of the contest. Finally, we created synthetic data
assembled of several artificial spectral images to highlight the robustness of the proposed
method.

The proposed FBS method based on higher-order MRF models is compared to adaptive
document image binarization proposed by [91]. This algorithm showed good performance
in several comparative studies [91, 41]. Furthermore, we compare our approach to the
binarization method propsed by [98] which describes an improved version of algorithm
no. 26 from the DIBCO 2009. This algorithm showed the best performance in the contest
and has beaten thirty-five other competitors.

We use the precision and recall rate and the corresponding F1 measure to quantify
the accuracy and to rank the performance of the different methods. We start the exper-
iments with an evaluation of the influence of different selections of higher-order cliques
in ψc(xc). The impact of the proposed BPn optimization algorithm is compared to the
inference methods proposed in Chapter 5. The second experiment in Section 7.6 evaluates
the robustness of the proposed MRF approach on synthetic images. Finally, a general
comparison of the methods is given in the third part of the experiments in Section 7.7.

7.1 Evaluation Method

The evaluation of FBS algorithms in DIA can be accomplished in several ways. These
efforts can be divided into four categories [77]. An intuitive approach is a visual inspection
and evaluation of the results by one or more human experts in order to grade visual criteria
like broken symbols or noise [105]. Another possibility is to use the binarization results
as an input for an OCR machine and to evaluate the results with respect to character or
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word accuracy [41]. A popular method is to compare the results to previously generated
GT data [29]. Finally, the last category uses a combination of human-oriented evaluation
and OCR accuracy [113].

Since a visual inspection is too inaccurate to distinguish the influence of different
higher-orders models and commercial OCR software is not available for our purpose on
medieval languages, the performance is quantified and compared to previously generated
GT data.

To measure the accuracy of the proposed algorithm and to compare the results to
related methods we use the F1 score. The F1 score (also called F score or F measure)
is an accuracy measure considering the precision and recall rate of a test. Therefore, we
have to count the True Positive (TP ), False Positive (FP ), and the False Negative (FN)
pixels of the results when compared to the GT data.

A pixel is classified as true positive if it is ON in both, the GT and the result, hence
it is identified correctly. It is classified as false positive if it is ON only in the result,
i.e. pixels which are detected as text, however they belong to the background. Finally, a
pixel is classified as false negative if it is ON only in the GT image, i.e. false negatives are
those pixels which are not detected as foreground or text in the result.

An example of an evaluated image with marked TP , FP , and FN pixels is illustrated
in Figure 7.1. The real image or the GT can be seen on the left hand side, a possible
result is shown in the middle, and the right hand side shows the evaluation including the
labels TP , FP , and FN . In the example given, the resulting image can be interpreted
in that effect, that the left hand side of the character “A” is under-segmented, and the
right hand side is over-segmented.

FN

FN

TP

TP

TP

TP

FN

FN TP TP TP TP TP FP

TP

TP

TP

TP

TP

TP

TP

TP TP TP TP

FP

FP FP

FP

FP

FP

(a) (b) (c)

Figure 7.1: Illustration of true positive, false positive, and false negative classifications.
The GT data is given in (a), a possible result is shown in (b), and (c) shows the evaluated
image with the labels TP , FP and FN . Green pixels correspond to TP , blue pixels to
FN , and red pixels show FP classifications.

Let |TP | be the number of true positives, |FP | the number of false positives, and
|FN | the number of pixels labeled as false negatives. The precision P and recall rate R
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are given as follows:

P =
|TP |

|FP |+ |TP |
, (7.1)

R =
|TP |

|FN |+ |TP |
. (7.2)

The precision decreases when the algorithm detects too many pixels additionally, for
instance, image noise, filled character holes, or filled character gaps. On the other side, the
recall rate drops when the algorithm detects fewer pixels from the foreground, i.e. when
parts of characters or even characters are missing.

The F1 measure, as an overall metric to compare the individual methods, is calculated
as:

F1 =
2RP

R + P
. (7.3)

7.2 Test Data

In this section we describe the digital document images on which the proposed algorithm
is tested.

Missale Sinaiticum Images

The first category for the evaluation contains a set of selected images from the corpus
of the Missale Sinaiticum with manually tagged GT data. The test set consist of folio
17 recto, 27 verso, 27 recto, 29 recto, 30 verso, 38 verso, 40 verso, 41 recto, 44 verso,
and 53 verso. The generation of GT data was supported by philological experts in the
field, by using a conventional graphics editing program and repainting each character on
a separated layer which depicts the generated binary GT image.

The digital document images consist of 9 spectral images in each case as described in
Section 3.2. The images have a radiometric resolution of 12 bit by a spatial resolution
of 565 dpi. The data corpus including cultural history and philological aspects, material
investigations, and details of the digitization process is described in [74].

DIBCO 2009 Images

The second test contains representative samples from the DIBCO 20091 which was ar-
ranged by [29] in the framework of the Tenth International Conference on Document
Analysis and Recognition in Barcelona, Spain in 2009. The contest focused on the evalu-
ation of document image binarization methods using a variety of scanned machine-printed
and handwritten documents. The data material consists of gray scale and color images
and includes five machine-printed and five handwritten images. The GT data was created
following a semi-automatic procedure based on [77] and is provided by the organizers of
the contest. These human segmented images act as the benchmark to evaluate the ac-
curacy of the designed algorithms. The selection of the images in the dataset was made

1http://users.iit.demokritos.gr/ bgat/DIBCO2009/
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so that it contains representative degradations as appear frequently in the real world,
e.g. variable background intensity, shadows, smear, smudge, low contrast, bleed-through
and show-through. An example can be seen in Figure 7.9(a).

Synthetic Data

The third data set consist of two synthetically generated RGB images. The synthetic
images are based on a color image of a blank page from the Missale Sinaiticum with
machine printed text. The images can be seen in Figure 7.21 (a) and (b). The images
consists of three spectral bands (red, green and blue) in each case whereas the first image
contains pure black text and the second one text in three different colors. To evaluate
the methods at different degradations we add Gaussian white noise with zero mean and
varying variance (0.005� 0.05) to each spectral component.

7.3 Energy Function and Weighting Parameter

The energy function of the higher-order MRF model is composed of unary, pairwise, and
higher-order potentials:

E(x) = α
∑
i∈V

ψi(xi) + β
∑
i,j∈E

ψij(xi, xj) + γ
∑
c∈S

ψc(xc). (7.4)

Unary potentials depict the likelihood of the posterior function and the entities are mod-
eled by a GMM where µ and Σ for foreground and background are found via EM. Pairwise
potentials are based on the image gradient and the higher-order potential is based on a
similarity measure of the pixels considered, see Chapter 6. For generality, each potential
function is weighted with a weighting parameter. The unary potentials are weighted by
α which corresponds throughout the experiments to 1.

The energy function solved by ICM is realized as a highly connected graph without
higher-order potentials ψc(xc). The influence of the stroke model is weighted within
pairwise connections with the weighting parameter β. For the inference of the higher-
order models with BP and GC, the pairwise connections are weighted with β = 1 and the
influence of the higher-order potential ψc(xc) is weighted with γ.

7.4 Overview of the Binarization Methods

As stated in the previous section, the higher-order energy function is solved with the
proposed BPn optimization method for higher-order models and α-expansion for robust
P n potentials2 as representative method for GC. In the following, the method will be
abbreviated with GCn, where the superscript n denotes the order of the higher-order
potentials. The third method for the minimization of the energy function is based on ICM

2The software library which implements the α-expansion for robust Pn potentials is available at
http://research.microsoft.com/en-us/um/people/pkohli/code.html.
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which is realized as a highly connected graph with pairwise connections. In addition, all
three methods are performed on the standard pairwise models, i.e. a first order MRF.

We compare our method to two local thresholding algorithms, Adaptive Binarization
(AB) [91] and binarization of historical document images using the Local Maximum and
Minimum (LMM) proposed by [98]. The parameters are all set according to the recom-
mendations within the reported papers. Furthermore, the proposed method based on
spatial and spectral components is compared to a local performing k-means clustering al-
gorithm proposed by [66]. Table 7.1 summarizes the algorithms used for our experiments.

Table 7.1: Overview of the algorithms applied in the experiments.
Method Description and Reference

ICM standard implementation of ICM
[64]

BP BP for first order MRF
[25]

BPn BP for higher-order cliques
[63]

GC α-expansion for pairwise models
[11]

GCn α-expansion for robust P n potentials
[49]

AB adaptive document image binarization
[91]

LMM binarization using local max and min
[98]

k-means serialized k-means clustering
[66]

7.5 Influence of the Higher-Order Stroke Model

The goal of the first experiment is to analyze the behavior of the influence of the higher-
order stroke model compared to the standard pairwise model. In the following, we compare
the influence of the order n of the MRF and varying weighting parameters β and γ. As
already stated, pairwise connections are used in the majority of the studies but show
limited expressiveness [88]. We show the performance of the proposed method on a
degraded folio of the Missale Sinaiticum and on an image from the DIBCO 2009 test set.

7.5.1 Missale Sinaiticum

When applied on the multispectral images of the Missale Sinaiticum the proposed algo-
rithm can utilize its capability of incorporating spatial and spectral features simultane-
ously. Figure 7.2 shows an exemplary image of the corpus to illustrate the quality of the
images. The image in the first row shows line 9 from folio 29 recto, represented by the
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spectral image B-P 450. This spectral component tends to have the best contrast between
text and background within the full set of the spectral images, cf. also Figure 3.5 and
Figure 3.7 in Chapter 3. The detail of folio 29 recto in Figure 7.2(a) shows 13 characters
whereas the last two are already hard to detect. The second row shows the manually
tagged GT data and the third row shows the output of the AB method presented by [91]
when applied on the spectral image B-P 450.

It can be seen that the binary image contains background noise which affects the
precision rate (P = 0.63) and the two right outermost characters are due to its low
contrast missing. These false negatives decrease the recall rate R to 0.60. Neglected and
additional pixels have approximately the same rate and the corresponding F1 measure
yields 0.61.

(a) Single band image B-P 450.

(b) GT data.

(c) AB, P = 0.63, R = 0.60.

Figure 7.2: Detail from folio 29 recto: B-P 450, GT data, and output of AB. It can be
seen that the output of AB contains noise and the right outermost character is missing.

ICM

Table 7.2 shows the precision and recall rate for the result of the posterior energy when
minimized with ICM. The results depend on the weighting parameter β and the influence
of the order n. The values for β range within {0.07, 0.1, 0.2, 0.3} and n is between 1 and
5. Pairwise connections correspond to n = 1 and n = 4 refers to the stroke model since
experiments in the test set of the Missale Sinaiticum showed an average stroke width of
five pixels (∅ = 5), cf. also Figure 6.2.

The value for the precision is low for a small order of n and increases for higher-
order connections. This low precision rate especially for n ≤ 3 results primarily from
the background noise in the binary image. The output of the MRF model with pairwise
connections is similar to the result of AB. The stroke model is not considered in this case.
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When using pairwise connections influenced by β = 0.07, the F1 measure constitutes 0.70
with a precision rate of 0.63 and a recall rate of 0.78.

On the other side, when the order n and its influence by means of β increase (n =
5, β = 0.3), the precision rate rises to 0.82 due to less background noise, but the recall
rate drops synchronously to 0.53 due to missing characters. The reason is in the influence
of the pixels environment, which is too influential and characters with low contrast or
narrow strokes fail the segmentation.

Table 7.2: Precision, recall, and F1 for the output of ICM with varying order n and β for
folio 29 recto.

β 1 2 3 4 5

0.07 P 0.63 0.65 0.66 0.71 0.70
R 0.78 0.78 0.78 0.77 0.78
F1 0.70 0.71 0.72 0.74 0.74

0.1 P 0.64 0.66 0.67 0.76 0.71
R 0.78 0.78 0.78 0.75 0.78
F1 0.70 0.72 0.72 0.75 0.74

0.2 P 0.64 0.66 0.68 0.80 0.80
R 0.79 0.79 0.79 0.72 0.69
F1 0.70 0.72 0.73 0.76 0.74

0.3 P 0.69 0.75 0.79 0.81 0.82
R 0.77 0.76 0.73 0.68 0.53
F1 0.73 0.75 0.76 0.74 0.64

Figure 7.3 shows resulting images illustrating the influence of the order n and the
weighting parameter β. The first row shows the output of a pairwise connected random
field with low influence (β = 0.07). The opposite adjustment can be seen in the third row.
Here, the influence of surrounding pixels n equals 5 and its weighting parameter is too
high which in fact results in less background noise, but characters with low contrast are
already missing. The best solution is obtained with n = 4, which is in accordance to the
proposed stroke model, and a weighting parameter β = 0.2 with F1 = 0.76. The output of
the model adjusted with n = 4 and β = 0.2 can be seen in Figure 7.3(b). The background
noise has in contrast to the result in the first row vanished and the character on the right
hand side are partially detected. Disadvantageously, the stroke width increased and some
character gaps merged.

The experiments show, that the smaller the considered neighborhood system, the more
noise emerges in the background, and on the other side, a neighborhood set considering
too much pixels (i.e. when n exceeds the stroke diameter) leads to missing characters or
to closed character gaps and closed character holes. The influence of β is likewise. The
smaller β the more noise we have and values chosen too big causes missing characters.
This situation is reflected in a 3D plot in Figure 7.4 which illustrates the precision and
recall rate and the F1 measure against the influence of n and β. The diagram on the left
hand side shows the precision with reference to the order n on the x-axis and β on the
y-axis. It can be seen that precision rises for n ≥ 4 and β ≥ 0.2. On the other side the
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recall rate drops. The corresponding diagram for the F1 measure is given below. Best
performance is obtained with n = 4 and β = 0.2. The F1 rate decreases for values with
n ≥ 5 and β ≥ 0.3, i.e. when n exceeds the stroke diameter.

Belief Propagation

The results for the optimization of the posterior energy with BP and the proposed message
update rule for higher-order models, BPn, are given in Table 7.3. The influence of the order
and its weighting parameter is not as crucial as for ICM, but still improves the accuracy.
Comparable to the findings of the influence from n and β for inference based on ICM, the
precision rate rises with increasing n and γ, but the recall rate drops simultaneously.

According to the stroke model, the best results are obtained when considering all pixels
within n = 4. Then, the precision rate P consititues 0.83 and the recall rate R = 0.69
with a corresponding F1 measure of 0.75 (with γ = 0.3). Resulting images can be seen
in Figure 7.5. Compared to the images from ICM it can be seen that more background
noise is present, but the right outermost character is segmented more exactly. The
3D plots in Figure 7.6 illustrate again the influence of n and γ. The findings are in turn
comparable to the ICM based results. The precision rises with increasing n and γ, and
vice versa the recall rate drops. Again, the best value for F1 is obtained with the proposed
stroke model.

Table 7.3: Precision, recall, and F1 for the output of BPn with varying order n and γ for
folio 29 recto.

γ 1 2 3 4 5

0.1 P 0.65 0.73 0.74 0.75 0.76
R 0.75 0.72 0.70 0.70 0.69
F1 0.70 0.72 0.72 0.72 0.72

0.2 P 0.66 0.75 0.76 0.77 0.78
R 0.75 0.70 0.69 0.71 0.66
F1 0.70 0.72 0.72 0.74 0.72

0.3 P 0.68 0.79 0.81 0.83 0.84
R 0.75 0.65 0.66 0.69 0.58
F1 0.72 0.71 0.73 0.75 0.68

0.4 P 0.68 0.82 0.84 0.86 0.87
R 0.75 0.61 0.57 0.53 0.50
F1 0.72 0.70 0.68 0.65 0.64

Graph Cuts

Finally, Table 7.4 presents the output when minimizing the energy of the random field with
the α-expansion move (GCn). Since the method finds a global minimum, the influence
of the neighborhood system is negligible. This can be especially seen in the 3D plots in
Figure 7.8 when compared n and γ against the evaluation metrics. However, the precision
rises and the recall rate drops with increasing values for n and γ.
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(a) ICM; n = 1, β = 0.07; P = 0.63, R = 0.78.

(b) ICM; n = 4, β = 0.2; P = 0.80, R = 0.72.

(c) ICM; n = 5, β = 0.3; P = 0.82, R = 0.53.

Figure 7.3: Folio 29 recto: resulting images after the ICM based FBS: (a) shows the
output of pairwise connections with n = 1 and β = 0.07, (b) shows the output with the
best F1 score with n = 4 and β = 0.2, consider that even the right outermost characters
are due to their low contrast partially segmented, and (c) shows the result when the
influence of n and β exceeds the stroke diameter (n = 5 and β = 0.3).
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Figure 7.4: Precision P , recall R, and F1 for the results with ICM on folio 29 recto.
The precision rises with increasing n and β, and vice versa the recall rate drops. As the
diagram for the F1 measure shows, best result are obtained with n = 4. Since the stroke
width of the Missale Sinaiticum averages five, the observations are in conformity with the
proposed stroke model.
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(a) BP; n = 1, γ = 0.1; P = 0.65, R = 0.75.

(b) BPn; n = 4, γ = 0.3; P = 0.83, R = 0.69.

Figure 7.5: Folio 29 recto: resulting images after the proposed BPn based FBS: (a) shows
n = 1 and γ = 0.1 and (b) shows the result for n = 4 and γ = 0.3. The use of higher-order
cliques results in turn in a more accurate segmentation.
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Figure 7.6: Precision P , recall R, and F1 for the results with BPn on folio 29 recto.
Again, the precision rises with increasing n and γ, and vice versa the recall rate drops.
The diagram from the F1 measure shows, that the best result is in turn obtained with
n = 4.

68



Concerning the precision and recall rate, we obtain 0.78 for the precision, 0.65 for the
recall rate, and the corresponding F1 measure yields 0.71 for the proposed stroke model.
Notice, that the values vary particularly only in the 3rd decimal place, though the values
are rounded for the table given. Some results are shown in Figure 7.7. Noticeable, the
right outermost character is clearly segmented and even the outline of an adjacent
character is noticeable.

Table 7.4: Precision, recall, and F1 for the output of GCn with varying order n and γ for
folio 29 recto.

γ 1 2 3 4 5

0.1 P 0.76 0.77 0.78 0.78 0.78
R 0.66 0.65 0.65 0.65 0.65
F1 0.71 0.71 0.71 0.71 0.71

0.2 P 0.76 0.77 0.78 0.78 0.78
R 0.66 0.65 0.65 0.65 0.65
F1 0.71 0.71 0.71 0.71 0.71

0.3 P 0.76 0.77 0.78 0.78 0.78
R 0.66 0.65 0.65 0.65 0.65
F1 0.71 0.71 0.71 0.71 0.71

0.4 P 0.76 0.77 0.78 0.78 0.78
R 0.66 0.65 0.65 0.65 0.65
F1 0.71 0.71 0.71 0.71 0.71

7.5.2 DIBCO 2009 Images

In this section of the experiments, we evaluate the influence of the stroke model and
its weighting factor on an image from the DIBCO 2009 test set. In contrast to images
of the Missale Sinaiticum, this set contains conventional RGB color and panchromatic
images and the quality of the legibility is considerably better. An example can be seen in
Figure 7.9(a). It shows a RGB image with German text, containing document ink bleed-
through from the recto page between the lines. The corresponding GT can be seen in
the second row and the third row shows the output of AB. The binarized image contains
noise between the lines caused through document ink bleed-through. The precision rate
P constitutes 0.93 and the recall rate R of the AB method yields 0.85 due to missing
character gaps and narrow strokes. The F1 measure constitutes 0.89.

ICM

Table 7.5 shows the evaluation metrics for the optimization of the MRF energy function
with ICM with varying n and β. Due to the quality of the images, the precision and recall
rates are better than for the images of the Missale Sinaiticum. However, the findings are
comparable to the previous experiments on the Missale Sinaiticum. The F1 measure
shows the highest rate for n = 3 and β = 0.3, but the differences are not as big as
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(a) GC; n = 1, γ = 0.1; P = 0.76, R = 0.66.

(b) GCn; n = 4, γ = 0.3; P = 0.78, R = 0.65.

Figure 7.7: Folio 29 recto: resulting images after the GCn based FBS: (a) shows n = 1
and γ = 0.1 and (b) shows the output of the proposed stroke model with n = 4 and
γ = 0.3.
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Figure 7.8: Precision P , recall R, and F1 for the results with GCn on folio 29 recto. With
the global based inference, the influence of n and γ is not as crucial as for the local based
methods ICM and BP.

70



(a) P01.png

(b) P01.png, GT data.

(c) AB; P = 0.93, R = 0.85.

Figure 7.9: Image P01.png from the DIBCO 2009 test set and the corresponding GT
data in (b), (c) shows the output of the AB. Due to the low contrast of the image, the
characters are thinner in the resulting binary image and the bleed through from the recto
page causes noise.

for the degraded manuscripts of the Missale Sinaiticum. This results from the more
discriminative likelihood model.

Compared to AB, particularly the precision rate increased to P = 0.94, due to less
noise in the background. The bleed through of the ink is suppressed, except for the middle
part between line two and three. The recall rate equals approximately 0.90 throughout
the experiments.

As already mentioned, we obtain the best F1 score for n = 3 and β = 0.3 which is again
coherent with the stroke width, which averages approximately 4 pixels for the characters
in image P01.png. Some results can be seen in Figure 7.10. The first row presents the
results with β = 0.3 and n = 3. In Figure 7.10(b), the order of n exceeds the average
stroke width of the image which lowers especially the recall rate to R = 0.84 (n = 5 and
β = 0.5). Parts of character with low contrast are already missing, cf. the “W” or “g”
in the fourth and fifth word of the second row. The suppression of background noise and
bleed through with increasing n and β is neglected by filled character holes, obtainable
within the characters “s” and “e”.

The visualization of the influence of n and β to precision and recall is similar to the
findings of the Missale Sinaiticum. Again, the recall drops with increasing n and β and
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Table 7.5: Precision, recall, and F1 for the output of ICM with varying order n and β for
P01.png.

β 1 2 3 4 5

0.1 P 0.93 0.93 0.93 0.93 0.93
R 0.90 0.90 0.90 0.90 0.90
F1 0.91 0.91 0.91 0.91 0.92

0.2 P 0.93 0.93 0.93 0.93 0.94
R 0.90 0.90 0.90 0.90 0.90
F1 0.91 0.91 0.91 0.92 0.92

0.3 P 0.93 0.93 0.94 0.94 0.94
R 0.90 0.90 0.90 0.89 0.89
F1 0.91 0.92 0.92 0.92 0.91

0.4 P 0.93 0.94 0.94 0.94 0.94
R 0.90 0.90 0.89 0.88 0.87
F1 0.91 0.92 0.92 0.91 0.90

0.5 P 0.93 0.94 0.94 0.94 0.94
R 0.90 0.89 0.89 0.87 0.84
F1 0.91 0.92 0.92 0.90 0.89

the precision shows contrary behavior, see Figure 7.11.

Belief Propagation

Table 7.6 presents the result for the same image when applied the proposed BPn for
inference. Best performance is obtained for n = 3 and γ = 0.3 with F1 = 0.91. Again,
the differences between the varying values for n and γ are less crucial than for the highly
degraded documents of the Missale Sinaiticum. The tendency of increasing precision and
decreasing recall rate when rising n and γ is again observable. The precision rises up to
0.97 and the recall rate drops to 0.74 when n exceeds the mean stroke width. Figure 7.12
shows resulting images for a preferred configuration in the first row and a less optimal
configuration with too much influence of n and γ in the second row. The influence of n
and γ with respect to precision, recall, and F1 is plotted in Figure 7.13. The progress of
precision, recall, and F1 is again comparable to the previous findings.

Graph Cuts

Table 7.7 shows the results from the global α-expansion move for minimization. The
results are similar to AB. The values for P , R, and F1 are relatively constant and drop
with increasing n and γ, c.f. the diagrams in Figure 7.15.

Resulting images can be seen in Figure 7.14. The first row shows the output for a
preferred configuration with n = 3 and γ = 0.1 and the second row a suboptimal results
with parameters n = 5 and γ = 0.4. It can be seen that some characters and even words
merge, particularly visible in the fifth word of the second row and the first character in
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(a) ICM, n = 3, β = 0.3; P = 0.94, R = 0.90.

(b) ICM, n = 5, β = 0.5; P = 0.94, R = 0.84.

Figure 7.10: P01.png, resulting images after the ICM based FBS: (a) shows a preferred
configuration with n = 3 and β = 0.3 and (b) shows an resulting image when n exceeds
the mean stroke width (n = 5 and β = 0.5).
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Figure 7.11: Precision P , recall R, and F1 for the results with ICM on P01.png. The
precision rises with increasing n and β, and the recall rate drops.
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(a) BPn; n = 3, γ = 0.3; P = 0.92, R = 0.90.

(b) BPn; n = 5, γ = 0.5; P = 0.97, R = 0.74.

Figure 7.12: P01.png: resulting images after the BPn based FBS: (a) shows n = 3 and
γ = 0.3 and (b) shows the result when n exceeds the mean stroke width (n = 5 and
γ = 0.5).
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Figure 7.13: Precision P , recall R, and F1 for the results with BPn on P01.png. Again,
the precision rises with increasing n and γ, and the recall rate drops.
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Table 7.6: Precision, recall, and F1 for the output of BPn with varying order n and γ for
P01.png.

γ 1 2 3 4 5

0.1 P 0.90 0.91 0.91 0.91 0.91
R 0.89 0.88 0.88 0.88 0.88
F1 0.90 0.90 0.90 0.90 0.90

0.2 P 0.90 0.92 0.92 0.92 0.92
R 0.89 0.88 0.88 0.88 0.88
F1 0.90 0.90 0.90 0.90 0.90

0.3 P 0.90 0.92 0.92 0.93 0.93
R 0.89 0.89 0.90 0.87 0.86
F1 0.90 0.90 0.91 0.90 0.90

0.4 P 0.90 0.94 0.94 0.95 0.95
R 0.89 0.85 0.84 0.84 0.83
F1 0.90 0.89 0.89 0.89 0.89

0.5 P 0.90 0.96 0.96 0.96 0.97
R 0.89 0.80 0.79 0.77 0.74
F1 0.90 0.87 0.87 0.86 0.84

the last row. The recall rate for this experiment averages approximately 0.90 except for
increasing n and γ where the rate decreases.

7.5.3 General Aspects

The results show that the smaller the considered neighborhood system or the order n of
the MRF (e.g. the pairwise model with n = 1), the more noise emerges in the background
and on the other side, a neighborhood system exceeding the mean stroke width leads, for
instance, to missing characters, to closed character gaps, or to merged holes in characters.
The influence of β and γ is likewise. The smaller β or γ the more noise we have and values
chosen too big cause missing characters. Thus, due to the consideration of spatial context
by means of the prosed stroke model we obtain less noise within the background and text
regions. Furthermore, characters with very low contrast have been partially segmented
with the proposed stroke model where AB detects only noise.

The influence of n and respectively β and γ is illustrated in Figure 7.16. It shows that
the precision increases with rising n or β/γ and the recall rate decreases. The higher the
stroke radius considered, the higher is the possibility that background labels or remote
text pixels are included in the current clique which affects the configuration of the current
pixel.

The influence of n and β/γ becomes noticeable particularly in the output of the ICM
based minimization of the posterior energy. This effect is due to the local inference and the
label-feedback after each iteration, i.e. each pixel can request the state of its surrounding
pixels. BP estimates the configuration of individual pixels at the end of the iterative
message passing. The main disadvantage of ICM is its poor computational performance.
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(a) GCn; n = 3, γ = 0.1; P = 0.91, R = 0.89.

(b) GCn; n = 5, γ = 0.4; P = 0.89, R = 0.87.

Figure 7.14: P01.png: resulting images after the GCn based FBS: (a) shows the result
with n = 3 and γ = 0.1 and (b) shows the result when n exceeds the average stroke width.
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Figure 7.15: Precision P , recall R, and F1 for the results with GCn on P01.png. With
the global based method for statistical inference, the influence of n and γ is not as crucial
as for the local based methods ICM and BP.
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Table 7.7: Precision, recall, and F1 for the output of GCn with varying order n and γ for
P01.png.

γ 1 2 3 4 5

0.1 P 0.91 0.91 0.91 0.91 0.91
R 0.89 0.89 0.89 0.89 0.89
F1 0.90 0.90 0.90 0.90 0.90

0.2 P 0.91 0.91 0.91 0.90 0.90
R 0.89 0.89 0.89 0.89 0.88
F1 0.90 0.90 0.90 0.90 0.89

0.3 P 0.91 0.91 0.90 0.90 0.90
R 0.89 0.89 0.89 0.88 0.88
F1 0.90 0.90 0.90 0.89 0.89

0.4 P 0.91 0.91 0.90 0.89 0.89
R 0.89 0.89 0.89 0.88 0.87
F1 0.90 0.90 0.89 0.88 0.88

BP is in fact also a local inference algorithm but has no label feedback of neighboring
pixels after each iteration. However, the influence of the proposed stroke model improves
the accuracy and the method has a better computational performance. In the case of
FBS for text separation, α-expansion could not outperform BP.

7.6 Synthetic Data

For the experiments on the synthetic images we apply the algorithms listed in Table 7.1
to two different images. The MRF based approaches are applied in pairwise manner and
with the proposed higher-order stroke model, i.e. n equals the mean stroke width of the
images. The input images can be seen in Figure 7.21(a) and (b). In the following we
degrade the original image in in ten steps by adding Gaussian noise with varying variance
σ. For the synthetic image with black text, σ varies between 0.01 and 0.05, for the image
with varying color, σ varies between 0.00 and 0.04. A degraded version of both images is
given in Figure 7.21(c) and (d).

The results for the image with black text achieve nearby 100% throughout the varying
noise rate for the MRF based approaches, see Table 7.8. The MRF approaches with the
proposed stroke model outperform the local thresholding methods and k-means clustering
and the higher-order models show better results than pairwise models. The results for
the recently proposed LMM method [98] averages 0.97 for the precision, 1.00 for recall,
and 0.98 for the F1 measure. AB shows minor results with an F1 measure of 0.93 and
k-means shows an F1 measure of 0.99. An overview of the average values for precision,
recall, and F1 can be seen in Figure 7.19.

The progress of precision, recall, and F1 with increasing noise is shown in the diagrams
in Figure 7.17. Due to their sensitivity to noise, the local thresholding methods AB and
LMM show a decreasing precision with increasing noise, see 7.17(a). As already stated,
the MRF based approaches show throughout the increasing noise rate approximately
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100% for precision and recall. Thus, the incorporation of spatial and spectral information
is robust against noise. Noise in the background is suppressed and the proposed stroke
model which considers not only the color of individual pixels, but also the neighboring
labels, shows advantages. Some resulting images can be seen in Figure 7.21(e) and (g).
While the proposed BPn method suppresses the noise in the background, AB fails in the
presence of noise.

When we consider the synthetic image with varying text color, the influence of noise
is more crucial and the performance is, as expected, not that high. However, the MRF
based approaches still obtain a good performance compared to AB, LMM, and k-means.
Table 7.9 shows the results for a synthetic image with varying text color and varying
Gaussian noise (σ varies between 0.00 and 0.04). The best performance is given by the
highly connected ICM based approach with n = 5. The proposed BPn with n = 5 shows
a similar performance, however the computational complexity is significantly better. The
progress of precision, recall, and F1 can be seen in the diagrams in Figure 7.18. It is
observable that the precision for ICM with n = 5 and the proposed BPn outperform the
other methods. The recall rate is very high for LMM and k-means, but the results are
useless since the precision is low.

The F1 measure for AB and LMM drops already below 0.50 with σ > 0.01 for LMM
and σ > 0.04 for AB. Best results for F1 can be obtained with ICM with n = 5 and
the BPn algorithm for the proposed stroke model. The overview of the average values for
precision, recall, and F1 can be seen in Figure 7.20.

Summarized, the approaches based on MRF and especially the proposed stroke model
outperform AB, LMM, and k-means. The two local minimization methods (ICM and BP)
show superior results compared to inference based on GC. Since AB and LMM estimate
a threshold in local regions the methods fail for Gaussian noise in the synthetic image.
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Table 7.8: Precision, recall, and F1 for a synthetic image with black text and added
Gaussian noise. The stroke width of the synthetic text averages 6 pixels.

σ 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 AVG

ICM, n = 1
P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
R 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
F1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
ICM, n = 5
P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BP
P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
R 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00
F1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
BPn, n = 5
P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00
F1 1.00 1.00 1.00 1.00 1.00 1.0 0.99 0.99 0.99 1.00
GC
P 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
R 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.99
F1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
GCn, n = 5
P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
R 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
F1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
LMM
P 1.00 1.00 1.00 1.00 0.99 0.98 0.95 0.95 0.88 0.97
R 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00
F1 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.97 0.93 0.98
AB
P 0.99 0.97 0.94 0.90 0.86 0.83 0.80 0.80 0.77 0.87
R 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.99
F1 1.00 0.98 0.97 0.95 0.92 0.90 0.88 0.88 0.86 0.93
k-means
P 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.96 0.95 0.98
R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F1 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.99
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Table 7.9: Precision, recall, and F1 for a synthetic image with varying text color and
added Gaussian noise. The stroke width of the synthetic text averages 6 pixels.

σ 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 AVG

ICM, n = 1
P 1.00 0.98 0.91 0.84 0.78 0.73 0.68 0.64 0.61 0.80
R 1.00 0.99 0.94 0.87 0.80 0.75 0.71 0.67 0.64 0.82
F1 1.00 0.99 0.93 0.86 0.79 0.74 0.69 0.66 0.63 0.81
ICM, n = 5
P 1.00 1.00 0.99 0.98 0.96 0.95 0.93 0.90 0.88 0.95
R 1.00 1.00 0.97 0.92 0.86 0.80 0.74 0.69 0.64 0.85
F1 1.00 1.00 0.98 0.95 0.91 0.87 0.83 0.78 0.74 0.89
BP
P 1.00 0.97 0.89 0.81 0.76 0.71 0.68 0.65 0.62 0.79
R 1.00 0.99 0.93 0.86 0.80 0.75 0.71 0.68 0.65 0.82
F1 1.00 0.98 0.91 0.84 0.78 0.73 0.70 0.66 0.63 0.80
BPn, n = 5
P 1.00 0.99 0.95 0.93 0.91 0.89 0.87 0.86 0.85 0.92
R 1.00 0.98 0.89 0.81 0.74 0.69 0.65 0.61 0.58 0.77
F1 1.00 0.98 0.92 0.87 0.82 0.78 0.74 0.71 0.69 0.83
GC
P 1.00 0.96 0.86 0.78 0.71 0.66 0.62 0.58 0.55 0.75
R 1.00 0.99 0.92 0.85 0.78 0.74 0.70 0.66 0.64 0.81
F1 1.00 0.97 0.89 0.81 0.75 0.69 0.66 0.62 0.59 0.78
GCn, n = 5
P 1.00 0.97 0.88 0.80 0.73 0.68 0.63 0.60 0.57 0.76
R 1.00 0.99 0.92 0.85 0.78 0.74 0.70 0.67 0.64 0.81
F1 1.00 0.98 0.90 0.82 0.76 0.71 0.66 0.63 0.60 0.78
LMM
P 0.90 0.49 0.27 0.25 0.25 0.24 0.23 0.23 0.23 0.34
R 0.66 0.98 0.96 0.95 0.93 0.92 0.91 0.90 0.89 0.90
F1 0.76 0.65 0.43 0.40 0.39 0.38 0.37 0.36 0.36 0.46
AB
P 0.99 0.98 0.93 0.86 0.78 0.71 0.66 0.60 0.56 0.79
R 0.97 0.55 0.49 0.45 0.45 0.42 0.42 0.42 0.41 0.51
F1 0.98 0.70 0.64 0.59 0.57 0.53 0.51 0.50 0.47 0.61
k-means
P 1.00 0.97 0.87 0.73 0.62 0.55 0.49 0.46 0.43 0.64
R 1.00 1.00 1.00 0.99 0.98 0.98 0.97 0.96 0.96 0.98
F1 1.00 0.98 0.93 0.84 0.76 0.70 0.65 0.62 0.59 0.76
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Figure 7.16: Schematic illustration of the influence of the order n of the MRF and the
weighting parameters β, γ with respect to precision and recall. The experiments in this
section have shown, that an increasing order n rises the precision while the recall rate
drops. Equivalently, the precision rises while the recall rate drops with increasing impact
of the weighting parameter. Best results are obtained with the proposed stroke model.
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Figure 7.17: Progress of P , R, and F1 for increasing Gaussian noise in a synthetic image
with black text. The MRF based approaches (ICM, BP, GC) keep the precision and recall
near 1. The local thresholding methods (BP and LMM) and k-means clustering show a
decreasing precision with increasing noise.

82



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.000
0.005

0.010
0.015

0.020
0.025

0.030
0.035

0.040

P

Level of Degradation

ICM, n = 1
ICM, n = 5
BP

BPn, n = 5
GC
GCn, n = 5

LMM
AB
k-means

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.000
0.005

0.010
0.015

0.020
0.025

0.030
0.035

0.040

R

Level of Degradation

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.000
0.005

0.010
0.015

0.020
0.025

0.030
0.035

0.040

F
1

Level of Degradation

Figure 7.18: Progress of P , R, and F1 for increasing Gaussian noise in a synthetic image
with varying text color. The local based methods on the higher-order models (ICM and
BPn with n = 5) show the best performance. The low precision from LMM is a result
from the low contrast of the characters in the synthetic image. The F1 measure for LMM
and AB shows only suboptimal values.
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Figure 7.19: Average values for P , R, and F1 for a synthetic image with black text and
varying Gaussian noise (σ = 0.01� 0.05).
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Figure 7.20: Average values for P , R, and F1 for a synthetic image with varying text
color and varying Gaussian noise (σ = 0.00� 0.04).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.21: Synthetic image with black text in (a) and varying text color in (b). An
image with Gaussian noise (σ = 0.03) added is given in (c) for the image with black
text, and in (d) for the image with varying text color. Results from the noisy image with
σ = 0.03 are given in (e) and (f) for the proposed BP5 algorithm, and for AB in (g)
and (h). It can be seen that the proposed method has less noise in the background and
foreground in both images, the image with black text and the image with varying text
color.
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7.7 General Comparison of the Methods

In this section we evaluate ICM, BPn, and GCn based minimization of the posterior energy
of the MRF and compare the results to AB, LMM, and k-means clustering. Concerning
the MRF approaches we use the stroke model for the spatial connections with parameters
β = 0.2, γ = 0.3. The methods are applied on ten pages from the corpus of the Missale
Sinaiticum and on ten pages from the DIBCO 2009 test set.

7.7.1 Missale Sinaiticum

Table 7.10 shows the results for ten folios of the Missale Sinaiticum when applied ICM,
BPn, GCn, AB, LMM, and k-means for FBS. The average values for P , R, and F1 can
be seen in the last column for each method. We added the average stroke width of each
image in the first row of the table. The average stroke width is calculated with Equation
6.6 after the binarization with AB and equals approximately 5 pixels for all images.

The MRF based approaches show better performance than AB and LMM. The pro-
posed BPn has the best performance with F1 = 0.79. The recall rate averages 0.93 for
k-means, but the value is useless since the precision is 0.49. For that case, the majority
of characters is not segmented.

Two examples are illustrated in the following. The first example is folio 27 recto, the
spectral band B-P 450 can be seen in Figure 7.24(a). The results for AB, LMM, and the
proposed BPn approach are shown in Figure 7.24(b)-(d). It can be seen that the result
from AB contains more noise than the results from LMM and BPn.

For the results of the MRF based FBS, it can be seen that even the right outermost
characters in the first row are due to their low contrast separated from the background.
The results from the MRF approaches are similar, ICM has the best precision, and GCn

the best recall rate. The F1 measure constitutes approximately 0.81 for BPn and GCn.
For comparison, AB has 0.79 and LMM 0.80.

Another example is given in Figure 7.25. Figure 7.25(a) shows B-P 450 from folio 41
recto and the results of the individual methods can be seen in Figure 7.25(b)-(d). Again,
the output from AB contains noise and fails in regions with low contrast which results in
P = 0.87 and R = 0.80. Best performance is obtained with the BPn approach resulting
in P = 0.83 and R = 0.90.

Finally, Figure 7.22 shows a diagram with the average results of the six methods for
the Missale Sinaiticum. It can be seen that the MRF approaches have similar results,
BP5 has along them the best F1 score.

7.7.2 DIBCO 2009 Images

In this section we show the performance of the individual methods on the DIBCO 2009
images. As already stated in Section 7.5 the differences between the proposed MRF stroke
model and AB is due to the quality of the images minor. Two results are shown: image
H03.png and P01.png. Figure 7.26 shows the input image and the results for H03.png

and Figure 7.27 shows the input image and the results for P02.png. The input images
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Table 7.10: Precision, recall, and F1 for ten images from the corpus of the Missale
Sinaiticum. The average stroke width for each image is denoted by ∅.

Image 17r 27v 27r 29r 30v 38v 40v 41r 44v 53v AVG

∅ 5 5 5 5 5 5 5 5 5 5

ICM, n = 4
P 0.69 0.94 0.87 0.80 0.79 0.73 0.75 0.86 0.84 0.73 0.80
R 0.79 0.71 0.74 0.72 0.75 0.72 0.70 0.78 0.87 0.85 0.76
F1 0.73 0.81 0.80 0.76 0.77 0.72 0.72 0.82 0.86 0.79 0.78

BPn, n = 4
P 0.69 0.87 0.81 0.83 0.82 0.73 0.74 0.83 0.82 0.79 0.79
R 0.80 0.77 0.82 0.69 0.75 0.70 0.74 0.90 0.93 0.81 0.79
F1 0.74 0.82 0.81 0.75 0.78 0.72 0.74 0.86 0.87 0.80 0.79

GCn, n = 4
P 0.80 0.93 0.80 0.78 0.79 0.72 0.74 0.79 0.81 0.77 0.79
R 0.65 0.69 0.83 0.65 0.80 0.73 0.75 0.90 0.95 0.85 0.78
F1 0.72 0.79 0.81 0.71 0.80 0.73 0.74 0.84 0.87 0.80 0.78

LMM
P 0.77 0.85 0.71 0.88 0.81 0.76 0.79 0.88 0.84 0.81 0.81
R 0.74 0.75 0.92 0.55 0.70 0.64 0.63 0.75 0.89 0.79 0.74
F1 0.75 0.80 0.80 0.68 0.76 0.69 0.70 0.81 0.87 0.80 0.77

AB
P 0.68 0.85 0.82 0.63 0.74 0.70 0.73 0.87 0.82 0.69 0.75
R 0.73 0.73 0.77 0.60 0.79 0.69 0.71 0.80 0.80 0.83 0.75
F1 0.70 0.78 0.79 0.61 0.76 0.70 0.72 0.83 0.81 0.75 0.75

k-means
P 0.37 0.78 0.54 0.26 0.39 0.46 0.47 0.65 0.69 0.27 0.49
R 0.94 0.89 0.93 0.86 0.87 0.93 0.92 0.96 0.99 0.99 0.93
F1 0.54 0.83 0.68 0.40 0.54 0.62 0.62 0.78 0.81 0.42 0.62

can be respectively seen in (a), AB is given in (b), (c) shows the result from the LMM,
(d), (e), and (f) shows the output for ICM, BPn, and GCn.

The results for all ten images of the DIBCO 2009 test set are given in Table 7.11. The
precision is especially for the first five images (H01 - H05) lower than the recall rate. This
is a result from partial ink bleed through and the neighborhood system considered which
induces over-segmented characters. As Figure 7.26 shows, the handwritten text appears
more bulky than the GT data. Since the characters in the second part of the images (P01
- P05) have a wider stroke width, we have the same findings as above: less background
noise and a good coherence of the individual characters. The average values for P , R,
and F1 can be seen in Figure 7.23. LMM achieves the best performance for this data set
(F1 = 90) followed by the MRF based approaches. They show approximately the same
results.
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Figure 7.22: Average values for P , R, and F1 for ten images from the Missale Sinaiticum.
The diagram shows the average values for P , R, and F1 from the results in Table 7.10.
The best result for F1 is obtained with the proposed BPn algorithm, followed by GCn,
ICM with n = 4, LMM, and AB. The clustering method shows only suboptimal results.
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Table 7.11: Precision, recall, and F1 for ten images from the DIBCO 2009 test. The
average stroke width for each image is denoted by ∅.

Image H01 H02 H03 H04 H05 P01 P02 P03 P04 P05 AVG

∅ 4.11 4.49 4.47 5.09 5.13 3.56 7.26 3.44 4.69 3.50

ICM, n = 4
P 0.87 0.74 0.81 0.79 0.48 0.94 0.99 0.99 0.78 0.93 0.83
R 0.95 0.95 0.94 0.86 0.80 0.90 0.93 0.95 0.88 0.78 0.90
F1 0.91 0.84 0.87 0.82 0.60 0.92 0.96 0.97 0.83 0.85 0.86

BPn, n = 4
P 0.87 0.72 0.84 0.82 0.53 0.92 0.99 0.99 0.78 0.92 0.84
R 0.95 0.94 0.92 0.83 0.79 0.90 0.90 0.93 0.87 0.79 0.88
F1 0.91 0.82 0.88 0.83 0.64 0.91 0.94 0.96 0.82 0.85 0.85

GCn, n = 4
P 0.86 0.70 0.84 0.82 0.53 0.90 0.99 0.99 0.78 0.91 0.83
R 0.95 0.94 0.92 0.83 0.81 0.89 0.92 0.93 0.87 0.80 0.89
F1 0.91 0.80 0.88 0.83 0.64 0.90 0.95 0.96 0.82 0.85 0.85

LMM
P 0.95 0.96 0.91 0.97 0.89 0.95 0.98 0.97 0.95 0.99 0.95
R 0.93 0.85 0.93 0.83 0.87 0.91 0.94 0.75 0.88 0.72 0.86
F1 0.94 0.90 0.92 0.89 0.88 0.93 0.96 0.85 0.91 0.83 0.90

AB
P 0.97 0.67 0.89 0.91 0.88 0.93 0.98 0.97 0.92 0.91 0.90
R 0.85 0.90 0.87 0.87 0.84 0.85 0.90 0.36 0.88 0.80 0.81
F1 0.91 0.77 0.88 0.89 0.86 0.89 0.94 0.52 0.90 0.85 0.84

k-means
P 0.94 0.79 0.74 0.26 0.16 0.85 0.97 0.98 0.73 0.89 0.73
R 0.88 0.94 0.97 0.99 0.96 0.96 0.96 0.95 0.96 0.90 0.95
F1 0.91 0.86 0.84 0.41 0.28 0.90 0.97 0.97 0.83 0.89 0.79

89



0.5

0.6

0.7

0.8

0.9

1

ICM
, n

=
4

BP n
, n

=
4

G
C n

, n
=

4

LM
M

A
B

k-m
eans

P R F1

Figure 7.23: P , R, and F1 for DIBCO 2009 images. The diagram shows the average values
for P , R, and F1 from the results in Table 7.11. As already in the contest itself, LMM
shows the best performance on the DIBCO 2009 test set, followed by the MRF based
approaches and AB. The clustering method shows again less performance.
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(a) Detail from folio 27 recto: B-P 450.

(b) AB; P = 0.82, R = 0.77.

(c) LMM; P = 0.71, R = 0.92.

(d) BPn; n = 4, γ = 0.3; P = 0.81, R = 0.82.

Figure 7.24: Results for folio 27 recto from the Missale Sinaiticum: original image (a),
AB (b), LMM (c), and BPn (d). The incorporation of spatial and spectral features in the
MRF based approach results in less background noise and a more accurate separation of
characters.
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(a) Detail from folio 41 recto: B-P 450.

(b) AB; P = 0.87, R = 0.80.

(c) LMM; P = 0.88, R = 0.75.

(d) BPn; n = 4, γ = 0.3; P = 0.83, R = 0.90.

Figure 7.25: Results for folio 41 recto from the Missale Sinaiticum: original image (a),
AB (b), LMM (c), and BPn, n = 4 (d). Similar to folio 27 recto, the proposed method
results in less background noise and a more accurate separation of characters.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.26: H03.png: (a) input image, (b) AB, (c) LMM, (d) ICM, (e) BPn, n = 4, (f)
GCn, n = 4. All MRF based approaches include the proposed stroke model. For the ICM
based inference, the stroke model is too crucial which leads to merged character gaps.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.27: P02.png: (a) input image, (b) AB, (c) LMM, (d) ICM, (e) BPn, n = 4, (f)
GCn, n = 4. These results are very similar, except for the result from AB, which shows
noise in the upper right corner.

94



7.8 Summary of Results and Discussion

The first experiment in this chapter demonstrated the performance of incorporating a
higher-order model in the MRF. We have shown that the proposed higher-order stroke
model of the MRF shows superior results when compared to conventional pairwise connec-
tions. Table 7.12 presents the final ranking of the different inference methods for spatial
and spectral based FBS. The table shows the best result for each method by means of the
order n and the weighting parameters β and γ. Best performance is obtained with ICM
with n = 4. Second place takes the proposed algorithm for BP in higher-order models
(BPn) followed by the GC based optimized posterior energy in higher-order models. The
order n matches in each case the average stroke width of the image. For the case of the
images from the Missale Sinaiticum, the stroke diameter averages five pixels which cor-
responds to cliques of fourth order to cover all pixels within this diameter, cf. Figure 4.2.
However, computations with ICM in higher-order models are exponential in the number
of neighbors, i.e. O(Kn), where K is the number of labels and n the number of variables
in the local neighborhood. Thus, the runtime complexity increases exponentially with the
size of the largest clique in the random field. In contrast, BP has significantly advances
concerning the runtime [100, 25].

Table 7.12: Ranking of the results from Section 7.5, folio 29 recto from the corpus of the
Missale Sinaiticum and image P01.png from the DIBCO 2009 data set.

Image Method n β, γ P R F1

29 recto ICM 4 0.2 0.80 0.72 0.76
BPn 4 0.3 0.83 0.69 0.75
GCn 4 0.2 0.78 0.65 0.71

P01.png ICM 3 0.3 0.94 0.90 0.92
BPn 3 0.3 0.92 0.90 0.91
GCn 3 0.2 0.91 0.89 0.90

In the second experiment in Section 7.6, we demonstrated the robustness of the MRF
based approaches in noisy images. Therefore, we generated two synthetic images with
varying Gaussian noise. When the document image contains plain black text, the MRF
based approaches average approximately 100% for precision and recall. The local opti-
mization methods ICM and BPn show better performance than GC. The higher-order
model outperformed the standard formulation of MRFs. The k-means clustering method
takes fourth place and, since they are very sensitive to noise, the local thresholding meth-
ods, AB and LMM, follow. The results from LMM depend heavily on the high contrast
image pixels. As a result, it may introduce errors if the background contains certain
amount of pixels that are dense and at the same time have a high contrast [98].

For the results of the synthetic image with varying text color, the local thresholding
methods AB and LMM show only suboptimal results with an average F1 score of 0.61
for AB and 0.46 for LMM. Especially in regions with low contrast between text and
background, the influence of noise is too crucial and causes false positive and false negative
classifications. Concerning the MRF based approaches, the higher-order models show

95



better results than first order MRFs. Both outperform the local thresholding methods
and k-means clustering. Table 7.13 shows the final ranking of the methods when applied
on the synthetic images.

Table 7.13: Ranking of the results from a synthetic image with added Gaussian noise
(Section 7.6).

Text Rank Method n β, γ P R F1

black 1 ICM 5 0.3 1.00 1.00 1.00
1 BPn 5 0.3 1.00 1.00 1.00
3 GCn 5 0.2 1.00 0.99 1.00
4 k-means 0.98 1.00 0.99
5 LMM 0.97 1.00 0.98
6 AB 0.87 0.99 0.93

colored 1 ICM 5 0.3 0.95 0.85 0.89
2 BPn 5 0.3 0.92 0.77 0.83
3 GCn 5 0.3 0.76 0.81 0.78
4 k-means 0.64 0.98 0.76
5 AB 0.79 0.51 0.61
6 LMM 0.34 0.90 0.46

Finally, a general comparison of the methods was executed on ten images from the
Missale Sinaiticum and on ten images from the DIBCO 2009 test set. Table 7.14 lists
the ranking from the results in Section 7.7. For the DIBCO 2009 test set, LMM has
already shown the best performance in the competition itself and shows again the best
performance with F1 = 0.90. The MRF based approaches reach 0.86 for ICM based
optimization and 0.85 for the GC based optimization and the proposed BPn algorithm.

On the test set of the Missale Sinaiticum, the proposed BPn algorithm shows the
best performance with F1 = 0.79. ICM and GCn average 0.78. The order n of the MRF
constitutes 4 in each case. The F1 measure for LMM results in 0.77, AB 0.75 and k-means
clustering averages 0.62.

The experiments show that the proposed FBS method based on spatial and spectral
features obtains better results than conventional thresholding or clustering methods. The
proposed stroke model implemented within a higher-order MRF shows superior perfor-
mance than traditional pairwise connections in MRFs. Especially for degraded documents
with low contrast or image noise, the consideration of spatial cliques shows advantages,
since individual outliers are compensated due to the configurations from the labels in the
local neighborhood.

The higher-order MRF model has two parameters. The first one is the approximate
stroke width and denotes the size of the higher-order cliques, i.e. the diameter of the
stroke model. This parameter can be estimated automatically, e.g. through a preliminary
binarization and the calculation of the mean stroke width as Equation 6.6 shows. The
second parameter concerns the influence of the stroke model. The experiments show,
that the smaller the stroke model or its weighting parameters β and γ, the more noise
remains in the background and within characters. On the other side, when the size of
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Table 7.14: Final ranking of the results after general experiments on the Missale
Sinaiticum and the DIBCO 2009 test set (Section 7.7).

Images Rank Method P R F1

Missale Sinaiticum 1 BPn 0.79 0.79 0.79
2 ICM 0.80 0.76 0.78
3 GCn 0.79 0.78 0.78
4 LMM 0.81 0.74 0.77
5 AB 0.75 0.75 0.75
6 k-means 0.49 0.93 0.62

DIBCO 2009 1 LMM 0.95 0.86 0.90
2 ICM 0.83 0.90 0.86
3 BPn 0.84 0.88 0.85
4 GCn 0.83 0.89 0.85
5 AB 0.90 0.81 0.84
6 k-means 0.73 0.95 0.79

the higher-order cliques rises the average stroke width or when the influence by means
of β and γ is too high, neighboring characters may merge or gaps in characters close.
Furthermore, characters with low contrast or narrow stroke width may vanish, since the
majority of pixels may be labeled as background in cliques rising the stroke width (even
when the current observation is text). Then, the text pixel obtains a high penalty from
the spatial correlation and is assigned as background too.

Concerning the boundary characteristics of the methods, Figure 7.28 shows examples
for the k-means and the MRF based solution. The B-P 450 image on the left hand side
shows three characters (a). The MRF based approach shows, through the consideration of
contextual information in terms of stroke properties, a more smoothly segmented bound-
ary, see Figure 7.28(b), than the result from the k-means algorithm in Figure 7.28(c).
Here, the boundary is even rougher and shows artifacts within the characters as a result
from the vanished boundary of the characters [64].

(a) (b) (c)

Figure 7.28: Differences within the boundary characteristics: (a) Original image (B-P
450), (b) output of the MRF based method (based on ICM with n = 5), and (c) k-means
segmentation.
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Chapter 8

Conclusion and Outlook

In this dissertation we have presented two approaches for the restoration of multispec-
tral images of degraded documents. The first topic of this thesis covered the legibility
enhancement of multispectral images. We have presented a method similar to Princi-
pal Component Analysis (PCA) which enables the enhancement of the highly correlated
multispectral image data. The second topic we have discussed is a robust method for
Foreground-Background Separation (FBS) in multispectral images.

Generally, MultiSpectral Imaging (MSI) supports the investigation of ancient manu-
scripts in which text is hardly visible in conventional color images or for the human eye.
Since MSI has proven to be a capable technique for the digitization of decayed manu-
scripts, our motivation for the restoration of document images is to incorporate the full
range of multispectral information for enhanced readability and FBS.

In Chapter 3 we presented background knowledge on MSI and showed the benefits for
the investigation of ancient manuscripts. In the first part of the chapter we presented the
image acquisition system used for the digitization of an Old Church Slavonic manuscript,
the so called Missale Sinaiticum (Sin. Slav. 5/N). In contrast to other studies on MSI
which aim at enhancing the readability of the underwritten text in palimpsests, our focus
is a general enhancement of text in multispectral images of degraded manuscripts. A
drawback of MSI is the assemblage of highly correlated image data. The PCA is a
method to reduce the spectral image data and to produce pseudo-colored images. In
the second part of the third chapter, we presented an alternative approach to PCA.
In order to improve the readability, we use the Multivariate Spatial Correlation (MSC)
matrix, which includes spatial and spectral image data to remove spectral correlation. The
benefit of an MSC based approach is that especially the text regions are considered for
the enhancement. The experiments demonstrated the performance of combining spatial
and spectral information for contrast enhancement. When compared to PCA, resulting
images show that already in one of the first orthogonal components after an eigenvector
analysis, the text appears clearly enhanced.

An evaluation of the philological transcription of the Missale Sinaiticum yields to an
improvement of approximately 51% of the content. In the evaluation, we first counted
the number of characters transcribed from the color image, and afterwards, the number
of additional characters detected in the enhanced images.

The second part of the thesis covered the main topic, a robust method for FBS in
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multispectral images of historical manuscripts. In contrast to the reviewed literature in
Chapter 2 which use either spectral or spatial components to separate text from back-
ground, our approach simultaneously combines both, spatial and spectral features, in one
framework.

Therefore, we incorporate both features in a higher-order Markov Random Field
(MRF) which provides a probability theory for analyzing spatial and contextual depen-
dencies. The spatial model of the MRF incorporates stroke characteristics and contextual
dependencies of the MRF consider spectral observations of the multispectral image data.
Since pairwise connections in graphical models cannot accomplish the extended spatial
stroke model, we use a higher-order MRF model which is more expressive than the stan-
dard ones. The resulting posterior energy function, which forms the basis for the proposed
FBS algorithm, is constructed over unary, pairwise, and higher-order potentials.

Inference in higher-order models was, due to the larger size of the cliques, neglected for
a long time and only pairwise interactions have been used. Since higher-order models offer
advantages compared to pairwise connections, [50] recently proposed expansion and swap
moves for higher-order models. We reviewed two popular algorithms for statistical infer-
ence: Iterated Conditional Modes (ICM) and the above mentioned expansion and swap
move as Graph Cut (GC) based algorithms. The focus was based on solving higher-order
models, since the proposed stroke model requires extensive connections in the graphical
model.

ICM are a well known method used until the late 1990s. However, inference based on
ICM is based on a highly connected graph without higher-order cliques and the method
has a weak computational performance. The method was applied for demonstrative pur-
poses, but showed, due to its strong local minimum property, a good segmentation per-
formance. The second method, we reviewed are energy minimization algorithms based on
GC, namely, α-expansion moves and αβ-swap moves. Since the local energy minimiza-
tion method ICM showed better results than the global GC methods, we introduced an
adapted version of the well known Belief Propagation (BP) algorithm, which is also a
local method for statistical inference but shows better computational performance.

The proposed algorithm for FBS was presented in Chapter 6. In this chapter, we
have presented the individual potential functions forming the higher-order MRF energy
and the proposed algorithm for BP in higher-order models. The unary or data potentials
consider the spectral behavior of the observations, pairwise potentials cover neighboring
observations, and the higher-order potentials include the proposed stroke model. Pairwise
potentials represents the fact that the segmentation is locally homogeneous and labels
depend on each other within a local neighborhood. The higher-order potentials consider
observations within cliques of fixed shape. These cliques cover the approximate diameter
of the strokes and are denominated as the stroke model.

In the experiments in Chapter 7 we have shown an extensive evaluation of the pro-
posed approach for FBS. The aim of the first experiment was to analyze the behavior of
the higher-order stroke model compared to pairwise formulations. Therefore, we evalu-
ated the influence of different cliques sizes or MRF order n and the appropriate weighting
parameter for the proposed model. It turned out that the incorporation of spatial prob-
abilities improves the results. The resulting images have less noise in the background
and even characters with very low contrast are separated from the background due to the
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consideration of the full range of the multispectral information.
For the minimization of the posterior energy we compared three approaches: two local

minimization methods and one global. It turned out, that local methods are better suited
for the application given, since they have a strong local minimum property. Best results
are obtained with ICM and the proposed BPn algorithm. ICM obtained due to its label
feedback slightly better results, but has a high computational complexity. The influence
of the higher-order model has a low effect for the GC based optimization method.

In the second and third part of the experiments we compared the performance of the
proposed method to state of the art binarization methods, among Adaptive Binarization
(AB) [91], k-means clustering, and binarization of historical document images using the
Local Maximum and Minimum (LMM). The k-means clustering was proposed by [66] for
FBS in digitized ancient manuscripts and LMM proposed by [98] is an improved version
of the best performing algorithm from a Document Image Binarization Contest (DIBCO
2009).

The approaches were executed on synthetic images with Gaussian noise and the ex-
periments have shown that the simultaneously consideration of spatial and spectral in-
formation is robust against noise. Finally, in a general comparison of the methods on a
set of multispectral images from the Missale Sinaiticum and on a set of images provided
by the organizers from the DIBCO 2009, the proposed method showed high performance
again. The results have shown that the extended spatial context refines the segmentation
performance of individual characters and outperforms existing methods especially when
multispectral images of degraded documents are applied.

8.1 Our Contribution

The main motivation for this thesis was the development of a robust method for FBS in
multispectral images of degraded documents. Therefore, our approach is based on three
contributions.

The basic idea of the proposed FBS method is the simultaneous combination of spatial
and spectral features. In the reviewed literature, only a few benefit from this combination,
but utilize the combination one after another. In our study we treat the combination
simultaneously within the framework of an MRF.

In order to incorporate spatial features of strokes, we introduced a stroke model which
models the spatial correlation of strokes. The model considers cliques of fixed shape
and covers approximately the average stroke width of characters in a document image
given. The approximate stroke width can be obtained automatically, in our case after
a preceding conventional binarization step. This stroke model is incorporated within a
higher-order MRF since pairwise connections are not sufficient. A main advantage of the
proposed method is that a preceding training of the model and the requirement of high
quality training data is avoided. This allows a general applicability and the method is
independent of font, style, or size of characters.

However, higher-order models have been avoided for a long time due to their com-
putational complexities. For statistical inference in the higher-order MRF, we proposed
to use a local optimization method for FBS, since the influence of the stroke model has
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more impact to the results than in global optimization methods. Therefore, we employed
BP which handles arbitrary potential functions and provides a strong local minimum. In
order to prepare the standard BP algorithm for higher-order models, we proposed the
BPn algorithm, to incorporate the higher-order potentials in the message updates.

The results have shown, that the combination of spatial and spectral features pro-
vides a robust binarization method and that our assumption of local inference for energy
minimization is more appropriate for the incorporation of the stroke model than global
inference methods.

The higher-order model has great impact to the result and is influenced by two param-
eters. The first one is the approximate stroke width and the second parameter concerns
the influence of the stroke model. Our experiments have shown, that the smaller the
neighborhood or its weighting parameter, the more noise remains in the background and
within characters. On the other side, when the cliques of the stroke model exceed the av-
erage stroke width given in the document, or when the influence by means of the weighting
factors is too high, neighboring characters may merge, gaps in characters close, or charac-
ters with low contrast may vanish completely. Best results are obtained when the stroke
parameter coincides the real stroke width of a document image.

Our study has shown that the combination of spatial and spectral features improves the
segmentation accuracy, especially in faded regions with low contrast or in the presence
of image noise. In order to include spatial constraints of strokes, we use higher-order
MRFs to enforce label consistency. This spatial information results in less noise in the
foreground and the background. Furthermore, local inference methods like ICM or BP
achieve better results for the application given than global methods.

8.2 Outlook

The proposed method for FBS has a few limitations. Designed for low contrast regions,
ink bleed through from the background leads to errors since it is detected as foreground
text. Here, pre-processing methods might produce more accurate results. Furthermore,
the local values for the mean and covariance are calculated within rectangular boxes of
constant size. However, the probability density of text and background changes over an
image while the intensity of the background is changing. In this study we have used a fixed
size of the observation windows. A model which is fitted to the background conditions
might improve the results. However, not only the background changes, but also the stroke
width of characters may change, for instance, in ligatures. Thus, an adaptation of the
stroke model for alternating stroke conditions may improve the results by means of less
broken characters, or touching characters.

We have used a simple potential function for the higher-order model based on the
variance within a clique. Since BP works for arbitrary potential functions it is possible
to use more sophisticated functions to simulate the spatial arrangement of stroke charac-
teristics. It would be interesting to analyze the influence of different potential functions.
Such functions could aim to avoid broken characters or noise in the background.

The proposed method is generally applicable, a comparison to supervised methods
would be of interest. Furthermore, a more comprehensive comparison of related methods
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is a major goal of the author, for instance, in the course of a Document Image Binarization
Contest.
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Appendix A

Acronyms and Symbols

AB Adaptive Binarization

BP Belief Propagation

B-P Band-Pass

CRF Conditional Random Field

DIA Document Image Analysis

DIBCO 2009 Document Image Binarization Contest

EM Expectation Maximization

FBS Foreground-Background Separation

GMM Gaussian Mixture Model

GBP Generalized Belief Propagation

GC Graph Cut

GT Ground Truth

ICA Independent Component Analysis

ICM Iterated Conditional Modes

IR InfraRed

L-P Long-Pass

LBP Loopy Belief Propagation

LMM binarization of historical document images using the Local Maximum and
Minimum

MAP Maximum A Posterior
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MSC Multivariate Spatial Correlation

MSI MultiSpectral Imaging

MRF Markov Random Field

NIR Near InfraRed

OCR Optical Character Recognition

PCA Principal Component Analysis

S-P Short-Pass

TRW Tree-Reweighted Message Passing

UV UltraViolet

VIS VISible light
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Appendix B

List of Notation

α weighting parameter for unary potentials
β weighting parameter for pairwise potentials
γ weighting parameter for higher-order potentials
C set of cliques
c clique
E(x,y) energy function
i index of a site
K number of labels
L set of labels
lb, lt label for background and text
N neighborhood system
Ni set of sites neighboring site i
N number of variables in X
n order of the MRF, higher-order model, size of

cliques
ψ potential function
U(x,y) energy function for MRF posterior distribution
V set of sites
X random field
Xi random variable
x MRF configuration of X
xi configuration of Xi

y observed data
yi single observation
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