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Abstract

This thesis discusses the use of computer vision for assisting elderly in the field of Ambient
Assisted Living with Aging-in-place. Falling has been identified as a major health issue
for elderly, especially for those that live independently. Therefore an abnormal activity
recognition system for detecting falls is presented. Activity or event recognition has been
gaining much interest in the computer vision community in recent years. The applica-
tion area covers a wide range, from video surveillance and monitoring, human-computer
interaction to augmented reality. The fundamental problem lies within the detection and
modeling of Video events, the semantic concepts that humans perceive when observing a
scene. When emulating this process with computer vision, the semantic content of the
low-level input has to be abstracted with meaningful features. Finding reliable models
for describing and recognizing events given these abstractions is the key part in event
understanding. In order to detect falls reliably a multi-camera vision system is proposed.
The image evidence is fused early and fall detection is performed in 3D space. This allows
the computation of reliable, view invariant features. Fuzzy logic is used to estimate the
membership of the currently observed features to different human motion models. Using
a novel feature, which is presented in this work, the unexpectedness of a fall incident is
modeled reliably. The evaluation shows, that the proposed approach is a reliable and
computationally efficient fall detector.
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Chapter 1

Introduction

Humans can perceive and understand semantic concepts when observing video se-
quences. Recently much effort has been made to offer solutions to this problem using
computer vision and machine learning approaches. The recognition of events or video
event understanding has a wide range of applications, including video surveillance and
monitoring, human-computer interaction and augmented reality, or content based video
databases. Applications such as “smart” surveillance, content-based video databases, ges-
ture driven human computer interaction or motion analysis have already become available
[TCSU08]. An event understanding framework abstracts the input image sequence into
meaningful units. These are processed by the event model, which determines, if an event
of interest occurred. The output is usually a decision whether a particular event occurred
or a summary of the input [LRR09]. The overall video understanding process can be
separated into two problems of abstraction and modeling:

Event Abstraction The formulation and computation of meaningful abstractions of the
input.

Event Modeling Finding suitable formalisms to model events of interest and allow
recognition of these events.

Video event understanding is generally considered the highest level image processing task,
since it is based on a variety of lower level algorithms and systems that facilitate the
recognition process. Among the events, actions, activities or gestures that have been
investigated by means of computer vision are hand washing [MCB04], tennis strokes
[YKI92], airport apron activities [FVB+07], sign language gestures and drinking actions
in movies [LP07]. In monitoring applications recognizing unusual or unexpected events is
of interest. Since these are events that differ from the expected behavior, they should be
reported for further examination [ZSV04]. However, they are rare, hard to predict and
generally difficult to describe, so recognizing them is not straight forward. Given a large
number of observations of normal or expected behavior, the verification can be tackled
with machine learning approaches. In this thesis, the unusual events are falls and we
investigate computer vision based recognition of falls in the field of supportive homes.
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Figure 1.1: The percentage of Austrians aged 65 and above living in a single-person
household (e.g.: unwed, divorced, married but living apart or widowed) as of 2006 [KE06].

1.1 The Need for Supportive Homes

Living and aging at home is the preferred lifestyle by many seniors [AF08]. In this context,
the term Aging-in-place has been defined as “living where you have lived for many years,
or to living in a non-healthcarehealth care environment, and using products, services and
conveniences to enable you to not have to move as circumstances change” [AF08]. Smart
home technology, so called “supportive homes”, can be used to continuously monitor the
well-being of “patients”.

Currently, more than a third (35.81%) of the people living in a single-person household
in Austria are aged 65 and above [KE06]. This makes up more than half (52.6%) of all the
population aged 65 and above. As is illustrated in figure 1.1, the number of those living
in a single-person household is rising with age: While 37.7% of the 65-79 years old live in
a single-person household, this number steadily increases to 79.3% for those 85 years and
above.

Falling has been identified as a health issue for the elderly, especially for those who
live independently. Falls are the primary cause of the injuries for those 65 years and older,
63% of all injuries within this age group are related to falls, accounting for 15,802 deaths
in the USA in the year 20051. One third of the elderly fall once in a year, almost 50%
of these falls are recurrent. Almost 10% of the falls result in serious injuries. Currently,
an estimated 6% of the US health care expenses are related to elders recovering from a
fall [RFW+98, CKN90, SCFM06]. Studies show that the risk of falling increases with
age [GAA77, GLS+96]. It is reported, that the earlier a fall is reported and treated,
the lower the mortality rate [GLS+96]. However, falls are not only a major threat for
the physical health, but also reduce the independence of living even further due to the
traumatic accident experience [NFR+07]. “For elderly people who live alone, becoming
incapacitated and unable to get help is a common event, which usually marks the end of

1According to the Department of Health and Human Services, Centers for Disease Control and Pre-
vention, Web-based Injury Statistics Query and Reporting System.
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Figure 1.2: Growth of the population aged 65 and above from 1950 to 2050 [Zlo06].

their ability to live independently [GLS+96].”

1.1.1 Demographic Trends

Since 1950 the proportion of the elderly has risen steadily. The United Nations estimate,
that the worldwide population aged 65 years and over will increase to 22% by 2050 [Zlo06].
For the more developed regions2 a rise from 16% as of 2010 to 26% is estimated (Figure
1.2). In this period the potential support ratio3 will decrease from to 4 to 2. While
this indicates the steadily rising quality of the health care systems of the more developed
countries, it implies more age-related diseases and raises questions on the long-term care
for elderly. This development is seen as a great challenge for the health care systems in
the developed countries [Com04, MER00].

A survey conducted in the UK in 1999 with 11,500 users involved, showed that the
expected savings due to the introduction of smart homes for telecare would be around
£7,100,000. Translating these results to the UK as a whole the savings would be around
£7.7 billion over a 10-year period [BBB+99].

1.1.2 Acceptance and Perception

Ethical considerations are key issues that have to be taken into account in the design
of smart homes, especially if computer vision is deployed. On the one hand, the users
are monitored during their daily activities intruding their privacy; on the other hand
this monitoring enables them to live an autonomous life in their own homes. In 2004
a study on the acceptance of smart home technology and sensoring devices has shown
that elderly people accept vision based approaches for fall detection [DRA+04], however
a major concern is that continuous monitoring is used “because technology can do it”

2All regions of Europe plus Northern America, Australia/New Zealand and Japan [Zlo06]
3The number of people age 15-64 per one person aged 65 or older
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Figure 1.3: The four phases of a fall [NRB+08].

rather than out of a necessity. The questions on how to protect the patients privacy, how
much information should be accessible and to whom this information should be accessible,
are another major concern [CARP07].

The EU funded CONFIDENCE project4 aims to build a care system for the detection
of abnormal events. In the course of the project user requirements and acceptance were
evaluated. While most of the participants engage in social and physical activities, 50% are
afraid of falling and 20% are afraid of going out. A majority showed a positive attitude
towards CONFIDENCE and would trust the system in a fall situation. However, privacy
and dignity concerns are raised by 18 respondents.

1.2 Recognizing a Fall

Even though falls are experienced by everybody, is difficult to describe and thus detect a
fall [NFR+07]. The World Health Organization defines a fall as “An event, which results
in a person coming to rest inadvertently on the ground or other lower level” [PKS02].

In [NRB+08] it is proposed to partition the behavior into four categories when detect-
ing falls: prefall, critical, postfall and recovery (see Figure 1.3). During the prefall phase,
the person performs random activities of daily living (ADL). Sudden movements can oc-
cur, like when sitting down, getting up or lying down rapidly. The critical phase marks
the actual fall event. It consists of a sudden movement towards the ground, and ends
with a vertical shock. The duration of this phase is roughly 300–500ms. The time the
person remains inactive, lying on the ground is the postfall phase. To reduce the sanitary
consequences, this phase should be as short as possible. Last comes the recovery phase,
where the victim gets up on his own or with the help from another person. Since the
critical phase is relatively short and a highly dynamic process, time, speed and direction
vary strongly [HHdW08]. Thus, fall detectors do not necessarily recognize the falls, but
rather the postfall phase, where the patient is lying on the ground.

4CONFIDENCE: “Ubiquitous Care System to Support Independent Living”. Project reference: FP7-
ICT-214986. “The main objective of the CONFIDENCE project is the development and integration
of innovative technologies to build a care system for the detection of abnormal events (such as falls) or
unexpected behaviors that may be related to a health problem in elderly people.” http://www.confidence-
eu.org/
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1.3 Thesis Objective and Contribution

This work presents an overview on video event understanding. The focus is on the recog-
nition of unusual events, namely falls. Currently, wearable devices that have embedded
accelerometers or gyroscopes are available on the market. However, it is commonly agreed
upon, that they are insufficient for a number of reasons; they rely on user interaction and
on the users capability and willingness to wear or use them. Those that restrain mobility
are likely to be removed. Additionally, if alarms are not triggered automatically, especially
severe falls, where the user is unconscious or might be unable to move, are not reported.

Vision based approaches have already shown promising results in laboratory setups.
However, most use single cameras [TM06, RMSAR06, RMSAR07, FAP08, VMS07] and
presume a strict camera placement [SJ04, FCLD08, HHdW08, YNC09], which is not
possible under real world conditions. Anderson et al. [ALK+09] combine image evidence
from multiple cameras, by performing a 3D reconstruction in voxel space.

Therefore a fall detection framework that uses multiple camera views is proposed.
Multiple cameras increase the observation space and limit the effect of occlusions. To
allow proper alignment of the views and fusion of the data, the cameras are calibrated.
This gives better results than previously proposed approaches that rely only on a single
uncalibrated camera. Further, in this setup the camera placement is not restricted, but
cameras have to be mounted statically.

Detection of the critical and the postfall phases are attempted, to enhance the de-
tection performance. Different features for event abstraction, as well as different event
models are discussed and recognition results compared.

1.4 Structure of the thesis

A thorough investigation of the related fall recognition work is in Chapter 2 presented.
First, user-activated and worn automatic devices, are presented in Section 2.1. Fall de-
tectors based on acoustic information (Section 2.3) and floor vibration pattern (Section
2.4) are presented as well. In Section 2.5, computer vision fall detectors are presented in
chronological order.
In Chapter 3 the proposed acquisition system and the laboratory setup are presented.
The underlying camera model is introduced in Section 3.1. A refined model, which takes
into account lens distortions, is presented in Section 3.2. Further an introduction to the
state of the art in camera calibration is given in Section 3.3.
Chapter 4 discusses event abstraction methods. Silhouette extraction approaches are de-
scribed in Section 4.1. The proposed early fusion of the image evidence in a global 3D
voxel space is introduced in Section 4.2. Features, that describe shape and motion prop-
erties of the voxel representation are discussed in Section 4.3.
In Chapter 5, an introduction the Event Understanding terminology is given. This is
followed by an introduction to the commonly employed modeling approaches: k-Nearest
Neighbors (Section 5.1.1), Neural Networks (Section 5.1.2), Support Vector Machines
(Section 5.1.3), Finite State Machines (Section 5.1.4), Hidden Markov Models (Section
5.1.5) and Fuzzy Inference (Section 5.1.6).
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In Chapter 6 the proposed system and the experimental results are presented and dis-
cussed. Section 6.1 describes the system setup, the feature subset that was evaluated
and the recognition pipeline. An evaluation of the proposed setup is given in 6.2 with a
comparison to the state of the art.
Finally, Chapter 7 concludes the thesis, with a summarization of the contribution and the
obtained results. Further an an outlook for future work in this area is given.
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Chapter 2

Related Work

Different types of non computer vision related fall detectors have been commercially avail-
able or under active research for some time now. This section gives an introduction to
these devices and presents the state of the art for computer vision based fall detection.
These devices can be classified as one or a combination of the following four categories:
User-Activated Alarms and Pendants (Section 2.1), Automatic Fall Detectors (Section
2.2), Acoustic Fall Detectors (Section 2.3) and Floor Vibration-Based Fall Detectors (Sec-
tion 2.4). This is followed by a review of the relevant computer vision based approaches
in Section 2.5.

2.1 User-Activated Alarms and Pendants

These devices generally require the user to press an alarm button in case of a fall. It
is obvious that these systems are only suitable for cognitively intact persons and fail
under certain situations, e.g.: if the person loses consciousness, or cannot reach the alarm
button, due to trauma or pain. Such systems are available on the market [AF08]. An
example is the Phillips Lifeline1: It consists of a stationary communicator device, that
is connected to the telephone network, and a wearable personal help button (see Figure
2.1). On pressing the button a two way voice communication with the service center is
established and the call will be handled immediately by an attendant of the service center.
Based on the type of incident and the condition of the caller, a neighbor, a family member
or emergency services are contacted.

2.2 Automatic Fall Detection Devices

A number of automatic wearable devices have been designed. They generally model the
fall as an impact on the floor, followed by a near horizontal orientation of the faller
[VBNL08, PFME06]. Accelerometers are employed to detect an impact and tilt sensors
determine the orientation of the faller after an impact was detected. Fall detectors are

1Phillips Lifeline - the trusted medical alert service provider (accessed Dec. 2008)
http://www.lifelinesys.com/
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Figure 2.1: The Phillips Lifeline consists of a stationary device that is connected to the
telephone network and a wearable personal help button.

usually worn around the chest, the waist or the thigh. A problem for the acceptance of
this kind of fall detectors, if worn visibly, is the possible stigmatization of the users [AF08].
Furthermore, depending on the formalization of the fall, alarms my not be triggered if
the fall does not occur on a horizontal floor [AF08].

Recently Perolle et. al. have presented a wearable wireless platform for fall detec-
tion that is additionally equipped with a GPS system to allow localization and enables
bidirectional communication with a service center using GSM/GPRS [PFME06].

With SPEEDY, a first prototype of a fall detector integrated in a wrist watch is
presented [DJRW03] (see Figure 2.2). The device is more comfortable to wear and discreet,
which increases the acceptance of fall detectors among elderly. It can be conveniently
worn around the clock in contrast to devices that are worn with a belt around the hip.
A disadvantage is the greater complexity of the fall detection algorithm, as the arm has
six degrees of freedom. This is visible in the overall detection performance of only 65%.
However during the test no false alarm was reported.

A wearable airbag with an integrated automatic fall detector has been presented in
[TYS+09]. In this study, acceleration as well as angular velocity features are used as input
for a thresholding classifier.

In [ST09] a software, which utilizes GPS and accelerometers that are embedded in
recent smart phones is presented. This allows a non-obtrusive device, which can provide
location independent fall detection and alarm notification.

2.3 Acoustic Fall Detectors

An entire telemonitoring system based on unusual sound detection has been presented
by [CVI+03]. The system analyzes the sound environment of an apartment in real time
and detects abnormal sounds - falls of objects or the patient - that could indicate a
distress situation in the living space, and calls for help. The system was designed, because

8



Figure 2.2: SPEEDY is an automatic fall detector embedded in a wrist watch [DJRW03].

“the elderly had difficulties in accepting the video camera monitoring, considering it a
violation of their privacy” [CVI+03]. In an experimental setup, low cost, omni-directional
microphones were installed in each room of the apartment. In a two step approach
unusual sounds are recognized: in a first step relevant sound events are extracted and in
the second step, sound events are classified in two groups, normal and abnormal. The
event classification is transmitted to a master computer, which fuses the sound event data
with data from medical sensors and sends alarm messages if necessary.

More recently an acoustic fall detection system that uses an array of acoustic sensors
has been presented [PLSR08]. That way, the height of the sound-source is determined,
thus reducing the false alarm rate.

2.4 Floor Vibration-Based Fall Detectors

A fall detector that directly measures the vibration has been presented in [ARK+06]. It
is based on the observation, that human activities like walking, running cause measurable
vibrations on the floor. The hypothesis is, that the vibration patterns resulting from falls
are significantly different form those generated by normal daily activities or by objects
falling on the floor. To measure and evaluate the floor vibration, a piezoelectric sensor
coupled to the floor surface, by means of a mass and spring arrangement, combined with
preprocessing electronics is used. The detector reports falls to a responder via a pager
or a cellular phone. Controlled laboratory experiments with anthropomorphic dummies
on mezzanine concrete floor and concrete slab floor showed a 100% detection rate. The
detection range for the sensor was found to be 15 - 20 ft (4.5 to 6m). depending on the
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floor type and the cover. Thus one device per room should be sufficient for most settings.
To cover larger rooms, multiple devices can be installed. The installation procedure
does not require significant customization by technical staff, as is generally the case with
video monitoring-based fall detectors. Further experiments still have to be conducted, as
different types of floors (e.g.: carpeted floors, parquet) alter the vibration-properties of
floors drastically. Additionally the performance under realistic fall scenarios has to be
evaluated as well.

2.5 Computer Vision

The traditional wearable devices presented above have various drawbacks. User activated
alarms are not suitable in situations the faller becomes unconscious, immobilized or is
mentally not in the shape to activate the alarm [RMSAR07]. Worn devices that use
accelerometers can automatically detect falls, but are unintentionally often not worn, e.g.
when returning home or if forgotten, because of dementia. If they are uncomfortable
or cause alarms during housekeeping tasks, they are often removed. Moreover it has
been pointed out, that these devices depend on the occupants willingness to wear such a
device [Dou00, TM06]. Other systems based on acoustics or floor vibrations have shown
promising results, but have not been thoroughly evaluated so far.

This led to the development of non-invasive vision based systems that operate auto-
matically and do not constrain the occupant. A chronological presentation of the state of
the art of vision based fall detection is given.

Nait-Charif and McKenna have shown that fall detection and activity summarization
can be achieved with a single overhead-mounted camera per room [NCM04]. An adaptive
background model with shadow detection is used to compute moving regions. Subse-
quently persons are modeled as ellipses and tracked with particle filtering. The authors
claim that representing persons as ellipses yields a representation that is rich enough to al-
low detection relevant actions such as standing, sitting or falling, while it is coarse enough
to allow tracking under various different body poses and clothing. The tracker provides
trajectories in the 5D ellipse parameter space - (xt, yt, ψt, st, et) with the center (xt, yt) and
orientation ψ, scale st and eccentricity et – which are used together with the persons speed
st (computed over a 40-frame temporal window) to provide a compact representation of
the patients motion. It has been shown that context-specific spatial models can reduce the
complexity of behavior interpretation greatly [MNC04, ZK10]. Two kinds of meaningful
spatial regions are learnt from the motion trajectories: Inactivity zones such as a chair,
a sofa, or a bed where it is usual, that little motion occurs for an extended amount of
time. Entries and exits areas are labeled as entry zones. This was achieved using MAP
estimation of Gaussian mixture models. Each Gaussian PDF, p (xt | k) provides a model
for the spatial extent of zone k. The activities in a room are semantically represented
by temporally segmenting the sensor data into: time spent entering via an entry zone,
inactivity in the inactivity zones, transition between the inactivity zones, and exiting the
room. Figure 2.3 shows an observation with the motion trajectories and the inactivity
zones marked. Fall detection works as follows: when the speed st drops to an extent that
indicates inactivity, the PDF’s provide a way of checking whether the inactivity occurred
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Figure 2.3: Top down view on a room, with motion trajectories (yellow) and inactivity
zones marked as red circles. The entry zones are marked red on the left and top of the
image. Image taken from [NCM04].

in a known inactivity zone or not.
An array of low-cost infrared detectors is used to detect falls in [SJ04]. Since in-

terpreting the low-resolution infrared data can be implemented on small size, low-cost
embedded hardware, the motion analysis occurs locally within the detector, in a single
device. Object position, velocity shape and size are tracked with an elliptical-contour
gradient-tracker. For fall detection, a neural network using vertical-velocity estimates
provided by the tracked data as input is employed. Additional modules are employed to
detect subtle motion and monitor inactivity. The output of the three modules is pro-
cessed by a high-level reasoner, which triggers alarms based on long-term inactivity or
falls. The performance of the fall detector was evaluated on laboratory data. The detector
performed poorly with only 35.7% of the fall scenarios detected correctly. However, for
the non-fall scenarios a 100% detection rate was achieved. The authors conclude that the
vertical-velocity alone is not enough to discriminate falls from normal activity. However
the postfall (i.e. the inactivity monitor) processing yields satisfying results.

In [TDc05] a combination of audio and video is used to detect falls with Hidden Markov
models. In the image processing part, the width to height ratio ρ(n) = w

h
of the person’s

bounding box is transformed to the wavelet domain ωi. This 1-D signal is then used as
the input for two three state Markov models for classification. They argue that using
wavelet coefficients has 2 major advantages over directly using ρ: First, wavelets easily
reveal the aperiodic characteristic of the fall. Second, setting thresholds is considered
easier, since slow variations in the original signal lead to zero-mean wavelet signals. It is
assumed, that while walking, ω is quasi periodic, while it rapidly converges to zero when
falling and finally does show significant change. Two thresholds T1, T2 are introduced to
formulate three states of Markov models, one for walking and one for falling:

11



S1 : |ωi| < T1 falling/after a fall
S2 : T1 < |ωi| < T2 in between (used for transitions)
S3 : |ωi| > T2 walking, change in appearance

(2.1)

In the walking model, since the signal is quasi periodic, the state transition probabilities
are expected to be similar. While in the falling model, S1 is expected to be dominant,
while S2 provides hysteresis and prevents sudden S1 ⇔ S2 changes.

In [TM06] the vertical angle of a person’s principal axis θ is tracked as a 1-D signal over
time. From the motion segmentation the minimal bounding rectangle is computed, which
gives the orientation of the principal axis. Applying metric image rectification, the image
is transformed such, that the horizontal image axis corresponds to the 3D Z-axis. Thus θ
can be used as a reliable feature for fall detection. A two layer Hierarchical hidden Markov
model (HHMM) is proposed to model and recognize activity. The first layer motion
models are denoted as elementary behavioral pattern, and describe the corresponding
observations. The following three pattern models are used: “Is Walking”, “Is Falling” and
“Is Lengthened”. For the given observations, the most probable elementary behavioral
pattern model is computed. On the second level the states correspond to the elementary
patterns. Of the models WALK and FALL the one that best explains the sequence of
elementary behavioral patterns detected is chosen. The usage of HHMM is motivated
by their low computational cost and by additionally becoming tolerant to errors in the
segmentation process.

The fall detection system presented in [RMSAR07] is designed as a low cost system,
and works with an uncalibrated USB wide angle camera. It is based on three hierarchical
verifications of the motion of the extracted persons blob and the ellipse approximating
the blob. First a motion history image MHI (Hτ ) is used to quantify the blob motion
Cmotion. The MHI is a gray scale image, where the intensity of a pixel is a function of the
temporal history of motion at this point. The more recent motion occurred, the brighter
is the pixel:

Cmotion =

∑
Pixel(x,y)∈blobHτ (x, y, t)

#pixels ∈ blob (2.2)

If large motion is detected (Cmotion > 65%) the approximated human shape is analyzed
to distinguish normal motion from a fall. Two properties of the ellipse are examined: the
angle θ between the ellipse’s major axis and the horizontal axis x, as well as the ratio
ρ = a

b
of the major axis a and the minor axis b. Both are assumed to change significantly

during a fall. This is measured by computing the standard deviation of θ and ρ over a
1–second period. In the third step, a fall candidate is confirmed if a lack of motion of the
ellipse is detected during a 5–second period. Non-motion is indicated by a low Cmotion
and stable ellipse position and shape properties.

Lu¨trek et al. [LK09] have developed a fall detection prototype for the CONFIDENCE
project, using a combination of 12 infrared body markers and multiple cameras to locate,
and measure angles between body parts. From these locations three different sets of
attributes are computed: the location in a reference world coordinate system, the location
in a body coordinate system and the angles between adjacent body parts. Different
machine learning algorithms and their performance on the different attribute sets have
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been evaluated. Support Vector Machine (SVM) produced the most accurate results,
yielding a classification accuracy of 96.5% on the combination of reference and angle
attributes.

Hazelhoff et al. proposed an approach designed to handle real life situations [HHdW08].
Their method can handle inaccurate person segmentation caused by occlusions or due to
additional objects such as walking aids. They achieve their goal using two uncalibrated
perpendicular cameras. Using background subtraction and connected component analy-
sis, persons are segmented in the image. Since two cameras are used, a tracker matches the
detected objects and additionally discards non-human objects based on size constraints.
The person’s principal axis angle φ and the variance ratio ρ are computed, and are used
as feature input to determine a fall using a multi-frame Gaussian classifier. Since falling is
a dynamic process involving varying time, speed and direction, the authors claim that it
is more practical to identify lying persons. Manually defined inactivity zones are used to
discriminate between intentionally lying poses and lying resulting from a fall. A Gaussian
classifier is set up to discriminate between the two classes FALLS and NON-FALL. For
each feature set (principal axis angle and variance ratio) the probability of a fall pfall (ρ, φ)
is computed and thresholded to obtain a binary classification result.

pfall (ρ, φ) =
1√

2π |Σ|
e
− 1

2

 φ− µφ
ρ− µρ

ΣT

 φ− µφ
ρ− µρ


(2.3)

To further reduce false positives, the position of the head is checked against the previous
position and the fall rejected if the position is approximately the same.

Fu et al. [FCLD08] have presented an approach based on an Address-Event Temporal
Contrast (ATC) Vision Sensor. An ATC sensor emulates the data–driven biological vision
architecture [Lic06] as opposed to standard frame cameras. Instead of letting the receiver
poll at a predefined frame rate, ATCs extracts changing pixels and reports temporal
contrast as a sequence of events to a receiver [FCLD08]. The fall detection is based on
centroid position and speed. Centroids are computed as the temporal averages of a series
of event addresses. The centroid event address (xc, yc) during a fixed period of N frames
is calculated as:

xc =

⌈∑N
i=1 xi
N

⌉
, yc =

⌈∑N
i=1 yi
N

⌉
(2.4)

The event rate – the readout speed in the ATC – correlates with motion speed, size
and light contrast. So when the lighting conditions are set, the motion in the scene
can be derived from the event rate. Falls can cause 5120 events/s, while walking causes
approximately 2100 events/s. The centroids vertical velocity during time period T is given
by:

Vy =
4yc
4t =

(yc,i − yc,,j)
ti − tj

(2.5)

with 4t = ti − tj. The self-contained non-intrusive detector is small in size and has low
power consumption. Since no image data is obtained, the authors claim that privacy is
protected. However the system relies strongly on the ATC sensors position mounted at a
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height of 0.8m. At that height, it is likely that objects such as chairs or tables obscure
the sensors field of view. Since detection results have not been published, a detailed
evaluation is not possible.

Anderson et al. [ALK+09] use four calibrated cameras for their proposed linguistic
summarization approach. After motion detection they compute the volume the person
is occupying in 3D voxel space – the “voxel person” – by back-projecting the silhouette
images to the 3D space. For each frame, they compute the membership of the voxel
person to a set of three predefined states (upright, on-the-ground and in-between) based
on three features: centroid, eigen-based height and similarity of the major orientation
with the ground plane. The state memberships are defined by fuzzy operators and have
the following definitions:

Upright Voxel person has a large height, the centroid is at medium height and the
primary orientation of the voxel person is similar to the ground-plane normal.

On-the-ground Voxel person has low height and low centroid. The primary orientation
of the voxel person is dissimilar to the ground plane normal.

In-between Height and centroid are medium, and the primary orientation is non-identifiable
or similar to the ground plane normal.

Activities are characterized according to the state duration, frequency of the state occur-
rence and the state transition behavior. Given an observation o, a membership confidence
value is assigned for each state at time t. Based on the fuzzy state memberships, a hu-
man readable linguistic summarization in the form of: Xc is Si in Pk for Tj is generated.
Xc is the tracked person and Si is the observed state. The scene is partitioned into K
non-overlapping locations and Pk denotes the location. Tj is the duration, measured in J
fuzzy set definitions over the time domain. An example summarization would be “Person
A is on-the-ground in the kitchen for a short time”.

The authors argue, that while their proposed fuzzy logic based recognition requires
domain expert knowledge for the formulation of the rules, fuzzy rules allow the recognition
of activities as well as modeling of special cases. Their approach is flexible enough for
rules to be added, removed or modified, which is extremely difficult with hidden Markov
models.

Vishwakarma et al. [VMS07] employ a two state Finite state machine (FSM) in order
to discriminate falls from normal activities. Three features are used as input: The width
to height ratio of the object bounding-box, the object gradient and the fall angle.

In [FAP08] three different kinds of behavior are distinguished: normal, abnormal
(stumbling and limping) and unusual (falling). This is achieved by a combination of five
features that are computed from the motion segmented silhouette. The first two features
are based on an approximated ellipse: standard deviation of the orientation (major axis)
and standard deviation of major/minor axis length ratio. Normalized horizontal and
vertical projection histograms as well as the frame to frame difference of the approximated
head position are considered. A Multi-layer perceptron is used to differentiate the three
behavior classes.

A simple thresholding approach is empowered by Yu et al. to detect falls [YNC09].
The vertical and horizontal head velocities are tracked with particle filtering and a first
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order random walk model with additive Gaussian noise. Depending on the overall objects
motion magnitude, the variance of the added noise is altered. Motion magnitude is
obtained with MHI as in [RMSAR07].

Inspired by the work presented in [ALK+09], a comparison of early vs. late fusion has
been presented in [ZMK10] as part of the MuBisA project2. As features for the fuzzy-
based inference system, semantic driven features are chosen: bounding box aspect ratio,
axis orientation, ellipse axis ratio and the motion speed. The evaluation showed that
the early fusion of image evidence in a 3D space outperforms multiple independent fall
detectors.
An overview of the presented acoustic and vision related literature as well as the vibration
based approach by Alwan et al. is given in Table 2.2.

2MuBisA: “Computer Vision for an Independent Lifestyle of the Elderly and Disabled”. Based on
the idea of smart-homes, the aim of the MuBisA project is the development of a closed system for the
automated event detection and the communication with mobile devices. In the project technical expertise
of the state of the art computer vision is merged with the needs of well known consumer carriers in the
field of assisted living. http://www.cogvis.at/mubisa/
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Author Type Detection Abstraction Model
Castelli

[CVI+03]
audio direct sound events GMM

Sixsmith [SJ04] IR-vision combined vertical object velocity
Neural

Network

Nai-Charif
[NCM04]

vision indirect
object centroid

trajectory, centroid
speed

GMM

Töreyin
[TDc05]

vision +
audio

indirect
wavelet transformed

objects width to
height ratio

HMM

Alwan
[ARK+06]

vibration direct
vibration pattern

(frequency, amplitude,
duration, succession)

integrated
circuit

Thome [TM06]
vision
(multi

camera)
combined

object 3D principal
angle

HHMM

Rougier
[RMSAR07]

vision combined
object motion

quantification and
principal angle

rules

Vishwakarma
[VMS07]

vision combined
object width to height
ratio, object gradients,

angle
FSM

Fu [FCLD08]
vision
(ATC)

direct
vertical centroid

velocity
NN

Popescu
[PLSR08]

audio direct
signal energy, sound

height
K-NN

Hazelhoff
[HHdW08]

vision indirect
object principal angle,
ratio of variance, head

position

Gaussian
classifier

Foroughi
[FAP08]

vision direct

standard deviation of
orientation and angle,
projection histogram,

head position

MLP
Neural

Network

Anderson
[ALK+09]

multi-
camera
vision

combined
centroid velocity,
height and angle

fuzzy
inference

Lustrek et al.
[LK09]

IR-marker combined body angles SVM

Yu [YNC09] vision direct
motion magnitude, 3D

head velocities
threshold

Zambanini
[ZMK10]

multi-
camera
vision

indirect

3D bounding box
ellipse aspect ratio,

orientation, axis ratio
and motion speed

fuzzy-
based

Table 2.2: An overview of automatic fall detectors, in chronological order.16



Chapter 3

Acquisition System

In order to increase the observation volume and to reduce the effect of occlusions, image
evidence from multiple cameras is used. In a laboratory setup, four cameras with par-
tially overlapping views monitor a single room. At some point in the event recognition
framework, the data derived from the multiple views has to be fused. Based on the results
presented in [ZMK10] an approach is proposed, where the image evidence is fused early
in the processing pipeline. In the suggested early fusion approach, the multiple views are
combined to reconstruct a 3D voxel representation of the human. See Figure 3.1 for a
comparison of early and late fusion. When working with multiple cameras, the data of
the individual cameras has to be fused at some stage in the event recognition process.
In late fusion approaches each camera performs data abstraction and event recognition
individually. The recognition outputs of all cameras are fused late by a voting algorithm.
With early fusion however, the camera data is fused early and data abstraction and event
recognition are performed on the accumulated information provided by the different cam-
eras.

Camera Calibration is the process of acquiring the internal and external parameters of
the camera. With calibrated cameras a relation between the projection of the scene and
the scene itself can be established. Starting with the pinhole camera model in Section
3.1 the mathematical fundamentals of the image acquisition process are described in this
chapter. Since the pinhole camera model is an idealized camera model, this simplified
model is extended in Section 3.2 to account for the distortions introduced when using
lenses. In Section 3.3 an overview of calibration methods is presented, with references to
further literature.

3.1 Camera model

The Pinhole Camera model describes the mapping of the coordinates of 3D points to
the image plane of the camera through a perspective projection. In this model an ideal
camera without lens is assumed. Instead the light enters the camera through an infinite
small hole. Light rays reflected by objects pass through this pinhole and give an inverted
projection of the object on the image plane π. The parameters of the camera can be
categorized into extrinsic and intrinsic parameters.
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(a) (b)

Figure 3.1: A comparison of early (a) and late fusion (b). [ZMK10].

The extrinsic camera parameters describe the location and orientation of the camera
coordinate system in a known world coordinate system and are therefore required to trans-
form from world coordinates to camera coordinates. To transform the world coordinate
point Pw at (Xw, Yw, Zw) to Pc, (Xc, Yc, Zc) in camera coordinates a translation followed
by a rotation is applied:  Xc

Yc
Zc

 = R (Pw − t) (3.1)

The vector t = (tx, ty, tz) translates the origin of the camera coordinate system to the
origin of the world coordinate system. The 3 × 3 matrix R expresses three elementary
rotations – roll ψ, pitch ϕ and yaw θ – of the coordinate axes along x, y and z. This makes
up six extrinsic camera parameters: three rotation and three translation parameters.

The intrinsic parameters define the projection of camera coordinates to pixel coordi-
nates. Figure 3.2 depicts the pinhole camera model showing the camera coordinate system
having origin C and the axes X, Y, Z and the image coordinate system with origin c and
the axes x, y. Capital letters denote points in the camera coordinate system, while small
letters denote points in image coordinates. The pinhole C is called optical center or focal
point. The Z-axis is the optical axis and points away from the image plane π. The im-
age plane is perpendicular to the optical axis, which intersects π in the principal point,
c = (cx, cy). The distance f of the focal point to the image plane is the focal length.

As is illustrated in Figure 3.2, the world coordinate point M is projected along a ray
through the optical center onto the image plane to the point m. As mentioned above the
projection is inverted (rotated by 180°). Thus, a common simplification of the pinhole
camera model is to introduce a virtual image plane in front of the optical center with
z = f [XZ96].

By similar triangles one can clearly see that the map of M with coordinates (Xc, Yc, Zc)
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Figure 3.2: The pinhole camera model. The point M in world coordinates is projected
along a ray through the optical center C onto the image plane π as m.

to m(xi, yi) in the image coordinates is given by:

xi =
f

Zc
Xc and yi =

f

Zc
Yc (3.2)

Using homogeneous notation, affine transformations can be written as a matrix multipli-
cation. The above transformation is written in homogeneous coordinates as:

 xi
yi
1

 =

 f
Zc

0 0 0

0 f
Zc

0 0

0 0 1 0

 �


Xc

Yc
Zc
1

 (3.3)

Equation 3.2 assumes that the origin of the coordinates system in the image plane is at the
principal point. Since we are dealing with digital images, we are using discrete positive
coordinates, the pixel coordinates. The associated projection from camera coordinates
(xc, yc) to pixel coordinates (u, v) shifts the coordinate system to have it’s origin at (0, 0)
and incorporates the size of sensoring elements sx, sy: u

v
1

 =

 1
sx

0 cx 0

0 1
sy

cy 0

0 0 1 0

 �
 xc

yc
1

 (3.4)

Combining the mappings (3.4) and (3.3) we have the camera calibration matrix or
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Figure 3.3: The general principle of radial and tangential distortions (left), the effect of
radial distortion (center) and of tangential distortion (right).

matrix of intrinsic parameters : u
v
1

 =

 fx 0 cx 0
0 fy cy 0
0 0 1 0


︸ ︷︷ ︸

�


Xc

Yc
Zc
1


camera calibrationmatrix

(3.5)

where fx = f
zcsx

, fy = f
zcsy

.

3.2 Lens Distortions

The pinhole model is just an approximation of the projection when using a lens. It is
useful, as it allows us to formulate the relationship between world and image coordinates
in a simple way. However, it is practically not valid, since any lens introduces distortions.
Most notably are radial and tangential distortions [HS97]. However depending on the
quality of the lens they can be minimized. Figure 3.3 illustrates the effects of radial and
tangential distortions.

With radial distortion, the location of pixels near the edge of the image are distorted
more that at the center, where there is zero distortion. It is approximated by the first
few terms of a Taylor series:(

δxrc
δyrc

)
=

(
xc(κ1r

2 + κ2r
4 + . . . )

yc(κ1r
2 + κ2r

4 + . . . )

)
(3.6)

With κ1, κ2, . . . the radial distortion coefficients and r =
√
x2
c + y2

c .
The tangential distortion is formulated as:(

δxrc
δyrc

)
=

(
2p1xcyc + p2(r2 + 2x2

c)
p1(r2 + 2y2

c ) + 2p2xcyc

)
(3.7)

where p1, p2 are the tangential distortion coefficients. In most cases it is sufficient to only
estimate the first and second order radial distortions κ1, κ2. The tangential distortion is
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(a) (b) (c)

Figure 3.4: Three examples of calibration images, two planar and one 3D target: (a) with
a checkerboard pattern [Bou99], (b) with a circular pattern [ZS04] and (c) a 3D target
[Bou99].

generally only applied for fisheye and wide angle lenses [Tsa86, Zha00]. Other types of
distortion have been proposed in the literature, but depending on the physical properties
of the lens, their effects are usually little, or can be approximated by radial and tangential
distortions [WCH92].

3.3 Camera Calibration

Combining the pinhole camera model with the equations for radial and tangential distor-
tion and the external parameters, the full camera model is specified. The rotation matrix
can be expressed as three separate rotations, thus there are the following parameters:

� Extrinsic

– tx, ty, tz - the components of the translation vector t

– ψ, ϕ, θ - the three elementary rotations - roll, pitch and yaw

– fx, fy - focal length in x and y direction

� Intrinsic

– cx, cy - the image center

– κ1, κ2 - the radial distortion coefficients

– p1, p2 - the tangential distortion coefficients

The process of estimating the best set of model parameters is called camera calibration.
Typically images of a calibration target – an object with known geometric properties –
are acquired. The set of parameters, that best match the estimated projection with the
observed projection are estimated [Bou99]. Heikkila [HS97] uses a cubic 3D calibration
object with a dot pattern, while others use flat targets with checkerboard or circular pat-
terns [WCH92, Bou99] that are easier to handle. Figure 3.4 shows examples of calibration
targets: two planar and one 3D target.
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In [ZS04] the quasi standard approaches of Tsai [Tsa86], Heikkila [HS97] and Zhang[Zha00]
are compared, with the result, that all three approaches provide feasible results for close
range photogrammetry, however practicability is determined by the modeled camera pa-
rameters. The selection of an appropriate approach depends on the desired accuracy and
the quality of the lens system.

In [Tsa86] Tsai presents a method that estimates the parameters in a semi-linear way.
This is achieved by reducing the distortion parameters to the first order radial distortion
parameter κ1. This simplification is sufficient to determine the extrinsic parameters (ex-
cept for tx) uniquely in a first step, without providing an initial guess. In the second step
the f, tz and κ1 are estimated by non-linear optimization.

Heikkila and Olli’s [HS97] method is based on the direct linear transform (DLT). DLT
is based on the pinhole camera model, ignoring the nonlinear distortion parameters. In
the first step the linear transformation from object coordinates (Xi, Yi, Zi) to image co-
ordinates (ui, vi) is solved. The non linear parameters are estimated using least squares
method of the differences of the computed image coordinates and the measured coordi-
nates. This requires initial guesses that are provided by the parameters of the DLT.

The approach proposed by Zhang [Zha00] requires at least two views on a planar
target. Zhang assumes that Z = 0 for the calibration target and that the world coordi-
nate system is aligned with the axes of the calibration target. With the points in image
coordinates pi = (ui, vi) and the corresponding known points in 3D world coordinates
Pi = (Xi, Yi, Zi = 0) a homography can be derived. The homography is solved with a
closed form solution and refined with a Maximum likelihood estimation inference. Distor-
tion parameters are estimated by extending the maximum likelihood equation with the
parameters for radial and tangential distortion.

Recently, Svoboda et al. [SMP05] have presented a fast multi-camera calibration
procedure, which uses a virtual calibration target. This solves the two major problems
of traditional approaches when calibrating multiple cameras: First, calibrating a multi
camera system involves a lot of manual work: From placing the calibration target in each
camera view, to registering all views to one common world coordinate system. Second,
with the size of the working volume, the calibration target size has to grow as well. By
moving a laser pointer in the working volume, a virtual 3D calibration target is created
over time. Their approach is aimed at multi camera systems and requires at least three
roughly synchronized cameras.

Grammatikopoulos et al. [GKP07] have presented an automatic approach for camera
calibration from vanishing points of scenes that satisfy the Manhattan world assump-
tion. This assumption states, that the image scene contains three orthogonal, dominant
directions, which is usually satisfied in indoor and urban images [CY99]. While other
approaches [DIM02] often only estimate the external camera parameters and focal length,
their approach is able to estimate the camera constant, location of principal point, and
the two radial distortion coefficients.

Zhang’s calibration method efficiently supports the camera model described in section
3.1 with the distortions introduced in Section 3.2. While a short overview has been given
in this section, a detailed description of the calibration procedures is out of the scope of
this thesis. The reader may refer to [Zha00] for details on the closed form and maximum
likelihood estimation equations.
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Figure 3.5: Camera Placement.

3.4 System Setup

Using 4 calibrated cameras, the working volume for the proposed early fusion approach
covers approximately 6 × 4.5 × 2m. The camera placement is shown in Figure 3.5. The
cameras are placed at approximately 2m height. Calibration was performed using the
approach suggested by Bouguet [Bou99], with respect to a common world coordinate
system, having its origin roughly in the center of the observation area.
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Chapter 4

Data Abstraction

Image sequences consist of massive amounts of raw information in the form of spatio-
temporal pixel intensity variations [TCSU08]. Most of this information however is irrele-
vant for the recognition of motion, as was shown in an experiment by Johansson [Joh76].
Observers were able to identify human motion patterns just by observing light sources
placed on 5-10 limb joints, without any other contextual information. In this chapter data
abstraction methods are discussed. These abstractions are commonly referred to as fea-
tures, the set of features at time t makes up the feature vector. Pixel level and object level
features are examined. Pixel level abstraction are those that rely on single pixel or group
of pixel features such as color information, texture, edges, gradients and so forth. Object
based abstraction on the other hand is founded on the assumption that a description
of the objects participating in scene is a reasonable intermediate representation scheme
[LRR09]. It builds on a meaningful grouping of pixels into objects and their properties,
including size, shape, trajectory, speed, etc. Object based abstraction builds on previous
object segmentation and tracking approaches.

In the following sections, various features, with an emphasis on object based features
are presented. Since silhouettes are the foundation of the later proposed object based
features, the state of the art is presented in Section 4.1. Shape from Silhouette, which
is a method for reconstructing the 3D Volume of objects based on silhouette images
from different viewpoints is presented in Section 4.2. In Section 4.3 various object based
features as well as a novel unexpectedness feature are presented.

4.1 Silhouette Detection

To extract the objects of interest (the foreground) a background subtraction is usually
applied. Background subtraction is based on the assumption, that there is a relatively
static background and a moving foreground. The current image at time t is subtracted
from the background and thresholded to separate foreground F and background B.

Another approach for estimating pixel based motion in image sequences are based on
the estimation motion vectors. Horn [HS81] describes optical flow as the distribution of
apparent velocities of movement of brightness patterns in an image. Velocities are assigned
to each pixel in the frame, which describe the motion from the previous frame. This forms
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a dense motion field, where the discontinuities resemble image segments from different
objects. One major advantage of optical flow approaches over background subtraction is
that they inherently handle camera motion.

Since we propose static cameras, background modeling can be applied. However back-
ground subtraction and optical flow approaches have to be able to handle a variety of
common scenarios. These typical problems have been summarized in [TKBM99]:

Unclean initialization In uncontrolled scenes, a clean view on the background (with
no foreground objects) is not possible.

Varying illumination During observation the illumination conditions can usually change.
This is caused by the changes of the time of day (solar irradiation), cloudy weather
conditions or when lights are switched on or off.

Moved object Background object are generally not static. Such moving background
introduces an additional “ghost”, located at the position of the object while it was
part of the background.

Waving trees Background objects can show high frequent changes. Examples are wav-
ing trees or curtains.

Shadows Due to lightning conditions, foreground objects cast shadows, which move
along with the object.

Foreground Aperture Uniformly colored objects show observable motion only at their
boundaries.

4.1.1 Color Mean and Variance

The underlying assumption of the Color Mean and Variance (CMV) approach is that the
background can be modeled by a single Gaussian distribution [WADP97]. Considering
standard RGB color space, each pixel is modeled per channel by it’s the mean µR,µG, µB
and variance σR, σG, σB. A newly observed pixel o is classified as foreground if:

|oc − µc| > ασc for c∈{R,G,B} (4.1)

where α controls the sensitivity of the segmentation. Considering the Normal distribution,
99, 73% of the background is covered for an α = 3. The background model is initialized
from the first N -frames, which ideally only show the static background.

µc =
1

N

N∑
t=1

oc(t) (4.2)

σc =

√√√√ 1

N

N∑
t=1

oc(t)− µ2

c (4.3)
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Using a simple adaptive filter the background model is updated after the classification:

µt = λot + (1− λ)µt−1

σt = λ |ot−1 − µt−1|+ (1− λ)σt−1 (4.4)

The learning rate λ is different for foreground and background pixels. An extension to a
multi-modal Gaussian mixture model is presented in the next section.

4.1.2 Gaussian Mixture Model

Grimson et al. have proposed an adaptive background modeling and maintenance algo-
rithm that is widely used for long term1 observation scenarios [GLRS98, SG99].

Based on the idea that backgrounds are dynamic as well, and thus at different times
background pixels can represent multiple objects, possibly under different lightning con-
ditions, the background is modeled by a mixture of K Gaussian distributions for each
pixel2. The normal distributions η are specified by the mean µ and the covariance Σ. The
probability of observing the value X for a pixel at time t is given by:

P (Xt) =
K∑
k=1

ωk,t ∗ η(Xt, µk,t,Σk,t) (4.5)

where ωk,t is an estimate of the weight (what portion of the data is accounted for by this
Gaussian). To match a pixel value against the model, the K distributions are first ordered
by their fitness:

fitness = ωk/σk (4.6)

which increases as the distribution gains more evidence and the variance decreases. This
puts the most likely distributions on top and less probable ones on the bottom, where they
are eventually replaced by new distributions. Of these, the first B distributions constitute
the current background model, where

B = argminb

(
b∑

j=1

wj > T

)
. (4.7)

T represents the minimum proportion of pixel data that should be accounted for by the
background. Every new pixel Xt is tested for membership in the Gaussian distributions.
A match Mi,t of Xt in ith distribution is defined as:

Mi,t =

{
1 if

∣∣Xt − µi,t
∣∣ < ασi,t

0 otherwise
(4.8)

As before, α controls the sensitivity and is usually a value in the range of 2− 3 [SG99]. If
a match is found within the first B distributions, Xt is part of the background. If none of

1In [SG99] continuous observation over a 16 month period has been reported.
2Typically the value of K is 3 to 5
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Figure 4.1: A comparison of the Gaussian Mixture Model and the ground truth[TKBM99].

the distributions match, the least probable distribution is replaced with Xt as the mean,
an initially high variance and low weight. After classification, the model is updated as
follows:

ωi,t = (1− α)ωi,t−1 + α(Mi,t)
µi,t = (1− ρ)µi,t−1 + ρXt

σ2
i,t = (1− ρ)σ2

i,t−1 + ρ(Xt − µi,t)T (Xt − µi,t)T
(4.9)

where ρ = αη(XT |µk, σk ) is the learning rate for mean and variance and α is the learning
rate for weights. For distributions that match the new observation, ω,µ and σ are adjusted,
while only the weight is updated for unmatched distributions.

The Gaussian Mixture Model is robust enough to handle most of the problems men-
tioned above: Since it is adaptive and continuously maintains the background, unclean
initialization and gradual illumination changes are handled. Sudden illumination changes
are not handled properly. The waving tree problem is successfully addressed, since mul-
tiple background distributions are maintained. Foreground objects become motionless
are integrated in the background, without destroying the original distributions. Thus,
if this object moves again, distributions that describe the previous background are still
valid and will quickly be re-incorporated. Since multiple distributions are independently
maintained for each pixel, GMM is both memory demanding and computationally com-
plex. Thus one has to either reduce the number of distributions, or decrease the image
resolution. Figure 4.1 shows the results of the Gaussian Mixture Model in comparison to
an ideal foreground.

4.1.3 Codebook model

With the codebook model, Kim et al. [KCHD05] recently presented a performant, non-
statistical clustering technique for background modeling. It is designed for long term
usage, and can model mixed backgrounds by using multiple codewords. For each pixel a
codebook C, consisting of multiple codewords ci, i = 1 . . . L is maintained. Each codeword

consist of a color vector vi = (Ri, Gi, Bi) and the 6-tuple auxi =
〈
Ǐi, Îi, f, λi, pi, qi

〉
containing the brightness values and temporal variables of the codeword:
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I
min

i , I
max

i minimum and maximum brightness of all pixels assigns to this codeword

f is the frequency with which the codeword has occurred

λ the maximum negative run-length MNRL defined as the longest period this codeword
has not occurred

p, q the first and last access times, that the codeword has occurred

The brightness is defined as I =
√
R2 +G2 +B2 . Detecting the foreground follows a

straight forward algorithm. The distance from the current observation o to the near-
est codeword is computed and compared to a threshold. If no codeword matches the
observation, the pixel is marked as foreground.

1. For all codewords ci, find the first codeword that satisfies:

(a) colordist (o, ci) < ε2

(b) brightness (I, (Imini , Imaxi )) = true

2. BGS(o) =

{
FG if there is no match

BG otherwise

A matched codeword cm is updated as follows:

vm ←
(
fmR̄m +R

fm + 1
,
fmḠm +G

fm + 1
,
fmB̄m +B

fm + 1

)
(4.10)

auxm ←
〈
min

(
I, Imin

)
,max (I, Imax) , fm + 1,

max (λm, t− qm) , pm, t〉 (4.11)

The two conditions (a) and (b) match the observation with a codeword based on color and
brightness similarity, respectively. Observing that pixel colors change over time and under
varying lighting conditions, and that this change is mostly distributed in an elongated
shape along the axis towards (0, 0, 0) a color model was developed. The principle idea
is, that background pixel values lie along the axis of the codeword, with low and high
bounds for brightness. Having an input pixel ot = (R,G,B) and the codeword ci with
vi =

(
R̄i, Ḡi, B̄i

)
, the color distortion colordist is measured as:

colordist (ot,vi) =

√
‖ot‖2 − 〈ot,vi〉

2

‖vi‖2 (4.12)

Where

‖ot‖
2

= R2 +G2 +B2 (4.13)

‖vt‖
2

= R̄2
i + Ḡ2

i + B̄2
i (4.14)

〈ot,vi〉2 =
(
R̄iR + ḠiG+ B̄iB

)2
(4.15)
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As will be discussed in greater detail in section 4.1.4, shadows cause changes in brightness,
but leave the color relatively unchanged. To account for changes in brightness due to
shadows, minimum and maximum brightness of the codeword is stored in the aux tuple
and compared to the observed value:

brightness
(
I,
(
Imini , Imaxi

))
=

{
true ifIlow <= ‖ot‖ <= Ihi

false otherwise
(4.16)

with Ilow = αImax and Ihi =
{
βImax,

Imin
α

}
.

Construction of the initial codebook for N learning frames, for a single pixel x follows
a straight forward algorithm:

1. xt = (R,G,B) , I =
√
R2 +G2 +B2

2. Find the first codeword cm matching xt based on

� colordist (o, ci) < ε1

� brightness (I, 〈Imini , Imaxi 〉) = true

3. If there is a match, then update the codeword as in 4.10

4. If there is no match, then create a new codeword cL with L← L+ 1:

� vL ← (R,G,B)

� auxL ← 〈I, I, 1, t− 1, t, t〉

For each codeword ci wrap around λi by setting

λi ← max {λi, (N − qi + pi − 1)} (4.17)

To allow codebook generation with foreground objects present, only codewords present in
at least half of the frames are preserved, thus stale entries in the codebook are removed.

4.1.4 Shadow Removal

Practically every scene, indoor or outdoor contains shadows. After background subtrac-
tion, we obtained an image, where the color values differ from the reference background.
However this does not necessarily reflect a change of the foreground. Shadows cast by
foreground objects also satisfy this restriction and are not of interest. The effect of shad-
ows being detected as foreground that can lead from small shape distortions to merged
objects are illustrated in Figure 4.2.

In [RE95] interpretation of shadows and their effects on the image pixels have been
defined as: “a semi-transparent region in which the scene reflectance undergoes a local
attenuation”. Thus it is assumed that a shadow reduces the luminance of pixel while the
chromaticity is preserved. The effects of highlights can be described similar: the chro-
maticity is preserved, while the luminance is increased. Concise recognition of shadows
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(a) (b) (c)

Figure 4.2: Improved segmentation results after shadow detection is applied. Two persons
are tracked as one object since shadows are detected as foreground (a). The output of
the segmentation with shadow detection applied is shown in (b). White pixels mark fore-
ground, red shadows. The correct tracker output is shown in (c). Images from [CGP+01].

is a difficult task, which requires knowledge of the scene geometry, the materials and
the properties of the light sources. This information however is generally not present
and considering dynamic scenes is not obtainable. Salvador [Sal04] has presented several
empirically deducted cues for the presence of shadows.

1. A material in shadow appears darker than the same material not in shadow.

2. The change of chroma due to a shadow is predictable.

3. Surface texture tend to continue across a shadow boundary

4. Shadows cast by objects moving with respect to a fixed light source move across the
scene.

5. The motion of a shadow-casting object that moves relative to a fixed light source
and that of its shadow are correlated.

Other cues have been described, however they require higher level processing and are out
of scope.

These observations have been successfully utilized for shadow removal by other authors
[WADP97, HHD99, CGP+01, BWHK06, NBT08]. Following the definitions given by
Horprasert et al. [HHD99] each pixel can be classified as one of the four categories
Background B, Shaded background S, Highlighted background H and Foreground F .
The following basic rules have been laid out to classify a pixel Px with the corresponding
background model BMx:

Background if it’s brightness and chromaticity are similar to BMx.

Shaded background if it has similar chromaticity but lower brightness than BMx.

Highlighted background if it has similar chromaticity but higher brightness thanBMx.

Foreground if the chromaticity is different from BMx.
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Figure 4.3: Sketch of the RGB color cube. Gray levels are on the main diagonal (0, 0, 0)−
(1, 1, 1)

In [MJD+00] the first-order gradient is additionally evaluated to support the shadow
classification. In [NBT08] texture information is exploited, based on the idea that within
a shadow region, adjacent pixels show the same intensity reduction ratio.

With the above given rules, the question arises on how to ideally represent color in the
background model. A color model or color space is a mathematical model, defining a way
color is modeled as a vector of numbers, typically with 3 or 4 components. A multitude
of different color spaces exists, each designed for specific domains. There is RGB, which
is commonly used in display (CRT or LCD monitors) and retrieval units (cameras or
scanners). It is an additive color model, that is composed of three the primaries red,
green and blue. CMYK is a subtractive color model used for color printing. In analog
video YUV or similar color spaces (YCbCr, YPbPr) are standard. They are not composed
of primary colors, but have a separate luminance channel Y and two chromatic channels
UV, CbCr, PbPr. This more closely corresponds to the way humans perceive color. The
CIELAB, or just Lab is designed in a way, that the Euclidean distance corresponds to
the perceived distance of colors. It is obtained from RGB data using CIE XYZ as an
intermediate space. However for this conversion, the white point has to be estimated,
which limits its practical use [Han08].

RGB Color Space

Digital images are usually processed in the RGB color model as it is the natural repre-
sentation of color for digital display and retrieval systems. The three primaries red, green
and blue are in the range of [0, 1] and form a 3D Cartesian coordinate system. It is often
represented as the RGB-color cube which is shown in Figure 4.3.

Because all three channels encode chromaticity and luminance, RGB is inadequate
for shadow detection. This led to the development of the normalized RGB color space,
that aims to separate the brightness from the chromaticity components [BWHK06]. It is
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(a) (b)

(c) (d)

Figure 4.4: An Image from the PETS’2001 dataset in normalized RGB: The RGB image
(a), luminance l (b) and the chromatic components r (c) and g (d). The sensitivity of r
and g to noise is visible in the dark areas top-left (bushes) and bottom-right (car shadow).

has been applied to background modeling and shadow detection [MJD+00, HW03]. The
conversion of the components R, G, B to their normalized counterparts r, g, b and the
luminance l is defined as:

l = R +G+B, r =
R

l
, g =

G

l
, b =

B

l
(4.18)

if l 6= 0 otherwise r = g = b = 0. Since b = 1 − (r + g) a pixel is satisfactory described
in nRGB by the brightness component l and two chromatic components r and g. The
conversion from RGB to nRGB is computationally inexpensive [NBT08], what makes it
a popular choice in real time applications. However, the chromatic components are frail
to sensor noise or compression artifacts, in areas where the luminance is low [BWHK06].
Figure 4.4 illustrates this issue. Additionally, the dominant wavelength is only improp-
erly represented in RGB and normalized RGB, thus two chromaticities, with different
dominant wavelengths, could be considered [NBT08].

Shadow Detection

In normalized RGB, a pixel is considered foreground if:|oc − µc| > ασc for any channel
∈ {r, g, l}, with the observed value oc, background model mean µcand standard deviation
σc, and foreground threshold α. Foreground pixels are classified as shadow if:

ol < µl ∧ ol > βµl (4.19)

|or − µr| < τc ∧ |og − µg| < τc (4.20)
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Figure 4.5: Illustration of the RGB color model presented in [HHD99].

Horprasert et al. [HHD99] have presented a CMV background model based in the
RGB color space, attempting to separate the chromatic components from the brightness
component. The codebook model introduced in section 4.1.3 is based on that model.

Figure 4.5 illustrates this idea. Let Ei = 〈µR(i), µG(i), µB(i)〉 denote the ithpixel’s ex-
pected color in the background model, ot is the current pixel and OEi is referred to as
the expected chromaticity line. The variation from ot and Ei is decomposed into the
brightness distortion αi and the chromatic distortion CDi. Geometrically, αiEi is the
intersection of OEi and the plane defined by ot and the normal OEi. Thus CDi is the
shortest distance from ot to OEi. In the background model a pixel is modeled as the
four-tuple 〈Ei, si, ai, bi〉, Ei is the vector of RGB means, si = 〈σR (i) , σG (i) , σB (i)〉 is the
standard deviation vector, ai and bi are the quadratic means of the brightness distortion
and chromatic distortion respectively:

ai = RMS(αi) =

√∑N
i=1 (αi − 1)2

N
(4.21)

b = RMS(CDi) =

√∑N
i=1 (CDi)

2

N
(4.22)

In order to use a single threshold for subtraction, αi and CDi are normalized by the
respective ai and bi: α̂i = αi−1

ai
, ĈDi = CDi

bi
. A pixel is classified according to the

following rules:

F : ĈDi > τCD , else
B : τα1 < α̂i < τα2 , else
S : α̂i¡0 , else
H : otherwise

(4.23)

HSV Color Space

HSV is not a hardware oriented model as RGB, but a perceptual model, developed to fa-
cilitate intuitive mixing of colors for artists [Smi78]. It is just one of many representations
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Figure 4.6: Representations of the HSV color space.

of the RGB color space in terms of 3D-polar coordinates [Han03]. The transformation of
RGB to a 3D-polar color space is done with the help of an opponent color space (OCS)
introduced in RGB space. The OCS is built as follows: An achromatic axis, that is aligned
with the main axis of the RGB color cube, is placed in the RGB space. A chromatic plane
perpendicular to the achromatic axis and the origin at the intersection with the achro-
matic axis is introduced and all RGB values are projected on that plane. The coordinates
on the achromatic axis give a measure of the lightness and the position on the plane a
measure for the chromaticity of a pixel [Han08].

In HSV chromaticities are represented by the two values hue h and saturation s.
Brightness is represented as value v. Under the condition that R,G,B ∈ [0, 1] and
assigning max to the greatest of value R,G,B and min to the lowest, RGB values are
converted to h, s, v with:

h =


undefined, if max = min
G−B

max−min
× 60◦, if max = r

2 + B−R
max−min

× 60◦, if max = g

4 + R−G
max−min

× 60◦, if max = b

(4.24)

s =

{
0, if max = 0
max−min

max
= max−min

v
, otherwise

(4.25)

v = max (4.26)

Hue represents the dominant color, or more precisely the dominant wavelength in degrees
[0◦, 360◦), where red is at 0◦, green at 120◦ and blue at 240◦. Saturation refers to the
proportion of pure light of the dominant wavelength, and is given in the range [0, 1].
Value is in the range of [0, 1] and is a measure for the brightness. The HSV color space is
typically visualized as a “hexcone” as illustrated in Figure 4.6a. The v-axis corresponds
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(a) (b)

(c) (d)

Figure 4.7: Sample Image in HSV format: The original image (a), the chromatic channels
hue h (b) and saturation s (c) and value v (d).

to the main diagonal of the RGB cube. The chromatic plane is at v = 1, and contains the
colors planes of the RGB cube where R = 1, G = 1 and B = 1. Due to the normalization
of the saturation that was introduced by Smit [Smi78], it is actually shaped as a cylinder
(see Figure 4.6b). This normalization is the root of the drawbacks of applying HSV for
shadow detection. First, the saturation is dependent on the brightness. Second, it is not
necessarily low in achromatic regions [Han03]. The effects are illustrated in Figure 4.7c:
The dark areas around the bush in the upper-left corner and the window of the car in the
center appear fully saturated. Additionally image noise is amplified in these regions.

In contrast to the RGB space, where all three channels are independent, h and s have a
strong relation. For example, if s is approximately 0, a big difference in h does not denote
a big difference in observed chromaticities, as there is no dominant wave length. This
observation has implications on the exact formulation of the shadow detection algorithm,
as thresholds for these values are to be dependent as well [NBT08].

Shadow Detection

In [CGP+01] a traffic surveillance system, where the segmentation results are enhanced
by applying shadow removal in HSV, has been presented. Only pixels that are marked as
foreground by the motion detection are evaluated. Cues 1 and 2 are exploited for their
shadow classification. A pixel I is marked as Shadow if:
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if τ1 ≤ Iv
Bv
≤ τ2

∧ (Is −Bs) ≤ τs
∧ |(Ih −Bh)| ≤ τh

(4.27)

where B is the corresponding background model value, subscripts v, s, h denote the chan-
nels in HSV. τ1and τ2 name the lower and upper brightness thresholds, τs the saturation
difference threshold and τh the hue difference threshold.

IHLS Color Space

The Improved Hue Luminance and Saturation (IHLS) color space was introduced by
Hanbury and Serra [Han03, HS03]. Compared to similar color spaces (GHLS, HSV, etc.),
the normalization of the saturation by the brightness is removed. Referring to the OCS
introduced for the construction of the HSV space, for IHLS we have a luminance y giving
the position on the achromatic axis, the saturation s is defined by the distance from the
axis and hue θH by the angle with respect pure red.

The conversion from RGB to IHLS as given in [BWHK06], which differs from the
formulations in the original paper is presented here:

y = 0.2125R + 0.7154G+ 0.0721B (4.28)

s = max(R,G,B)−min(R,G,B) (4.29)

cr =
√
cr2

1 + cr2
2 (4.30)

cr1 = R− G+B

2
(4.31)

cr2 =

√
3

2
(B −G) (4.32)

θH =


undefined if cr = 0

arccos( cr1
cr

) if cr 6= 0 ∧ cr2 ≤ 0

360◦ − arccos( cr1
cr

) if cr 6= 0 ∧ cr2 > 0

(4.33)

where cr1 and cr2 denote chrominance coordinates and cr ∈ [0, 1] the chroma. Note that
hue is undefined if s = 0 and that the entropy of hue decreases for values of s close to the
achromatic axis. Figure 4.8 illustrates the chromatic plane of the IHLS color space

Shadow Detection

Before going into the shadow detection using the IHLS background model, some founda-
tions have to be laid out. While standard linear statistics can be used for brightness and
saturation, hue is an angular value. Thus circular statistics have to be applied. Consider
the following example: Given two hue observations θA = 1◦ and θB = 359◦ the linear
mean gives 180◦. Additionally the tight relationship of the chromatic components hue
and saturation should be considered. In [BWHK06] this is called Saturation weighted hue
statistics. Let (θi, si) i = 1, . . . , n be n pairs of hue and saturation values. The vector on
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Figure 4.8: Diagram of the chromatic plane of the IHLS color space.

the chromatic plane from (0, 0) to the point (θi, si) is given by (sicosθi, sisinθi). For the
mean chrominance cn we have:

cn =

(C
n
,
S
n

)T

(4.34)

where

C =
n∑
i=1

cosθi, S =
n∑
i=1

sinθi (4.35)

Testing similarity of cn and a newly observed chrominance vector co the Euclidean
distance is used:

D =

√
(cn − co)

T (cn − co) (4.36)

Considering a uni-modal background model as presented in Section 4.1.1 the background
is modeled pixel-wise by the mean luminance µy and standard deviation σy, the mean
chrominance vector cn and the mean Euclidean distance σD. A pixel with luminance yo,
chromatic vector co is classified as foreground if:∣∣yo − µy

∣∣ > ασy ∨ ‖cn − co‖ > ασD (4.37)

with α, the foreground threshold. Similar to shadow classification in HSV, a pixel is
classified as shaded background if:

yo < y ∧ yo − µy < βµy
∧ so −

∥∥Rn

∥∥ < τds
∧
∥∥hoRn − cn

∥∥ < τh

(4.38)

where so and ho are the observed saturation and hue,Rn = ‖cn‖. The first equation checks
if the observation is darker than the background, with the upper threshold β taking into
account the strength of the predominant light source [BWHK06]. The test of reduced of
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(a) (b)

Figure 4.9: Shape from Silhouette with four cameras (C1, . . . , C4) for one object (a): The
gray area marks the intersection of all camera views; the reconstructed shape is yellow
and the original shape red. Shape from shading with two objects (b): When multiple
objects are in the scene, ambiguities can be reconstructed as “ghosts” (green).

saturation is performed in the second equation. The third check is performed using the
statistical model introduced earlier in this section, as opposed to the linear comparison in
the HSV shadow detection. The observed hue vector ho = (cosθo, sinθo)

T is scaled to the
same length as the mean chrominance vector and tested against it using the Euclidean
distance.

4.2 Shape from Silhouette

Shape from Silhouette (SFS), or voxel carving, aims to reconstruct the 3D shape of an
object form binary silhouette images of the object observed from different viewpoints
[Bau74]. The closest approximation to the object that can be obtained with SFS is the
object’s visual hull. The visual hull S is defined as the maximal object that gives the
same silhouette as S from any possible viewpoint [Lau91]. Therefore only objects that
conform to their visual hull are exactly reconstructable. It is obvious that this does
not include concave objects. The human body however is for the most part convex and
smooth, which makes SFS a popular and robust method for 3D human body modeling
and motion tracking algorithms [CH04, HLS04, KG06, MGBB07]. In Figure 4.9a, shape
from silhouette, with four cameras (C1, . . . , C4) is illustrated.

The standard algorithm for computing the visual hull works as follows [CH04]:

1. Subdivide the observation space into voxels

2. Project each voxel onto the image plane of each view

3. Keep the voxels that lie within the silhouette of each view
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Figure 4.10: Illustration of the Shape from Silhouette approach from [KG06]. The look-up
table that maps pixels to voxels is computed offline. This way the volume can be very
efficiently updated at run-time, since the – computationally expensive – voxel projection
is preprocessed.

With a high resolution volume and with an increasing number of views, this is computa-
tionally and memory intensive. A working volume of 4000 × 4000 × 2000mm and voxel
size of 25mm, spans a 160× 160× 80 voxel space. Computing the volume in a coarse to
finer resolution instead of the fixed sized voxels is a common speedup technique [CH04].
Kehl et al. [KG06] address the problem the other way round by mapping of pixels to
voxels. In a preprocessing step, a look-up table for each view is built, where for each pixel
a list of voxels that project on this particular pixel is generated. This approach is illus-
trated in Figure 4.10. This representation has several advantages: first of all, the image
coordinates of voxels do not have to be computed during run-time nor are they stored in
memory. The representation of a voxel can be simplified to a bit mask, where each bit bi
is 1 if it is in the foreground of camera i, which can be evaluated fast. Additionally, the
volume be can updated instead of being recomputed from scratch in each frame: The bit
mask of a voxel only changes, if one of the pixels, the voxel is projected onto, changes it’s
foreground-background membership. Thus only pixels set in the difference of two consec-
utive foreground segmentations have to be evaluated. This again reduces the number of
voxel look-ups. However there is additional memory required to store the look-up table
for each view.

With the advent of programmable graphics hardware, GPU based approaches have
been presented that drastically increase the reconstruction speed [HLS04, MGBB07].

There are two major problems, which shape from silhouette suffers from [MGBB08].
First, while adding additional views improves the reconstruction quality, the working vol-
ume is reduced simultaneously (see Figure 4.9a). Moreover SFS can possibly reconstruct
visual ambiguities as “Ghost” objects, where empty regions are extracted as illustrated
in Figure 4.9b. Solutions have been proposed in [MGBB08].

The reconstructed volume lies in a global 3D world coordinate system. This simplifies
further processing, as it is independent of the different cameras. Further, noise in the
silhouette images is automatically filtered in the volume estimation process, since it is not
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coherent across views.

4.3 Feature Extraction

A number of features that describe elementary properties such as shape, color, texture or
motion of images or image regions have been presented in the literature. We aim for real-
time detection of falls in multiple cameras, thus descriptors have to be computationally
inexpensive. After noise is removed from the object segmentation and connected com-
ponents are grouped into blobs, these features are extracted. In the following sections a
range of features that has been utilized widely in the fall detection literature is presented.

4.3.1 Bounding-Box Aspect Ratio

A common way to model and track objects is using their bounding box [Sen02, Sal04,
TM05, KD06]. The bounding-box or minimum bounding rectangle of a set of pixels is
defined by (xo, y0, w, h), the top left point, width and height. It is the smallest axis aligned
rectangle that completely contains the region. Previously, the bounding box aspect ratio
has been used extensively [TDc05, AKS+06, RMSAR07, VMS07] as a feature for fall
recognition:

Blf =
h

w
(4.39)

In the early fusion case, the bounding box aspect ratio is defined as:

Bef =
h

mean(wx, wy)
. (4.40)

Since the bounding box is aligned with the image axis, the view point and camera angle
have a strong effect on its descriptiveness of 2D bounding-boxes. Another drawback is
that it is highly sensitive to shape changes, possibly due to segmentation errors. This
restriction applies to the 3D bounding box as well. Figure 4.11 illustrates these issues.

4.3.2 Ellipse

Instead of bounding-boxes, ellipses too have been widely used for modeling and tracking
[NCM04, TM06, RMSAR07, HHdW08]. They offer various advantages compared to a
bounding-box approach. Since they are not aligned to the image axes, they can more
accurately model objects. Another advantage is their inherent stability against segmen-
tation errors. Since the covariance matrix is used to estimate the properties of the ellipse,
outliers due to inaccurate silhouette segmentation are removed. In Figure 4.11 bounding
box and ellipse features are compared.

An ellipse is defined as a quintuple 〈cx, cy, θ, a, b〉 with the center cx, cy, the orientation
θ, the angle between the major–axis and the x–axis, and the length of the major and
minor semi axes a and b. The ellipse can be estimated by computing the covariance
matrix of the binary segmentation.
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(a) (b) (c)

Figure 4.11: The descriptiveness of the bounding-box (yellow) is influenced by the camera
placement (a) and (b). It is further frail to segmentation errors (c). Modeling blobs using
the ellipse (red), is more accurate and stable under segmentation errors.

The moment of order (i, j) for a binary image I(x, y) is defined as:

mij =

∑
x

∑
y x

iyjI (x, y)∑
x

∑
y I (x, y)

(4.41)

It is obvious that zeroth moment m00 = 1. The mean (centroid) of f (x, y) is given by the
first moments x̄ = m10,ȳ = m01. With the centroid, we can define the central moment of
order (i, j) as:

µij =

∑
x

∑
y (x− x̄)i (y − ȳ) jI (x, y)∑

x

∑
y I (x, y)

(4.42)

The central moments µ11, µ20, µ02 correspond to the covariance between x and y, be-
tween x and itself and between y and itself. Thus the covariance matrix

∑
can be

expressed with first and second order central moments as:∑
=

[
µ20 µ11

µ11 µ02

]
. (4.43)

Since the covariance matrix is symmetric and positive semidefinite the eigenvalues λmax,
λmin and the associated eigen-vectors can be easily computed.

λmin,max =
(µ20 + µ02)±

√
4µ2

11 + (µ20 − µ02)2

2
(4.44)

The eigen-vectors are perpendicular and the vector associated with λmax defines the major
orientation θ of the ellipse with the x–axis. The length of the semi-major and semi-minor
ellipse axes a and b equal

√
λmax and

√
λmin respectively [THS99]. In voxel space, ellipsoids

can be computed via moments of the volumetric data in the same way.

Orientation

For detecting falls, having the orientation of the ellipse, which corresponds to the main
orientation of the human body, is an important feature. A Person standing upright has
a main orientation almost perpendicular to the ground plane, while it is parallel to the
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ground plane, when the person is lying. However, the main axis can only be measured
properly if it is perpendicular to the optical axis of the camera [HHdW08]. In 3D however
this does not apply and the orientation of the major axis can be directly used as a
meaningful feature.

Axis Ratio

In [ZMK10] the axis ratio of the ellipse in image and voxel space has been suggested.

A =
a

b
(4.45)

Centroid Height

In [ALK+09], the height of the person’s center is approximated by the centroid height.

4.3.3 Motion

It was shown, that falls can be distinguished from normal activities by using vertical and
horizontal velocities characteristics in a 3D world coordinate system [Wu00]. They are a
major cue for the critical falling phase as well as the postfall phase. The objects frame to
frame velocity vector at time t is computed from the center C as

vt = Ct−1 −Ct (4.46)

where C is the centroid of a bounding box or an ellipse. Since the direction of the velocity
is typically not meaningful, we are only interested in the speed

vt = |vt| . (4.47)

Additionally the acceleration is measured as the rate in which speed changes:

at = vt−1 − vt (4.48)

Motion History Images

Motion History Images (MHI) introduced in [BD01] are another way of representing how
and where motion occurs. Each pixel in the MHI Hτ is a function of the temporal history
of motion at that point. Let F (x, y, t) be the segmented foreground at time t and τ the
duration for which the MHI is computed, then the MHI at time t is

Hτ (x, y, t) =

{
τ if F (x, y, t) = 1

max(0, Hτ (x, y, t− 1)− 1) otherwise.
(4.49)

Rougier et al. propose a motion coefficient Cmotion based on the MHI [RMSAR07].

Cmotion (t) =

∑
Pixel (x,y)∈blobHτ (x, y, t)

#pixels ∈ blob (4.50)

Cmotion is within [0, 1] indicating no motion 0 and full motion 1. In [BD01] and
[RMSAR07] the importance of defining τ is laid out. A duration of 500ms is proposed in
[RMSAR07].
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Figure 4.12: Illustration of the head detection approach proposed by [HHdW08]

Motion speed

A similar approach that is inspired by MHI, which just computes the inter-frame motion
speed is used in [ZMK10]. Here the relative number of new motion pixels in the current
frame compared to the previous frame is estimated:

M ef =
|F (t) \ F (t− 1)|

|F (t)| (4.51)

where F (t) denotes the set of foreground pixels at time t.

4.3.4 Head Position

For the verification of falls, it has been proposed to use the head position as an additional
feature [RMSAR06, YNC09]. In [RMSAR06] a single calibrated camera provides the
image evidence, while the head position is computed with the POSIT algorithm [DD95].
Input arguments for POSIT are the known 3D dimensions of the head (which are based
on anthropometric data), the corresponding 2D points of the ellipse modeling the head,
and the camera calibration matrix. The algorithm calculates the relative position of the
head in the camera coordinate system, from which the world coordinate position of the
head can be easily computed. Similarly, in [YNC09] the position is computed from two
calibrated cameras.

Hazelhoff et al. [HHdW08] propose to estimate the head position in order to increase
the robustness of the fall detector and for identifying objects as humans. The proposed
head detection is straight forward: The head is considered as the skin colored blob farthest
away from the center along the main axis on the border of the silhouette (see Figure 4.12).
A head candidate is matched against size constraints. The head is tracked in successive
frames by searching for skin-colored blobs nearby the head position. The head position
is used just as an additional cue for their system: if a fall is detected, it is checked if the
head position has remained stationary. If this is the case, the fall is rejected.
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Figure 4.13: Input image (left) and the corresponding trained accumulated hitmap (right)
[ZK10].

4.3.5 Accumulated Hitmap

Approaches that detect the postfall phase, where the person is on the ground, typically
model the spatial unexpectedness of the fall. In [NCM04] the motion trajectories are used
to split the observation space into inactivity regions like beds, sofas, or chairs, where it
is commonly expected that little or no motion occurs and activity zones, where little or
no motion is not expected. When a fall event is recognized, it is checked, if the spatial
location of the fall is within an inactivity zone and can thus be rejected.

To model the unexpectedness of an event, the accumulated hitmap, which operates on
the pixel level, has been proposed in [ZK10]. The hitmap is a counter for the consecutive
appearance of foreground at a given location, and is decreased if the location is background
for n-consecutive frames, where n controls the robustness of the hitmap. In Figure 4.13
a sample input image and the corresponding accumulated hitmap are shown. The un-
expectedness HU(x, y) is essentially the deviation of the observed hitmap HO and the
trained hitmap HT . In the original paper the following equation is proposed to compute
HU(x, y):

HU (x, y) =


(

1 + α
1+max(HT )−HO(x,y)

)Hdiff (x,y)2

if HO > HT

0 otherwise

where Hdiff = HO − HT . In [ZZK10] the accumulated hitmap has been used for fall
verification in 2D. Therefore, the unexpectedness is summed up in the area contained in
the bounding box and compared to a threshold. The fall is verified if the threshold is
exceeded in a four seconds verification window (two seconds before and two seconds after
the fall incident is suggested.

Building on this approach, we suggest to compute the accumulated hitmap for the
early fusion approach directly in voxel space. A visualization of the trained accumulated
hitmap is show in Figure 4.14.

4.4 Selected Approach

The approaches presented in this chapter represent some of the commonly used methods
to abstract the raw input into meaningful features vectors for the subsequent event un-
derstanding. Leaving the choice of cameras aside, the fundamental part in the presented
fall detection framework is the person’s silhouette extraction. These approaches represent
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Figure 4.14: Visualization of the trained accumulated hitmap in Voxel space. Blue areas
indicate low, red medium and yellow a high hit-count.

the state of the art. Due to the low computational cost and low memory requirements,
a Color Mean and Variance approach with a Shadow removal in normalized RGB space
is suggested. While the other presented methods provide higher quality results, they
are computationally more demanding and not sufficiently efficient to be applied in the
suggested setup.

With the Accumulated Hitmap, a feature for modelling the unexpectedness has been
presented. The other features shown in Section 4.3 have previously been applied for fall
detection. As part of the experiments these features and feature sets are evaluated.
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Chapter 5

Event Understanding

In an event understanding framework the input is abstracted into meaningful units. These
features are processed by the event model, which determines if an event of interest oc-
curred. The output is usually a binary decision whether a particular event occurred, or an
activity summary [LRR09]. Features have been discussed in the previous chapter. In this
chapter the terminology will be defined and an overview of approaches is given. Finally,
these are examined for their suitability for the proposed fall detection approach.

The vast application space in which event understanding has been applied has lead to
a variety of different terms for essentially same concepts. From hand washing [MCB04]
and sign language gestures [LP07], to tennis strokes [YKI92] or airport apron activities
[FVB+07], different kinds of events have been tried to model and recognize. Hence, terms
like “behavior”, “activity”, “scenario”, “gesture” or “event” are used in the literature.
While they carry some context about the particular application and domain and event
complexity, they essentially describe the same concepts [TCSU08]. Recently, the generic,
unifying terminology that is presented in this section has been proposed in [LRR09]. It
is formulated around the concept of an “event”, which has the following characteristics:

1. An event occupies a period of time.

2. An event is built of smaller semantic unit building blocks.

3. An event is described using the salient aspects of video input.

4. An event is an occurrence of interest.

When describing the various properties of these events, such as the hierarchical, temporal
or content composition, instead of introducing vague distinctions, prefixes are attached to
name these properties. That way, an event may be recursively composed of multiple “sub-
events” and the same concept is used to describe “simple” as well as complex activities.
Analogous a “super-event” is composed of sub-events. An “atomic event” has no sub-
event composition. When referring to the abstraction primitives that are used to describe
an event, content prefixes are inserted. Thus an “object based event” is modeled by
means of object properties and tracking (size, shape, trajectory) while “pixel based event”
refers to events modeled using pixel features such as color, texture or gradient. The
temporal composition of events is addressed with the terms “single-threaded-event” and
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Composition Prefixes
Atomic Has no sub-event composition

Composite Has sub-event composition

Content Prefixes

Pixel-Based
Described by pixel-level features (color, texture,
gradient)

Object-Based
Described by object-level feature (size, shape,
trajectory)

Temporal Prefixes

Single-Thread
Has sequential temporal relationships between
sub-events

Multi-Thread
Has non-sequential temporal relationships between
sub-events

Relation to Event of Interest Prefixes
Sub Component of an event

Super Composed of events

Table 5.1: An overview of the event terminology as proposed in [LRR09].

“multi-threaded-event”, describing linear (“single-threaded-”) or the non-linear (“multi-
threaded-”) composition.

With the introduction of the “event” term, much of the context of previously used
terms as “activity”, “gesture” or “behavior” is lost. To re-establish context, the “event
domain”, a possibly natural language description of precisely what kind of events are tried
to recognize, is introduced. In Table 5.1 the proposed terminology is summarized.

5.1 Event models

Event models aim to describe and classify the events of interest in a particular event
domain. They build upon features that have been identified as meaningful in the data
abstraction process. The classification task can be seen as a labeling task: Given an
observation (the feature vector) x = (f1, . . . , fn) the aim is to choose the appropriate
event label lx from a set of m class-labels L = 〈l1, . . . , lm〉. As of today, a variety of event
models has been presented [LRR09, TCSU08].

Finite State Machines (FSM), Grammars and Petri Nets are examples of determinis-
tic event models, while Bayesian Networks, Hidden Markov Models (HMM), Conditional
Random Fields (CRF) and Stochastic grammars associate a probability score with the
occurrence of an event [LRR09]. Discriminative models directly model the posterior prob-
ability p (l | x). However generative models first model and learn the joint probability
p (x, l). Each approach has its advantages as well as limitations [UB05]: while discrim-
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inative models have a lower error rate when using a large number of training samples,
generative models converge faster even with a small training set. Additionally genera-
tive models can handle incomplete data and additional classes more flexible and are thus
considered to be more suited for complex patterns [UB05].

In [LRR09] event models are grouped in three categories based on the utilization
of semantic knowledge for the recognition task: “pattern-recognition methods”, “state
models”, and “semantic models”. Pattern Recognition Methods do not address the rep-
resentational aspect of event modeling. Event recognition is rather treated as a classic
pattern recognition or classification problem. Hence algorithms such as k-Nearest Neigh-
bor (k-NN), Neural Networks (NN), Support vector machines (SVMs) or Boosting fall
in this category. These methods require minimal semantic knowledge of the application
domain and are in most cases fully specified from training data. Pattern recognition
methods thus are generally straight forward to implement and have moderate processing
costs. Since these models do not incorporate the high level semantic knowledge about the
event domain, they are mostly applied for the recognition of atomic events [LRR09].

State Event models improve the pattern recognition methods as they intrinsically
model the structure of the state space of the event domain. This allows these models
to capture both the temporal evolution of states as well as their hierarchical nature. Fi-
nite State Machines, Hidden Markov Models or Bayesian Networks fall into this category.
Given previously labeled training data, these allow the estimation of optimal model pa-
rameters. However, with increasing complexity of events, the state space increases and
training as well as evaluating becomes unmanageable.

Semantic models do not try to define the entire state space as state event models do,
however semantic rules, constraints and relations of events are defined, which is more
like humans define events and connections between events. They allow the capturing of
high-level semantics like long-term temporal dependence, hierarchy, partial, ordering con-
currency as well as complex relations among sub-events and abstraction features [LRR09].
As a result, the models have to be manually specified by domain experts. Learning or
training of the model structure and parameters is either ill defined or impossible for these
models.

Choosing the appropriate event model is crucial to achieve a meaningful labeling of
the feature input. It is important that the model is capable of handling the various
possible event prefixes of the specific domain. Further, when applying an approach that
is based on training samples, the availability of a large enough training dataset is essential.
Therefore, in the following sections modeling approaches are reviewed with an emphasis
on those that have been proposed to tackle fall detection in the literature.

5.1.1 k-Nearest Neighbor

The Nearest Neighbor classifier assigns to an unlabeled observation x the class-label of
the closest training point. Typically, the k-Nearest Neighbors (k-NN) are evaluated for
classification and via a majority vote the label for x is determined. k-NN is illustrated
in Figure 5.1. A proper choice of distant measure or previously normalizing the feature
space is crucial for K-NN to perform well [Bis06]. The quality of the model is additionally
dependent on the coverage of the feature space with labeled points. The more dense it
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Figure 5.1: With the K -Nearest Neighbor classifier, a newly observed point (shown by
the black cross) is labeled according to the majority class membership of the K closest
training data points.

is covered, the better the classification results. However, with the size of the dataset
increasing, so do the computational and memory costs during recognition. It should be
noted that it was shown that as the dimensionality of the feature space increases, the
distance of the nearest point approaches the distance of the farthest point [BGRS99].

In [PLSR08] and [FCLD08] k-NN has been applied to the recognition of falls.

5.1.2 Neural Networks

Artificial Neural Networks have their origin in attempts to find mathematical representa-
tions of biological information processing systems [Roj96]. They simulate biological neural
systems with neurons connected by communication channels. In a feed-forward network,
the connections are organized in layers and the information flow is unidirectional from
one layer to the next. Nodes within a layer are not connected. This is an important
simplification, which makes Neural Networks of practical use. The basic neural network
model is described as a composition of functional transformations. In the first network
layer, M linear combinations a0, . . . , aM are computed of the input variables x1, . . . , xD

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 (5.1)

where j = 1, . . . ,M the superscript (1) indicates that the weights and the biases are in
the first layer. The aj are then transformed using a differentiable, nonlinear activation
function h:

zj = h (aj) (5.2)

These are referred to as hidden units and they are again linearly combined to yield the
output unit activations, the second layer of the network

ak =
M∑
j=1

w
(2)
ki zi + w

(2)
k0 (5.3)
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Figure 5.2: Illustration of a feed-forward neural network. The nodes represent the input,
hidden variables and output, while the connections illustrate the weights [Bis06].

where K is the total number of outputs, and k = 1, . . . , K. Again there are weights
w

(2)
ki and bias parameters w

(2)
k0 . The output unit activations are transformed using an

appropriate activation function to give the network outputs yk

yk = σ (ak) . (5.4)

Activation functions that are generally used are hyperbolic tangent tanh or the logistic
sigmoid function σ (a) = 1

1+e−a
. This choice is directly related to the problem of training

the network [Bis06]. To simplify notation, the bias parameters in (5.1) (and in all other
layers) can be integrated into the weighted parameters by adding the additional input
variable x0 = 1:

aj =
D∑
i=0

w
(1)
ji xi

Thus the overall neural network function yk (x,w) with one hidden layer is given by:

yk (x,w) = σ

(
M∑
j=0

w
(2)
ki h

(
D∑
i=0

w
(1)
ji xi

))
(5.5)

An example of a two layer feed-forward neural network is illustrated in Figure 5.2. The
nodes represent the input, hidden and output variables, while the edges represent the
weight parameters of the network. The two layer network – one hidden layer and the
output layer – presented here can be easily extended with additional hidden layer units in
the form of (5.3) and activation functions (5.4). Neural Networks have been widely used
and studied as universal approximators [Bis06]. The key problem is training the network
parameters given a set of training data.
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Given a training set {xn} of size N , and a set of target values {tn}, the optimal
networks parameters w can be estimated by minimizing a cost function e.g.: the sum-of-
squares error function:

E(w) =

N∑
n=1

{y(xn,w)− tn}2 (5.6)

In practice this is complicated due to the non-linearity of y(xn,w). The backpropagation
algorithm has been widely used as an efficient technique for minimizing the error function
using gradient descent [Bis06]. Gradient descent is a method for finding the minimum of
a function by iteratively moving from the current point in the direction of the negative
gradient. In each step the weights are updated as follows

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(5.7)

for small enough η > 0, E
(
w(τ+1)

)
< E

(
w(τ)

)
. Since E is a function of the entire training

set {xn}, it is required to process the entire set in order to calculate ∇E.
An efficient solution for computing the gradient is given by the previously mentioned

backpropagation algorithm [Roj96]. In the first step, the output activations are computed
and the derivatives of the error function with respect to the weights are evaluated and
propagated backwards through the network. In the second stage, the weights are adjusted
using the calculated derivatives. In summary, it works as follows:

1. The weighted sum of the inputs of each unit is computed

aj =
∑
i=1

wjizi (5.8)

and the nonlinear activation function h is applied to give the activation zj of unit j:

zj = h (aj) . (5.9)

2. The error in the output units δk is computed by:

δk = yk − tk (5.10)

3. A particular δ of a hidden unit is linked to the δ′ks of units higher up in the network
by the backpropagation formula:

δj = h′ (aj)
∑
k

wkjδk (5.11)

4. Finally the derivatives are calculated, by simply multiplying the delta at the output
end of the weight with the activation at the input end:

∂En
∂wji

= δjzi

Neural networks are used in [SJ04],[FAP08] to recognize falls.
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Figure 5.3: Illustration of a Support vector machine separating the data in a higher
dimensional space. The two classes are +1 and −1, and not linearly separable (a). After
transformation to a higher dimensional space, the data is separable (b). The maximized
margin is illustrated as two dashed lines. Its location is determined only by a subset of
the data-points, the support vectors (indicated by circles) [Bis06].

5.1.3 Support vector machines

Support vector machines (SVMs) are a supervised learning technique, for two class clas-
sification, where the two classes are separated by an optimal hyperplane. Optimal in the
sense, that the margin – the smallest distance of the hyperplane and the closest data-
points – is maximized. However, since the dataset may not be linearly separable in the
feature space, it is mapped to a higher dimensional space, where it is linearly separa-
ble. This is achieved by applying a kernel function and is referred to as the kernel trick
[ABR64]. In Figure 5.3 the principle of SVM is illustrated. In the example, the data is
not directly linearly separable. However mapped to a higher dimensional space, the data
becomes separable. For now, the case where the data is directly linearly separable shall
be considered, and this idea extended later to use kernel functions.

Given is a training set {xn} of size N , xi∈R each assigned a label ti ∈ {−1,+1}.
The goal is to find the hyperplane separating the two classes, which maximizes the class
margin. The hyperplane is defined as:

w · x + b = 0 (5.12)

where w is the normal and b is the bias of the hyperplane. Points of class +1 lie in the
region by H1 : w · xi + b ≥ 1 and those of class −1 at H2 : w · xi + b ≤ −1. Since
data-points have to lie on or outside of the margin, the following constraint has to be
satisfied

tn (w·xi + b) ≥ 1, n = 1, . . . , N (5.13)

Consider the hyperplanes H1 and H2 in Figure 5.3. Their perpendicular distance from
the origin is |1−b|‖w‖ and |−1−b|

‖w‖ respectively. From this it is obvious, that the margin is 2
‖w‖ .
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Thus the pair of optimal hyperplanes H1 and H2 can be obtained by maximizing ‖w‖−1,
which is equivalent to minimizing ‖w‖2 [LRR09]:

arg minw.b
1

2
‖w‖2 (5.14)

subject to the constraints in (5.13).
In order to solve this minimization problem, we will use Lagrangian multipliers. Later

this will allow the extension to the nonlinear case [Bur98]. For each constraint in (5.13)
a Lagrangian multiplier an ≥ 0 is introduced, what gives:

LP (w, b, a) =
1

2
‖w‖2 −

N∑
i=1

ai (ti (w·xi + b)− 1) (5.15)

Now LP has to be minimized in respect to w and b requiring that the derivatives of
LP with respect to a vanish, subject to the constraint that an ≥ 0. This is a quadratic
programming (QP) optimization problem. Equivalently one can maximize LP subject to
the constraints that the gradient of LP with respect to w, b vanishes, subject to an ≥ 0
[Bur98]. By the requirement, that the gradient of LP (w, b, a) vanishes, the following
conditions are obtained:

w =
N∑
n=1

antnxn (5.16)

0 =
N∑
n=1

antn (5.17)

With (5.16) and (5.17), w and b can be eliminated from LP (w, b, a) , which gives the
dual representation of the maximum margin problem, where

LD (a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk (xn,xm) (5.18)

is maximized subject to (5.17) and an ≥ 0. k(xn,xm) = xn · xm is the kernel function.
Moving to the dual representation, makes it possible to reformulate the model using a
kernel function, and thus it can be efficiently applied to high dimensional feature spaces
[LRR09]. The general idea of the kernel trick is that if an algorithm is formulated such
that the input x is only present in the form of a dot product, then this can be replaced by
any other choice of kernel [LRR09]. The simplest kernel k(xn,xm) is the identity mapping,
linear kernel function in the form of xn ·xm. Depending on the feature space, polynomial
and radial basis function kernels are applied as well.

Training of the support vector machine amounts to the aforementioned maximization
problem of LD. Thus for every training point, a Lagrangian an exists, however only
points for which an > 0 contribute to the result, and lie on the hyperplanes. These are
the support vectors. This is a central property of SVM, since after training, only the
support vectors have to be kept, while the other training data can be discarded.
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For classification, the sign of (5.12) is evaluated. Therefore the parameters {an} and
the kernel function substitute for w using (5.16):

f (x) = sign

(
N∑
n=1

antnk (x,xm) + b

)
(5.19)

What has not been discussed yet, is the case where the data is non-separable. Therefore
the hard margin constraint is relaxed by introducing a slack variables ξn ≥ 0 for each
training data point [CV95]. The relaxed form of the classification constraints (5.13) is:

tny (xn) ≥ 1− ξn. (5.20)

Since misclassified points will have ξn > 1,
∑

n ξn is an upper bound for the number
of training errors. The previous minimization problem in (5.14) is reformulated as

C

N∑
n=1

ξn +
1

2
‖w‖2 (5.21)

with the parameter C > 0 controlling the trade-off between minimizing the training
errors and allowing misclassification. Higher values of C correspond to a higher penalty
for errors. The corresponding dual Lagrangian is the same as in the separable case, only
the constraints have changed:

0 ≤ an ≤ C (5.22)
N∑
i=1

aiti = 0 (5.23)

Unseen data is again predicted with (5.19). What remains to be calculated is the bias b.
Support vectors where (5.22) holds, satisfy

tny (xn) ≥ 1− ξn (5.24)

and have ξn = 0 [Bis06], so that they lie on the margin and will satisfy

tn

(∑
m∈S

amtmk (xn,xm) + b

)
= 1 (5.25)

where S is the set of support vectors. A numerically stable solution is found, by averaging

b =
1

NM

∑
n∈M

(
tn −

∑
m∈S

amtmk (xn,xm)

)
(5.26)

where M denotes the set of points where 0 ≤ an ≤ C [Bis06].
The two class SVM can be generalized to a multi-class classification. In the commonly

employed one-versus-the-rest approach one SVM for each of the K classes is built. The
model is trained with data from class Lk as positive examples and the rest of the data
as negatives. In the one-versus-one approach, K (K − 1) /2 different two-class SVMs are
trained on all possible class-pairs. Data is classified according to the class with the most
“votes”.

Lu¨trek et al. [LK09] have used several two class SVMs to distinguish between normal
activities and falling.
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Figure 5.4: A simple 2 state fall detection FSM with the states Walk and Fall, and Walk
being the initial state [VMS07].

5.1.4 Finite state machines

A finite state machine (FSM) is composed of a finite number of states, transitions between
these states, and assigned to the transitions conditions that trigger state changes [LRR09].
A FSM is typically represented by using a state transition diagram as shown in Figure
5.4. The quintuple (Σ,S, s0, δ, f) describes the FSM, with:

� Σ, the input alphabet

� S, a finite set of possible states

� s0 ∈ S, the initial state

� δ (x, q) , x ∈ Σ, q ∈ S, the state transition function: δ (x, q) : S × Σ→ S
� F ⊆ S is the (possibly empty) set of final states

FSM are based on a set of fully observable states, input symbols and state transitions,
and can thus be learned from training data are deterministic and computationally efficient
[LRR09]. FSM fail to capture the hierarchical property of events and do not capture
uncertainty. While extensions have been presented that address these issues of FSM,
other models that are well adapted to such aspects offer more general solutions – such as
Hidden Markov Models [LRR09].

In [VMS07] a two state FSM with “Walk” and “Fall” states is implemented.

5.1.5 Hidden Markov Models (HMM)

Hidden Markov models (HMM) are directed tree structured graph models, where it is
assumed that future predictions are independent of all but the most recent observations.
This is in contrast to FSM, where observations are considered as independent and iden-
tically distributed [Bis06]. HMMs however exploit the fact that previous states, give a
strong clue on what the next state might be.

The foundation of HMM are Markov chains. A first-order Markov chain is a random
process with the property, that the next state only depends on the current state, it is thus
independent on all, but the most recent state. This is also called the Markov property.
If we denote the N possible states S = {S1, . . . , SN} and the state at time t is as qt, the
conditional distribution of observing state Sj at time t is given as:

p(qt = Sj|qt−1 = Si, qt−1 = Sk, . . . ) = p(qt = Sj|qt−1 = Si). (5.27)
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Figure 5.5: Sequential data is represented via latent variables zn, that form a Markov
chain. Each 〈zn,xn〉-pair represents a single “time-slice” of the model.

Hence, the overall probability distribution of the states depends on the initial state prob-
abilities

πi = p(q1 = Si) (5.28)

and the set of state transition probabilities:

aij = p (qt+1 = Sj|qt = Si) , 1 ≤ i, j ≤ N (5.29)

for which the following stochastic constraints apply:

aij ≥ 0 (5.30)

N∑
j=1

aij = 1 (5.31)

Moving to higher-order Markov chains, where the current state depends on more
than the most recent observation are not an option, since the model parameters grow
exponentially with M , and thus applying the model becomes unfeasible for large values of
M . By introducing additional latent variables, a rich class of models can be constructed
out of simple components [Bis06]. So for each observation xn a corresponding latent
variable zn, with possibly different dimensionality and type, is introduced. It is assumed
that the latent variables zn form a Markov chain. The resulting model is the so called state
space model, and is illustrated in Figure 5.5. This models a double stochastic embedded
process with an underlying stochastic process that is not observable, but can be observed
through another set of stochastic processes that produce the observation sequence.

A HMM is described by the triple λ = 〈A,B, π〉, where

� A is the state transition matrix A = {aij}. The aij are the state transition proba-
bilities, defined as in (5.29).

� B = {bjk} is the observation symbol probability distribution in state j, for the
observed variable xk:

bjk = p(xk|qt = Sj) (5.32)

� π = {πi} is the initial state distribution as defined in 5.28.
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Figure 5.6: Transition diagram for a three state hidden Markov model with four ob-
servations. The circles correspond to the hidden states, the lines denote the transition
probabilities between the states, the dashed-lines the observation symbol probabilities bjk.
In order to facilitate reading, only b1k for S1 are illustrated.

With the number of states N and the number of observations M given, HMMs can be
used as a model of how a given observation sequence O = {x1, . . . ,xn} was generated by
an appropriate HMM [Rab89].

Figure 5.6 shows the transition diagram for a three state model, with four possible
observations.

In [Rab89], the three basic problems for HMMs are described:

1. Evaluation: Given the model λ and an observation sequence O, how can the
probability that the observation sequence was produced by that model p(O|λ) be
computed? In other words: how well does a given model match a given sequence
of observations? A solution to this is given by the forward-algorithm. The forward
variable αt (i) is defined as:

αt(i) = p (x1...t, qt = Si|λ) (5.33)

where x1...t is the observation sequence until time t. This can be iteratively solved
for αt (i) as follows:

(a) Initialization
α1 (i) = πibi (x1) 1 ≤ i ≤ N (5.34)

(b) Iteration

αt+1 (j) =

[
N∑
i=1

αt (i) aij

]
bj (xt+1) 1 ≤ t ≤ T − 1 (5.35)

(c) Termination

p(O|λ) =
N∑
j=1

αT (i) (5.36)
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2. Optimization: Given an observation sequence O and model λ, how can the corre-
sponding optimal state sequence Q = {q1, q2, . . . } be estimated? This requires some
kind of optimality criterion. A solution to this problem is offered by the Viterbi
algorithm [Rab89].

3. Training: Given the observation sequence O, how can the model parameters
λ = 〈A,B, π〉 be adjusted to maximize p (O|λ)? In some cases [TM06] the state
transition matrix is set up manually. The Baum-Welch algorithm, an application of
expectation-maximization, offers a solution for estimating A and B [Rab89].

In [TM06] a Hierarchical Hidden Markov Model (HHMM) is used to model motion. The
HMMs in the first layer model the elementary behavioral pattern. For each of the three
motion patterns “Is walking”, “Is falling”, “Is Lengthened” a HMM is trained and, given
the input sequence, evaluated. The first layer output is used as input to the two second
layer HMMs for the “WALK” and “FALL” case.

While several extensions [LRR09], like HHMM, have been suggested to allow modeling
of complex event compositions, Hidden Markov Models tend to become unmanageable
[LRR09]. The most critical issue with HMMs is that they require a large amount of
training data, which is in most cases – as in the example of fall detection – not available.
However, in case of less complex events, the model parameters can also be estimated
empirically as in [TM06].

5.1.6 Fuzzy inference

Fuzzy logic [Zad65] allows reasoning with imprecise concepts, much like the way humans
do [MP05]. It is based around the concept of fuzzy sets. In contrast to classical set theory,
where an element is either member of the set or not, in fuzzy set theory for each element a
membership grade is given. Formally a fuzzy subset A in space X = {x} is characterized
by a membership function fA (x), which associates a number in the interval [0, 1] with
each point in X :

fA (x)→ [0, 1] , ∀x ∈ X . (5.37)

where a value close to 1 indicates a high grade of membership. While this resembles a
probability function to some degree, there are essential differences between these concepts.
Probability theory describes the uncertainty of the occurrence of a particular event, while
fuzzy set theory describes the degree in which the event occurs [Kos90]. Various operators
are defined for fuzzy sets [Zad65]:

Complement The complement of a fuzzy set A, denoted by A
′

is

fA′ = 1− fA. (5.38)

Containment Fuzzy set A is contained in set B if and only if fA 5 fB

Union The union C of sets A and B, written as C = A ∪B is given as

fc(x) = max (fA(x), fB(x)) , ∀x ∈ X (5.39)
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Intersection The intersection C = A ∩B of fuzzy sets A and B is given as

fc(x) = min (fA(x), fB(x)) , ∀x ∈ X (5.40)

Complement, union and intersection are defined such that they correspond to the Boolean
logic operators negation ¬ , disjunction ∨ and conjunction ∧, respectively. Input mem-
bership functions generally describe linguistic variables such as very low, low, medium,
and high.

A Mamdani type fuzzy inference system is composed of the following steps [MA95]:

1. Determination of a set of fuzzy rules in the form of: IFATHENB, or short A⇒ B,
where both A and B are linguistic terms defined by fuzzy sets. A is called the
antecedent and B the consequent.

2. “Fuzzyfication” of the input by applying the membership functions for each input.

3. Implication of the antecedent to the consequent, where the consequent membership
function is reshaped using a function associated with the output of the antecedent.

4. Aggregation of all consequents. When all consequents are computed, the result of
the fuzzy inference is in the form of one fuzzy set per output variable, by application
of the union operator on all consequents [PGK+09].

5. Defuzzyfication of the aggregated outputs. This step yields a single valued output,
for example by computing the centroid of the aggregated fuzzy set.

To illustrate the inference process, the fuzzy inference system employed by Anderson et al.
[ALK+09] may be considered. A 24 rules inference system, with the antecedent variables
centroid, eigen-based height, similarity to ground plane normal (as described in chapter 4)
and three consequents upright, in-between and on-the-ground has been built. The fuzzy
sets for the antecedents are mappings to the values: {L,M,H}, low, medium and high,
and for the consequents the values {V, L,M,H} (very low, low, medium and high). The
rules are formulated like:

IF centroid = H ANDheight = H AND similiarity = H THEN

upright = L, in-between = V , on-the-ground = V (5.41)

5.2 Evaluation

Choosing an event model is crucial to successfully classify events in a specific domain. The
k-Nearest Neighbor approach is straightforward to apply however, it requires the whole
training dataset for evaluation. Furthermore it is not possible to model temporal event
composition. Though Neural Networks can be used as arbitrary approximators, their
application is cumbersome. They require a large training dataset as well as appropriate
preprocessing of the training samples to overcome the problem of overfitting to the training
data. In order to successfully apply support vector machines, the choice of the kernel is
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crucial. As for Neural Networks, the size and distribution of the training dataset are
limiting factors. The problem with Hidden Markov Models lies in the Markov property,
namely that the next state only depends on the current state. Additionally, HMMs
require a large amount of parameters to be learned and thus a large training dataset
is crucial. It is claimed [ALKS08, ALK+09], that fuzzy inference is superior to more
complex probabilistic models such as HMMs and Neural Networks. The first problem
noted earlier, is the requirement of those models for a large amount of labeled training
data (which are not available in the case of fall detection). Fuzzy systems on the other
hand can easily incorporate domain expert knowledge in the design of the membership
function. Additionally modifying the fuzzy rules is a straightforward process. HMMs,
SVMs and Neural Networks have to be retrained to incorporate new knowledge. Further
Anderson et al. argue that the confidence output in the fuzzy system can be understood
and reliably used to reject a wide range of unknown activities [ALK+09]. With the small-
sized dataset that is available for fall detection it is proposed to apply a fuzzy inference
system for classifying fall incidents.
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Chapter 6

Experiments

The proposed system is designed to be capable of monitoring the well being of persons in
real time. Thus the focus of the proposed system is on simplicity, computational efficiency,
reliability and extensibility. This chapter starts with an introduction of the system in
Section 6.1. Evaluation results and a comparison with previous work is presented in
Section 6.2.

6.1 Proposed approach

The workflow of the proposed early fusion system is illustrated in Figure 6.1. In previ-
ous research, early fusion clearly outperformed late fusion [ZMK10]. For each camera,
the person silhouette is extracted. These silhouettes are used to obtain a voxel space
representation of the object of interest. In this global 3D world coordinate system, view-
invariant features are extracted that estimate the human posture. Finally, fall confidence
scores are estimated by a fuzzy logic inference system.

In order to estimate the 3D silhouette, the cameras are calibrated using the method by
Bouguet [Bou99]. It efficiently supports the enhanced camera model presented in Section
3.

The 2D silhouettes are extracted using the color mean and variance approach (Sec-
tion 4.1.1) with an additional shadow and highlight detection step in normalized RGB
space (Section 4.1.4). The Gaussian mixture model and the Codebook model have been
evaluated as well. However, they have been rejected in favor of the computationally less
expensive CMV–approach. To remove noise, morphological operations are applied.

As described in Section 4.2, the 3D reconstruction of the person is based on a high
performance Shape from Silhouette approach. The 6 × 4.5 × 2m observation volume is
sampled in a regular 50 × 50 × 50mm grid. In a previous work [ZMK10] the voxel size
was twice as large. The grid size was chosen as small as possible without having a notable
impact on the run-time.

Selecting features is a crucial part in the event recognition process [RSV05]. In Sec-
tion 4.3, features that are commonly used in the fall detection and activity recognition
literature have been presented. Of these, the following features have been chosen for
evaluation:
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Figure 6.1: The work-flow of the proposed early fusion approach.

1. Bounding-box aspect ratio

2. Orientation of the ellipse major axis in respect to the ground plane normal

3. Ellipse axis ratio

4. Motion speed

5. Centroid speed

6. Centroid height

7. Unexpectedness based on the accumulated hitmap

Features are extracted from the voxel reconstruction in each frame, and fed into a fuzzy
inference system. To achieve real-time capable performance, the proposed fall detector
is implemented in C++. The current system runs at a frame rate of ∼ 22 fps on an
Intel Core2 Duo (E7300@2.66GHz) processor. Previously, a MATLAB implementation
has been presented [ZMK10], working at 5 fps, but with a half the 3D resolution.

The fuzzy classification procedure assigns a membership degree for each feature for
each class. Contrary to previous work, Gaussian membership functions, which can be
learned from training data, are proposed instead of the empirically established trapezoid
functions membership functions.

gaussmf (x) = e−
(x−µ)
σ

2

Since the normal distribution, does not take into account the nature of the features, a
simple extension, an asymmetric Gaussian membership function is suggested. To motivate
this idea, consider for example feature 2, the axis orientation. For an angle of 90° the
trained membership function gaussmf yields a membership confidence of 0.8881 in the
postfall class.
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Figure 6.2: Plot of trained Gaussian membership functions gaussmf (red) and gauss2
mf

(blue) of the axis orientation feature in the postfall case.

The asymmetric Gaussian membership function gauss2
mf is defined by (σlow, µ, σhigh):

gauss2
mf =

e
− (x−µ)
σlow

2

ifx < µ

e
− (x−µ)
σhigh

2

otherwise

Based on the trained parameters for gaussmf , the parameters have been manually esti-
mated. Plots of the adjusted membership functions are shown in Figure 6.3. The final
class membership degree is computed as the mean of the membership degree of all features.

6.2 Evaluation

A dataset consisting of 73 sequences, which follows the scenarios described in [NFR+07],
that have already been used for evaluation in previous works [ZMK10, ZZK10], was used
for the evaluation. Five actors have simulated a total of 49 falling and 24 non-falling
sequences in a laboratory setup. There are 17 forward and 15 backward falls, 13 lateral
falls, 6 syncope sequences, 8 involving a chair and 4 falls where the subject could recover.
A summary of the sequences is given in Table 6.1. The sequences were shot with four
un-synchronized cameras with a 288×352 resolution at 25 frames per second. The dataset
ground truth is labeled according to the four phases proposed by Noury et al. [NRB+08]:

1 – prefall normal activity

2 – critical the actual fall

3 – postfall on-the-ground after a fall

4 – recovery getting up, with or without help

Providing accurate per-frame labels for the dataset is difficult, since there is no distinct
point at which normal behavior ends, and the critical phase starts. The dataset was
labeled such that the critical phase begins whenever a change in acceleration and angle
is visible, and ends with the persons head touching the ground. The recovery phase is
starting with the first push off the ground.

As suggested in [NFR+07], the classification performance is measured in terms of the
classifier being able to positively recognize fall and non-fall events. The event recognition
output can thus be one of:
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Figure 6.3: Plot of trained Gaussian membership functions for the four phases plotted for
each feature.
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Category Name Outcome #

Backward fall

Ending sitting Positive 4
Ending lying Positive 4
Ending in lateral
position

Positive 3

With recovery Negative 4

Forward fall
On the knees Negative 6
Ending lying flat Positive 11
With recovery Negative 5

Lateral fall
Ending lying flat Positive 13
With recovery Negative 1

Fall from a chair Ending lying flat Positive 8
Syncope Vertical slipping against

a wall, finishing in
sitting position

Negative 2

Neutral

Sit down on a chair then
to stand up

Negative 4

Lie down then to rise Negative 2
Walk around Negative 1
Bend down, pick
something up on the
floor and rise again

Negative 2

Cough or sneeze Negative 3

Table 6.1: Overview of the evaluation dataset scenarios with the number of videos
[ZMK10].

65



True Positive – TP a fall occurs and is detected

True Negative – TN a normal activity is performed and recognized

False Positive – FP a fall is wrongly detected

False Negative – FN a fall occurred, but is not detected

The output of the fuzzy detector is the membership degree in the range of [0, 1] of the
current feature vector in the postfall class, which is thresholded to give the discrete fall
or normal classification results. The receiver operating characteristics (ROC) curve is
obtained by plotting sensitivity vs. 1-specificity computed for each threshold of the fall
membership. ROC curves have become a popular method for visualizing and comparing
classifier performance in machine learning [Faw06].

The sensitivity or true positive rate tpr of a classifier is

sensitivity =
TP

TP + FN
. (6.1)

And the false positive rate fpr is

tpr =
FP

TN + FP
(6.2)

Other measures that are associated with ROC curves are specificity

specificity =
TN

FN + TP
= 1− fpr, (6.3)

the classifier accuracy

accuraccy =
TP + TN

FP + FP + TN + FN
, (6.4)

the positive prediction value or precision

precision =
TP

TP + FP
(6.5)

the F1-score

F1 = 2 · precision · tpr
precision+ tpr

(6.6)

and the area under the ROC curve AUC.
In Figure 6.4 the ROC curves for the evaluated feature sets are plotted. As can

be seen, the ROC curves are similar. For comparison, in Figure 6.5, the ROC of the
results comparing early and late fusion presented in [ZMK10] are given. As you can see,
considerably better results have been achieved, as in [ZMK10], regardless of the feature
set.

Table 6.2 compares the performance of the feature sets for the optimal threshold – the
one that maximizes accuracy. The best score for each performance measure is emphasized.
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Figure 6.4: The computed fall confidence (blue), with accuracy optimized threshold
(green), plotted against the ground truth (red).

Figure 6.5: ROC of the previously proposed early and late fusion approaches [ZMK10].
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Adjusted Gaussian Membership function
Features accuracy precision sensitivity specificity F1-score AUC
1,2,3,5 0.858 0.902 0.916 0.982 0.909 0.992
1,2,3,4,7 0.828 0.916 0.898 0.985 0.907 0.993
1,2,3,5,7 0.861 0.907 0.918 0.983 0.913 0.992
1,2,3,4,6,7 0.825 0.915 0.896 0.985 0.905 0.994
1,2,3,5,6,7 0.844 0.908 0.908 0.983 0.908 0.993
1,2,4,5,6,7 0.849 0.915 0.912 0.985 0.913 0.993

Table 6.2: Evaluation results using the adjusted Gaussian membership functions. The
best values for each measure are emphasized.

For each measure, the optimal value is 1. As in the ROC plot, it can be seen that the
feature sets result in similar detection performance. The best results however are achieved
with the proposed unexpectedness measure (feature 7). The highest AUC, precision and
specificity are obtained when incorporating the unexpectedness. The quality of the
previously proposed motion speed feature (4) in comparison to the easier to compute
centroid speed (5) has been evaluated as well. Similar performance was achieved using
both features. However the centroid speed can be computed more easily and shows slightly
better results in combination with other features.

Using the same feature set (1, 2, 3, 4) as in previous experiments [ZMK10] the recog-
nition quality could be increased. An AUC of up to 0.994, compared to the 0.935 in
[ZMK10], is achieved.

A direct comparison of the ground truth and the computed fall confidence values for
the first three sequences is shown in Figure 6.6. The computed fall confidence is plotted
in blue and the ground truth data in red. A ground truth value of 1 indicates a fall in the
ground truth data. For illustration of the ground truth, the critical phase is plotted at
0.5 and the recovery phase at 0.75. As noted above, a crisp distinction between critical,
postfall and recovery is not easily definable, and this is where classification errors occur.
As can be seen in the plots, all fall scenarios are detected, however, the fall is detected
with a delay of a few frames.
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Figure 6.6: The computed fall confidence (blue), with accuracy optimized threshold
(green), plotted against the ground truth (red). Feature sets from top to bottom:
(1, 2, 3, 4), (1, 2, 3, 4, 7), (1, 2, 3, 5, 7), (1, 2, 3, 4, 6, 7), (1, 2, 3, 5, 6, 7)

Nevertheless, all fall incidents in the test-set were successfully classified as such, re-
gardless of the feature set.

As mentioned earlier, the results presented here outperform previous ones in [ZMK10]
with an AUC of 0.994. As other authors use different datasets and report per incident
as opposed to the per frame evaluation given here, results cannot be compared straight-
forward. Using a similar setup, Anderson et al. [ALK+09] obtain higher sensitivity 0.976
but lower specificity 0.932. Based on the evaluation of four test sequences Hazelhoff et al.
[HHdW08] report the accuracy of fall detection per incident with 100% under “normal”
and “realistic” activity, and 55% under “occluding” activity. In a strictly controlled en-
vironment, Foroughi et al. [FAP08] achieve similar results (sensitivity: 0.928, specificity:
0.976), as are presented here in an unconstrained environment. Detecting falls with a
single camera and a combination of motion quantification and shape features, Rougier et
al. [RMSAR07] achieve a sensitivity of 0.882 a specificity of 0.875. Thome and Miguet
[TM06] use two perpendicular cameras and the person’s principal angle for fall detection.
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They report a sensitivity of 0.82 a specificity of 0, 983.
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Chapter 7

Conclusion

In this thesis, a video understanding framework that allows the reliable detection of
falls has been presented. The key considerations are applicability in real world scenarios
while achieving a real-time performance. A thorough investigation of the related vision
and non-vision based fall detection is the starting point of the here presented research.
The main drawback of existing solutions is that they are not independent of camera
placement. Further, they cannot deal with occlusions. Therefore they are only applicable
in laboratory setups.

With the proposed system, a fall detector that extracts view invariant features in a
global 3D coordinate system, based on a voxel space representation of persons is presented.
It is shown that the proposed approach automatically and reliably detects falls in real
time using a straight forward fuzzy logic approach. The evaluation results show that
previous works that uses more complex event understanding schemes such as Hidden
Markov models are outperformed by the proposed approach. Fuzzy inference offers a
flexible event understanding approach, which makes adding features and rules simple.
HMMs in contrast would have to be retrained when new features are added.

Using the accumulated hitmap as an unexpectedness measure, the performance of
the feature set is considerably increased. It was shown, that the unexpectedness is an
important clue when detecting falls as it allows false positives to be rejected. Such a
feature has been ignored in the related work so far.

Since event understanding is just the final step in the processing pipeline, more ad-
vanced lower level approaches benefit the classification task. Ranging from fully automatic
camera calibration [GKP07], to object segmentation with person identification [CHK+06]
and robust tracking approaches [HHdW08]. Occlusions, shadows, different rates of execu-
tion and multiple actors are the main problems when working with real world scenarios.
The combination with non-vision features like in [TDc05] is another way to tackle these
problems.
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