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Abstract

This work deals with the automated reconstruction of modern English handwritings and
ancient Greek texts. The Greek writings were overwritten in the past and the presented
system utilizes multi-spectral images, in order to identify the overwritten regions and to
reconstruct them. The detection of the overwritten regions is fulfilled by a binarization
algorithm, which considers the differences between intensity minima and maxima in a
local neighborhood. The differences found are afterwards used for the determination of
local thresholds, which are utilized in the foreground segmentation step.

The foreground regions found are subsequently filled by a statistic inpainting approach.
The inpainting technique chosen is part of the Fields of Experts (FoE) framework. This
approach is based on Markov Random Field modeling and allows for a learning of sta-
tistical image models, which model long range dependencies between pixels. The models
are defined by several parameters, which are all learned from a training database. Such
a trained model is used in an inference task in order to maximize the probability of a
restored image. FoE image models are used in this work in order to recover the occluded
parts of ancient Greek texts. Additionally, the FoE algorithm is applied on natural
images and modern handwritings.

A further inpainting technique has been developed for the reconstruction of modern
writings: Contrary to the statistical approach, the second algorithm is based on a heuris-
tic one that is called tensor voting framework. This approach is based on the Gestalt
principles and allows for a reconstruction of missing or damaged image data. The tech-
nique is applied on handwritings in order to restore missing curve points, which belong
to character boundaries.



The recovery of modern writings, which were partially overlapped by ruling lines, was
analyzed in one experiment. The heuristical approach gained an average PSNR value of
15.58 dB in this test. The statistical inpainting technique was able to reconstruct more
missing text regions and hence it yielded a higher PSNR value of 18.24 dB. The proposed
system gained an average PSNR value of 20.34 dB on the dataset, which was comprised
of the Greek writings.
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Chapter 1

Introduction

This thesis deals with digital image inpainting, which denotes the automated recovery of
unknown image regions. Inpainting is not defined for a particular group of images and
the majority1 of the inpainting techniques listed below are concerned with the restoration
of natural images. While the restoration of such images is also investigated in this work,
the main focus lies on the recovery of images containing handwritings. The retouching
of recent handwritten text is examined in this thesis, as well as the recovery of ancient
documents.

The analysis of such historic writings can be facilitated by multi-spectral imaging
[RB05a]. Multi-spectral imaging has also proven its usefulness for the examination of a
specific group of documents, named palimpsests [RB05a], [Kno08]. The term palimpsest
stems from the Greek word palimpsestos meaning scraped again. Palimpsests are historic
manuscript pages that were reused, because parchment was a costly material in former
times [RB05a]. The original texts in such palimpsest were scraped off and overwritten
by younger writings. Hence, the former text is often barely legible under visible light,
which makes a text analysis under this lighting condition difficult or even impossible
[FK06]. Multi-spectral imaging can be used in order to enhance the visibility of ancient
underwritings [RB05a], [EKCB03]. The system, which will be introduced in the following,
aims at retouching such underwritings in palimpsests. The proposed method makes use of
Multi-Spectral Images (MSI) in order to separate the overwritings from the underwritings
and to restore the older texts.

The palimpsests, which are used in this thesis, are generously provided by the Archimedes
Palimpsest Project. The Archimedes Palimpsest is a copy of treatises created by the Greek
scientist Archimedes (287 - 212 BC). The copy was created in the tenth century in Con-
stantinople, but in the thirteenth century the manuscript was taken apart and reused
as a prayer book, also called Euchologion. The original text was erased and overwritten
[Kno08].

The Danish scholar Heiberg discovered in 1906 that the Euchologion contained over-
written treatises by Archimedes and transcribed those treatises. Heiberg was not able
to transcribe the entire underwritings, because they are barely visible under tungsten
illumination. Shortly after Heiberg’s finding, the manuscript disappeared in 1908 for yet

1All of the inpainting methods, which will be introduced in the following, are designed for natural
images, except for: [CG09], [BGS05], [BEG07].
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unknown reasons and remained missing till 1998. The book was sold in this year and
lent to the Walter Art Museum in Baltimore. Since then, the team from the Archimedes
Palimpsest Project put effort into making the ancient texts legible [Ber07].

1.1 Motivation

The project team discovered that the original text is most visible under UltraViolet (UV)
illumination. Under this lighting condition the overwriting is unfortunately still visible.
If a manuscript leaf is in contrast illuminated with red light, the ancient text almost
disappears, while the younger text is still present. Knox [Kno08] used this fact to recover
the underwritings, by subtracting the red light images from the UV images. He applied
multi-spectral unmixing techniques in order to separate the underwriting from the residual
image information. Furthermore, he proposed a pseudo-color approach, which visualizes
the over- and underwriting.

Figure 1.1 illustrates the two processing techniques that have been suggested by Knox.
Figure 1.1 (a) and Figure 1.1 (b) show two photographs of a parchment portion, taken
under different lighting conditions. The different illuminations exhibit the overwriting
and the underwriting, respectively. The underwriting is visible under UV illumination,
as it is shown in Figure 1.1 (b). In Figure 1.1 (c) the corresponding pseudo-color image
is presented. Figure 1.1 (d) shows an image, which exhibits purely the older text. Such
images are called difference images, since they are obtained by subtracting red light images
from UV images.

(a) (b) (c) (d)

Figure 1.1: Multi-spectral imaging reveals the underwritings in leaf 40r. (a) Only the
overwriting is recognizable under red light. (b) The underwriting is most visible under
UV illumination. (c) The pseudo-color image exhibits the older and younger text. (d)
Through multi-spectral unmixing it is possible to reveal the underwriting [Kno08].

The example images exhibit that multi-spectral imaging enhances the contrast of
underwritings and facilitates a text analysis by philologists. The project team found that
scholars favored pseudo-color images over difference images. The scholars disliked the
latter ones, because such images contained characters that were interrupted by gaps. The
philologists could not determine, whether a gap was caused by an occlusion or stemmed
from a region, where no text was present. Hence, the scholars preferred images, which
exhibit the overwritings and underwritings [Kno08].

The readability of the texts in such images is nevertheless limited, since the ancient
writings are partially occluded by younger ones. The aim of this work is to detect the
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occluded regions and to restore the former writings automatically. The presented system
consists of two stages: Firstly, the overwritings are detected by applying a binarization
algorithm on red light images. Secondly, the retouching of the detected regions is fulfilled
by applying an image inpainting algorithm on UV images [KDH+11].

While the main focus of this thesis lies on the reconstruction of ancient Greek hand-
writings, the recovery of modern writings is also treated in the course of this work. The
restoration of such texts is only demonstrated on synthetic data, but it is remarkable that
inpainting can also be used for the retouching of recent handwritings, which may suffer
from degradations like show-through in scans. A restoration of such damaged regions can
increase the performance of an Optical Character Recognition system (OCR), as it is
shown in [TGM10]. Inpainting can also be used for the recovery of handwritings that are
partially occluded by ruling lines. It is stated in [CG09] that such a measurement im-
proves the capability of an OCR system. Furthermore, Chen et al. [CLK10] have shown
that the performance of a writer identification system can be improved significantly by a
preceding ruling line removal step.

The papers mentioned show that a text analysis of modern writings can be facilitated,
if damaged text regions are retouched before the analysis step is carried out. Hence, the
inpainting algorithm, which is used for the palimpsest recovery, is also applied on modern
handwritings. Additionally, the retouching of such recent writings is fulfilled with another
recovery method that relies on heuristics. The algorithm is based on the tensor voting
framework, suggested by Medioni and Kang [MK04].

State of the Art

The term digital inpainting was introduced by Bertalmio et al. [BSCB00] in 2000 and
describes the automated filling of a specific image region. The region is called inpainting
region, or domain, and is provided in the form of a binary mask. The inpainting mask
may mark damaged regions - like scratches in photographs - or occluded areas - like super-
imposed logos in television broadcasts. Regardless of the underlying problem, the masked
area is always assumed to be unknown and is solely restored based on the information
that is contained in the unmasked image region. One example for an inpainting problem
is given in Figure 1.2 (left), where the superimposed inpainting mask2 is colored red. The
output of the investigated inpainting method is shown in Figure 1.2 (right).

During the last decade diverse inpainting problem solutions were suggested. In the
pioneering work of Bertalmio et al. [BSCB00], the inpainting task is fulfilled by solv-
ing PDE’s. Thus, isophote lines are continued from the known into the unknown image
regions. Another PDE based algorithm is proposed by Chan and Shen [CS00]: They sug-
gest solving the inpainting problem with the minimization of an energy function, namely
TV. Similar inpainting strategies have been proposed in [BLC08], [BBC+01] and [ES02].
Common to the mentioned algorithms is that anisotropic diffusion is applied during the
inpainting sequence.

A major drawback of these methods is that they are only capable of filling thin and
narrow domains in an appropriate manner, while large inpainting domains are blurred
out [CPT04], [TLD06], [Fid08]. The algorithms are additionally only able to restore non-

2The text serving as the mask was taken from: http://de.wikipedia.org/wiki/Stuttgart, last accessed
on 11. August 2011.
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Figure 1.2: Example for image inpainting. (Left) Input image and corresponding inpaint-
ing mask. (Right) Output of the examined inpainting algorithm.

textured images in a satisfying way [CPT04], [TLD06], [Fid08]. Criminisi et al. [CPT04]
suggest overcoming these drawbacks by copying entire image patches from the known
into the unknown image regions. This strategy prevents a blurring of large domains and
produces more convincing resulting images than the methods in [BSCB00] and [CS00].
Several authors [CZL07], [WR09], [SJZW07], [HHL+08], [CX10], [ZRK10] have picked up
the basic idea of the algorithm by Criminisi et al. and suggested extensions to the original
algorithm.

The papers mentioned rely on heuristics, whereas other papers formulate the inpainting
task as a global optimization problem. Komodakis and Tziritas [KT07] suggest posing the
inpainting problem as a labeling problem, which is solved by an MRF. The algorithm fills
the unknown image region with patches that correspond to labels. Wexler et al. [WSI07]
have suggested finding the maximum in a global objective function, which rates the quality
of the inpainting solutions. The algorithms, which are based on global optimization, are
able to produce convincing recoveries of complex image regions, as will be shown in Section
2.

The papers mentioned above are concerned with the retouching of natural images.
Cao and Govindaraju [CG09] propose instead an algorithm that is exclusively designed
for the restoration of handwritings. The authors suggest training an image model on
handwritings. The model is subsequently utilized for the binarization and restoration of
images, which are containing handwritten characters that are overlapped by ruling lines.
The ruling lines are detected automatically and their locations are encoded into inpainting
masks.

The generation of the mask is not considered in the formal inpainting definition and
the mentioned inpainting papers - except the last one - utilize user-supplied masks. Our
motivation is similar to that in [CG09], since overwritten palimpsest regions are automat-
ically determined by the system presented. Another similarity to the method in [CG09]
is that an MRF is utilized in order to learn the statistics of handwritings. Contrary to
[CG09], the proposed system is applied on gray-scale images. While Cao and Govindaraju
utilize a patch-based and pairwise MRF, the palimpsest recovery system developed makes
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use of a pixel-based and high-order MRF.

Objective

It is intended to develop a system, which improves the readability of ancient underwritings
and thus facilitates a subsequent text analysis. The readability should be improved by
applying an image inpainting technique, which propagates interrupted strokes in a likely
manner. Since the palimpsest recovery is fulfilled with an inpainting technique, solely the
regions inside the inpainting mask are manipulated, whereas the unmasked regions are
left unchanged. The over- and underwritings are in diverse conditions and the system
proposed should be capable of handling the following difficulties successfully.

Before the inpainting step can be accomplished, it is necessary to identify the overlap-
ping areas. The overwritings contain partially faded out characters, which aggravates the
binarization. The mask generation is fulfilled on red light images, which are comprised of
characters with diverse contrasts to the background. The first column of Figure 1.3 shows
an example for a character with a low background contrast. It can be seen that the letter
in the corresponding red light image - given in the second row - has a lower background
contrast than the remaining overwritings in Figure 1.3.

Furthermore, the binarization is aggravated by the fact that parts of the ancient under-
writings are visible under tungsten illumination. Such regions should not be incorporated
into the mask, since the restoration algorithm might fill them with the background color.
One example for ancient characters that are visible under tungsten illumination is given
in the second column of Figure 1.3.

Similar to the overwritings, the underwritings contain strokes that are partially faded
out. The restoration is further compounded by the circumstance that background clutter
is present in the photographs utilized. This can be seen in the third column of Figure 1.3,
where the ancient character in the image center is not entirely distinguishable from the
background. The aforementioned difficulties aggravate the restoration task. In contrast,
the fourth and fifth column of Figure 1.3 show palimpsest portions that are easier to
solve, since the contrast between fore- and background is considerably higher than in the
example images previously shown.

This work does not aim at restoring any kind of occlusions. The system is in fact only
capable of restoring partially occluded letters. The reconstruction of entirely occluded
characters is not possible with image inpainting algorithms, since such methods propa-
gate surrounding image structures into unknown image regions. One example for such a
problem that cannot be solved by the system is given in the sixth column of Figure 1.3.

The recovery of totally missing characters would only be possible by analyzing the
contents of the ancient texts, which is not considered in this work. Instead, the main goal
of this thesis is to examine the applicability of a particular inpainting algorithm for the
restoration of ancient palimpsest texts. Since the system is not designed for a successful
handling of all possible occlusions, the output of the proposed method has to be surveyed
by a scholar.

Main Contribution

The main contribution of this work is to apply an image inpainting algorithm for the
restoration of occluded handwritings in palimpsests. The system introduced makes use
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Figure 1.3: Greek letters extracted from different palimpsest folios. The first row shows
pseudo-color images and the corresponding tungsten illuminated photographs are given
in the second row. The UV photographs of the Greek characters are presented in the last
row.

of MSI, in order to detect occlusions and to reconstruct them automatically. The deter-
mination of the occluded regions is conducted on photographs of parchments that have
been exposed to tungsten light. The occluded regions are detected by a binarization algo-
rithm, which considers the difference between a maximum and a minimum intensity value
within a local neighborhood. Regions, where the differences exceed a certain threshold
are assumed to be character boundaries.

The inpainting process is fulfilled on photographs of parchments, which have been
illuminated with UV light. The reconstruction is accomplished by an inpainting algorithm
that is named FoE approach. The FoE algorithm is based on MRF modeling and was
suggested by Roth and Black in [RB05b]. The basic idea of the method is to train an
image model offline and to use this model for a subsequent inference task.

Roth and Black use models that have been trained on natural images. To the best of
my knowledge, this thesis is the first work in which FoE priors are trained on handwrit-
ings. It will be evaluated in Section 4.2.1 if such models are more suited for the recovery
of handwritten text than models, which have been trained on natural images.

The inpainting algorithm is also evaluated on modern writings, which consist of Latin
letters. Thus, it is analyzed if the FoE inpainting algorithm is suitable for the retouching
of not degraded data. For this kind of data a second recovery algorithm was developed.
In contrast to the FoE approach, the second method makes use of heuristics. The per-
formances of both methods are compared in Section 4.2.3.

1.2 Scope of Discussion

The original FoE algorithm is only applied on natural images, whereas the main focus
of the actual work lies on the recovery of handwritings. Nevertheless, the inpainting
of natural images is also evaluated. This gives the ability to compare the inpainting
technique chosen to other algorithms that are designed for natural images. Therefore,
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selected inpainting results, found in related literature, are compared to outputs, which
are produced by the FoE algorithm. However, it is not intended to give an exhaustive
comparison to other inpainting techniques, but rather to enable a basic assessment of the
inpainting performance gained.

This thesis is mainly concerned with the question, if it is possible to recover handwrit-
ings successfully by applying inpainting techniques. In order to answer this question, the
recovery of ancient and degraded handwritings is evaluated, as well as the inpainting of
recent and undamaged text. Two inpainting methods are applied on modern handwrit-
ing data. These writings are originally undamaged and artificially created masks were
utilized in the experiments. Hence, this kind of data is also referred to as synthetic data.
In the tests that are conducted on synthetic data, the locations of the occluded regions
are given and no mask generation step is fulfilled. Such a mask generation step would of
course be inevitable in a practical application. Nevertheless, it is not intended to create
an entire restoration system for recent writings, but instead to evaluate the capabilities
of the inpainting techniques.

The performance of the handwriting recovery is analyzed by evaluating the similarity
between ground truth images and inpainting results. It would also possible to evaluate the
text recovery by comparing the performances gained by an OCR system that is applied
on partially occluded writings and on the corresponding recoveries. This approach would
allow for an assessment of the practical effect of the text recovery, but was not considered
due to time restrictions.

The palimpsest recovery is also evaluated by comparing ground truth images to restora-
tion results. In contrast to synthetic data, the ground truth images of the real world data
had to be created manually based on transcriptions that are provided in [NAW04]. It has
to be mentioned that an exact manual reconstruction of the occluded image regions is not
possible, since the missing intensity values can only be estimated. Furthermore, the sim-
ilarity measurement used is not a sophisticated measurement of the human perception of
similarity [BLLC02]. Hence, a qualitative assessment of the inpainted images by scholars
would be more appropriate. This was not realized, since no scholar was involved in this
work. Instead, numerical results are presented along with exemplary images in order to
enable a subjective evaluation by the reader.

1.3 Definition of Terms

In this section terms, which are frequently used in the thesis, are briefly introduced. These
terms will be explained in more detail in the course of this work.

FoE Fields of Experts: An MRF approach that is proposed by Roth and Black
[RB05b]. The main advantage over earlier MRF models is the fact that all
parameters are learned from a training set and that long-range correlations
between pixels can be modeled.

MAP Maximum A Posteriori: An inference technique that is used in Bayesian
image analysis. The method is the most often used inference technique in
MRF modeling [Li09]. The MAP - MRF framework was introduced by
Geman and Geman [GG84] for low level vision [Pér98].
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ML Maximum Likelihood: A statistical method that aims at learning the
parameters of an MRF model. The parameters are estimated by maximizing
the likelihood of the training data.

MRF Markov Random Field: A graphical model that allows for a modeling
of contextual dependencies. The underlying theory is based on the Bayes
theorem and can be used for image restoration tasks [Li09].

PDE Partial Differential Equation: A type of differential equations that is used
by PDE based inpainting algorithms. This kind of equations allows for a
smoothing of data, while preserving image discontinuities [Tsc06]. Bertalmio
et al. [BSCB00] were the first who proposed solving inpainting problems with
this kind of equations [KT07].

TV Total Variation: Mathematical problem formulation, which can be used for
image denoising and inpainting tasks. Chan and Shen [CS00] introduced a
TV formulation for image inpainting that is based on the TV restoration
model suggested by Rudin et al. in [ROF92].

1.4 Results

The performance of the FoE algorithm was evaluated on three different types of images:
Natural images, recent writings and underwritings in palimpsests. The tests conducted on
natural images showed that the inpainting performance depends on the structure of the
inpainting mask. Three different mask types have been restored and each mask occluded
about 0.25 % of the input image. The best performance - in terms of Peak Signal-to-
Noise-Ratio (PSNR) - was gained on mask regions with an average width of 3 pixels:
The performance achieved was 33.48 dB. The recovery of 5 pixels wide regions led to a
similarity of 32.25 dB. The worst result, namely 31.37 dB, was achieved on 11 pixels wide
regions. While the restorations of the 3 pixels wide regions look visually plausible, the
recoveries of the 11 pixels thick regions look implausible, since texture is not reproduced
and the inpainting regions are blurred out.

In the first test conducted on recent handwritings, the performance of three differ-
ent FoE priors was evaluated: One prior captured the statistics of natural images. The
remaining two priors were trained on diverse handwritings: The first model was trained
mainly on cursive written characters, whereas the second one was trained on uppercase
letters. The first test set contained 100 cursive written words, which were overlapped by
other words. The model trained on natural images gained an average similarity value of
18.06 dB. The prior which captured the statistics of cursive written characters achieved
a performance of 19.03 dB and the prior that was trained on uppercase letters yielded
a PSNR value of 18.78 dB. The second test set was comprised of 100 words, written in
uppercase, and the performance of the aforementioned FoE models was: 16.34 dB, 17.08
dB, 17.37 dB. The experiment showed that the handwriting models capture the main
orientation of the strokes, which are contained in the training database. The aforemen-
tioned dependency on the mask width was also recognized on recent handwritings: 100
handwritten words were overlaid with horizontal ruling lines, whereby the lines were 3, 5
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and 7 pixels wide. The corresponding similarity values gained by the statistical based al-
gorithm are 22.59 dB, 20.03 dB and 18.24 dB. The heuristical based approach was clearly
overwhelmed, since it achieved the following lower performances: 19.20 dB, 17.17 dB and
15.58 dB.

The palimpsest recovery was analyzed on four panels extracted from different folios
belonging to the Archimedes palimpsest. It turned out that the system proposed is not
capable of restoring the palimpsest images at the original resolution, since the mask centers
are not filled adequately. Hence, the images used had to be resampled using a resize factor
of 0.25. The presented system gained the following PSNR values inside the inpainting
regions: 18.52 dB, 19.46 dB, 20.36 dB and 23.04 dB. The corresponding similarity values
of the entire panels are: 23.13 dB, 24.44 dB, 25.42 dB and 26.97 dB. The results for the
palimpsest recovery are only modest, since the panels had to be downsized and noise was
often reinforced during the inpainting task.

1.5 Organization of this Work

The basic ideas of a few inpainting algorithms have been mentioned already. A more
detailed explanation of these and other inpainting techniques is given in Chapter 2. The
first part of this chapter provides a survey of algorithms that aim at restoring image
geometry. The second part details instead inpainting methods, which are able to reproduce
texture.

In Chapter 3 the investigated algorithms are depicted. At first, the mask extraction
step is described in Section 3.1. Secondly the FoE framework is discussed in Section
3.2. The underlying theory of MRF modeling in general is introduced as well as the
FoE framework in particular. In Section 3.3 the FoE inpainting algorithm is applied
on natural images and images containing handwritten text. Typical characteristics of
the examined restoration technique are discussed based on examples. Finally, the tensor
based text recovery is introduced in Section 3.4. At first the basic principles of the tensor
voting framework are explained. Subsequently the restoration algorithm, which is based
on tensor voting, is presented.

Chapter 4 provides experiments that demonstrate the capabilities and limits of the
algorithms examined. The chapter is divided into three parts: The first part deals with
the inpainting of natural images, which is fulfilled with the FoE inpainting approach.
The recovery of synthetic handwriting data is depicted in Section 4.2. Both restoration
techniques are evaluated and their performances are compared at the end of the section.
The retouching of real world data is analyzed in the last section and in [HS11]. The mask
generation step and the inpainting sequence are analyzed by means of manually created
ground truth images.

The thesis is concluded by Chapter 5, where the strengths and limitations of the
evaluated methods are summed up. Possible improvements are discussed at the end of
this work.
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Chapter 2

Related Work

This chapter provides an overview on inpainting algorithms. An exhaustive explanation
of the outlined methods is beyond the scope of this thesis. Instead, this chapter is in-
tended to give an overview over different problem solutions. Therefore the basic ideas of
the approaches introduced are summed up and their advantages and disadvantages are
discussed.

The inpainting techniques presented in the following can be categorized into two differ-
ent groups: Geometric methods and textural inpainting approaches. The chapter struc-
ture follows this categorization. In Section 2.1 the inpainting problem is defined and
geometric restoration algorithms are reviewed. The FoE framework is a geometrical in-
painting technique that is based on MRF modeling. Therefore, the main principles of
other MRF based algorithms will be discussed in an own subsection. The second section
of the chapter deals with textural inpainting methods. Those algorithms combine the
strengths of geometrical methods and texture synthesis. A few, namely 7, texture syn-
thesis algorithms will be introduced in a separate subsection, since they are utilized by
outstanding textural inpainting methods. Those methods are either based on ad-hoc prin-
ciples or on global problem formulations and both categories will be depicted at the end
of this chapter. Additionally, textural inpainting methods are compared to geometrical
restoration algorithms.

2.1 Geometric Inpainting

In this section geometric inpainting techniques are introduced. Those methods aim at
recovering image geometry and are also called structural inpainting methods. The first
geometrical methods have been published, before textural inpainting techniques were
introduced. This subsection starts with a description of selected works that are based on
heuristics. Later on, structural inpainting techniques, which are based on MRF modeling,
will be depicted.

2.1.1 Heuristical Inpainting Techniques

A pioneering approach, falling into this category, was published by Nitzberg et al. in
[NMS93]. In this work the authors describe an image segmentation algorithm, which
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is able to connect edges that are occluded by an object. They accomplish this task by
searching for T-junctions in an edge map and connecting those T-junctions based on an
energy formula that minimizes the length of a connection.

Masnou and Morel [MM98] suggest using level lines instead of edges for the disocclusion
task, since edges are more sensitive to contrast changes [TLD06]. The proposed method
also solves the inpainting problem with the minimization of an energy formula. The
energy formula used is based on the TV norm. Bertalmio et al. [BBS01] note that this
inpainting method requires a simple topology and that angles are not well preserved.
Another disadvantage of the algorithm is the fact that it is only able to create straight
level lines, which is not suitable for the inpainting of large areas.

The term digital image inpainting was coined by Bertalmio et al. in [BSCB00]. In this
work image inpainting is defined as the automated filling of an image region. The region is
called the inpainting region and is provided in the form of a binary mask. Bertalmio et al.
suggest fulfilling the inpainting task by solving PDEs. The basic idea of the algorithm is
to smoothly complete isophote lines1, arriving at the border of the inpainting region, from
the outside of the mask into the inner region. The direction of the propagated isophote
lines is orthogonal to their gradients and points into the inside of the inpainting region.
The propagated information is an estimation of the variation of the smoothness which
is implemented with a two-dimensional Laplace operator. This propagation is repeated
iteratively and anisotropic diffusion is applied after a certain amount of iterations. This
anisotropic diffusion preserves the sharpness of the edges and avoids a crossing of lines
that are not connected. Figure 2.1 shows an inpainting result of the work of Bertalmio et
al.

A major drawback of the method described above is its slow convergence time, which
may take about a few minutes - depending on the image size. Bertalmio et al. propose
a faster algorithm in [BBS01]. This technique borrows ideas from computational fluid
dynamics, which is a well-studied research area [Fid08]. The authors propose to interpret
an image as a stream function for an incompressible flow. The propagated information is
the Laplacian - as it is in [BSCB00] - and can be seen as the vorticity of a fluid. Therefore
the image defines a vector field and the Laplacian is transported into the inpainting
region. With this analogy in mind, inpainting problems can be solved with Navier-stokes
equations. The results of the inpainting process based on Navier-stokes equations are
similar to the results in [BSCB00], but the algorithm needs less time to converge, namely
a few seconds.

Another inpainting algorithm that is based on a physic theory is described in [BGS05].
This method uses the Ginzburg-Landau equation, which models phase transitions in su-
perconductors. While the previously described methods are only able to inpaint two-
dimensional images, the Ginzburg-Landau equation may be used for inpainting in a three-
dimensional space. An example of a three-dimensional inpainting result is shown in Figure
2.2.

Chan and Shen [CS00] propose a TV inpainting method that is inspired by the work
of Masnou and Morel [MM98]. In contrast to [MM98], the authors explicitly define
the inpainting process and discuss principles for satisfying inpainting results. In order

1The term isophote line is a synonym for level line.

11



Figure 2.1: (Left) Color image and a superimposed text, which serves as the inpainting
mask. (Right) The resulting inpainted image. [BSCB00]

Figure 2.2: (Left) Three-dimensional input data. (Right) The hole in the cheekbone is
inpainted. [BGS05]

to preserve the propagated level lines, anisotropic filtering is applied in the inpainting
process. The strength of the anisotropic diffusion depends only on the strength of the
isophotes as Chan and Shen note in their follow-up paper in [CS01]. In this follow-up
paper the authors suggest that the diffusion strength should depend on the strength of the
isophotes and additionally on the geometric information of the isophotes. The suggested
formula for the diffusion strength penalizes level lines with a high curvature and instead
favors level lines with a small curvature. The proposed method is able to inpaint larger
regions than the previously described method in [CS00].

Recently the algorithm in [CS01] was extended by Loeza and Chen [BLC08]. The
authors notice that the original algorithm requires much time for convergence. The ex-
tended algorithm overcomes this drawback with the use of a multigrid algorithm. Loeza
and Chen report that their method produces similar results as the algorithm in [CS01],
while needing considerably less time to converge.

Chan et al. [CKKS02] interpret the inpainting process as an application of Bayesian
inference: Satisfying inpainting algorithms must take care about the prior model of images
and the data model. The term data model stands here for the known regions of the in-
painted image. The prior model contains a priori knowledge about curves like smoothness
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and convexity. The authors propose a prior model that is based on plane curves Euler’s
elastica. Furthermore the authors show that their Euler’s elastica inpainting model is a
generalization of the methods in [CS01] and [BSCB00].

Another TV inpainting algorithm is described in [BBC+01] by Ballester et al. The
authors present an energy function that has to be minimized w.r.t. to a vector field,
which is obtained from level lines. Ballester et al. state that the proposed energy formula
is based on an interpretation of Gestaltist’s good continuation. This means that the
algorithm attempts to connect level lines like it would be done by a human inpainter.
This can be seen in Figure 2.3: The image in Figure 2.3 (b) is produced by an algorithm
that minimizes the connection lengths. Ballester et al. propose an energy formula that
additionally takes care about the surrounding structure. This consideration of nearby
structures leads to the connection of the line in Figure 2.3 (c).

(a) (b) (c)

Figure 2.3: (a) Input image. The white rectangle in the middle of the picture is the
inpainting mask. (b) Result obtained by minimizing the connection length. (c) Image
inpainted considering surrounding structures. [BBC+01]

Esedoglu and Shen [ES02] propose a TV inpainting method that is based on the
Mumford-Shah image model defined in [MS88], where the model is used for segmentation.
Esedoglu and Shen [ES02] note that the original model is insufficient for inpainting, since
it favors straight lines. Therefore the Mumford-Shah image model is extended with the
Euler’s elastica curve model, which produces images with a higher quality than the original
model.

While the previously described methods propagate level lines, Rareş et al. propose a
method in [RRB05] that connects edges. The authors state that edges separate regions
with different contents and those edges are more robust against intensity changes. The
proposed method consists of three steps: In the first step the image is segmented and the
edges of the contours, belonging to the segmented objects, are extracted. In the second
step pairs of corresponding edges are found. In the final step the corresponding edge
pairs are connected with the arcs of fitted circles. The regions that are bounded by the
connecting edges are filled with interpolated color values.

Tschumperle [Tsc06] presents an inpainting algorithm that is based on curvature-
preserving PDE. The author suggests a framework based on tensor driven PDE, which
regularizes images and preserves the curvature of curves. The inpainting task is fulfilled
with anisotropic smoothing. The geometry of an input image is encoded into a field of
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structure tensors. Those structure tensors are used for the computation of a field of dif-
fusion tensors, which determines the strength of the anisotropic diffusion. An inpainting
result of the algorithm is shown in Figure 2.4. According to [ALM10], Tschumperle’s
method is one of the most efficient PDE based inpainting algorithms and produces sat-
isfying results, if the parameters are set correctly.

(a) (b) (c)

Figure 2.4: (a) Undamaged input image. (b) Mask. (c) Final inpainting result. [Tsc06]

Oliveira et al. suggest a further efficient algorithm that is based on diffusion. Contrary
to [Tsc06] and [BSCB00] the authors suggest performing isotropic diffusion instead of
anisotropic diffusion. The authors suggest the usage of user-defined diffusion barriers,
which mark high contrast regions. The diffusion process is stopped at the barriers, in
order to preserve strong edges. The semi-automatic method produces results similar to
the algorithm in [BSCB00], if the barriers are set adequately.

Another inpainting method that is faster than other established PDE based methods
like [BSCB00], [ES02], [CS01] is proposed by Bertozzi et al. in [BEG07]. This method is
based on a slightly modified Cahn-Hilliard equation, which models the phase separation
in binary fluids. The suggested inpainting algorithm works only on binary images, since
the Cahn-Hilliard equation can only be applied to binary liquids. In the case of a binary
image - like a binarized text - the algorithm produces similar or even better results as
the methods in [BSCB00], [ES02], [CS01]. The result of an experiment conducted on
synthetic data is shown in Figure 2.5. In [BHS09], the Cahn-Hilliard inpainting method
is generalized to gray-value images.

Telea presents an inpainting method in [Tel04], which is inspired by the one in [BSCB00].

Figure 2.5: (a) Input image with superimposed mask (marked gray). (b) Restored text.
[BEG07]
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Pixels inside the inpainting region are inpainted successively and a fill order ensures that
the most confident pixels are inpainted first. The fill order is calculated with the fast
marching method that is introduced in [Set98]. The gray value that is assigned to an
inpainted pixel is interpolated from the gray values of its known neighbors. The method
described produces similar results as the method in [BSCB00], but it needs less time to
converge. In [ALM10], this method is described as a reliable and very fast inpainting
method.

2.1.2 Inpainting based on the MRF Model

The previously described methods are based on heuristics. Nevertheless, those approaches
solve the inpainting problem by making assumptions about image statistics and therefore
they are based on implicit statistical models. In contrast to those heuristics, statistical-
based inpainting methods use an explicit model of image statistics, which is learned from
a set of training images.

Levin et al. suggest learning the image statistics from the known regions of the input
image. The authors propose to compute the marginal statistics of features, belonging to
the known image areas. In the algorithm the gradient magnitude and the gradient angle
are chosen as significant features. The inpainting is achieved by searching for a gradient
field, inside the inpainting domain, which has similar statistics as the known image regions.
Figure 2.6 shows how the statistics of the input image influence the inpainting result. The
inpainting algorithm uses an MRF framework to find a solution, which maximizes the
probability of the filling. It is notable that Levin et al. use a pairwise MRF, whose
potential functions are approximated.

Figure 2.6: Inpainting results of two input images. The input images and the superim-
posed masks are shown in the left column. The images in the middle column are inpainted
using image statistics that were learnt from the original input images. Each inpainted
image in the right column is in contrast obtained with statistics from the other image,
which leads to incorrect results. [LZW03]

Yasuda et al. [YOT05] propose another inpainting algorithm that utilizes a pairwise
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MRF. In contrast to Levin et al. [LZW03] the image gradient is not regarded by Yasuda
et al. The energy function of the MRF just considers the gray value differences of direct
neighbors inside the inpainting domain and the differences between unknown pixels and
their nearest neighbors in the known image area. The authors of the method note that
the parameters of the potential functions are not learnt and that the algorithm tends to
blur out edges.

Another interesting image restoration method is published by Cao and Govindaraju
in [CG09]. This procedure uses a pairwise MRF for the modeling of handwritten text.
The image statistics that are contained in the prior are learnt from a training set and the
observation model is learned from the input image. The proposed MRF model is able
to binarize handwritings and to inpaint missing text parts that are occluded by a ruling
line, as it is shown in Figure 2.7.

Figure 2.7: Binarization of a degraded handwriting and subsequent inpainting of missing
regions. [CG09]

2.2 Textural Inpainting

The geometric inpainting techniques that were described in the previous section are only
able to fill in thin, elongated inpainting regions. Additionally, those methods only produce
satisfying results when they are applied on non-textured images. If geometric inpaint-
ing techniques are used for the filling of textured images they tend to oversmooth the
inpainting region [KT07]. On the contrary, textural inpainting methods are designed to
fill in larger and more heterogeneous regions, compared to geometric inpainting methods.
In this section, important textural inpainting approaches are discussed. In some of the
related literature textural inpainting is also called image completion and geometric in-
painting is defined as image inpainting. However in this thesis the term image inpainting
is used as a generic term for geometric and textural inpainting.

2.2.1 Texture Synthesis

The goal of texture synthesis is to produce a larger texture from a smaller input sample.
The synthesized image should look visual plausible, which means that it should have
similar appearance and similar structural properties as the input image. Texture synthesis
is related to the inpainting field, but it is not a special kind of inpainting technique, because
it is not able to fill in holes inside the input image. This task can be accomplished by
textural inpainting methods, which make use of texture synthesis algorithms. In this
section, established texture synthesis techniques are discussed, hence texture synthesis is
an essential part of textural inpainting.
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Texture synthesis algorithms can be categorized into two groups: Statistical-based
approaches and image-based approaches. Statistical-based methods assume that a texture
is generated by a stochastic process and the overall goal is to produce textures that seem
to stem from this process. To the best of my knowledge there is just one inpainting
algorithm existing, which makes use of statistical-based synthesis: In [IP97], Igehy and
Pereira propose a method that is able to fill in texture, if the region around the hole
belongs to the same kind of texture. However, the algorithm does not continue linear
structure and therefore statistical-based techniques are not explained any further in this
thesis.

Image-based approaches generate an output texture by directly copying pixels or
patches from the input texture. Those methods preserve image details better than stochas-
tic approaches, because they maintain the local neighborhood of a pixel [LHW+06]. Since
image based approaches simply copy gray or color values from the input texture, they are
also called exemplar-based methods.

One of the first image-based approaches is published by Efros and Leung in [EL99].
In this work the output image is modeled as an MRF. This means that the value that
is assigned to an unknown pixel depends on its local neighborhood. For each pixel,
which is going to be filled, the algorithm searches for a patch in the input sample that is
similar to the patch around the actual pixel. The similarity is measured with the Sum
of Squared Differences (SSD) of the already filled pixels in the two patches. When the
most similar patch is found, the value of the pixel centered on the patch is assigned to the
unknown pixel. The quality of the synthesized images is better compared to statistical-
based methods. However the trade-off for the more satisfying results is an increased time
complexity, since searching takes place in the whole input sample.

In [WL00] Wei and Levoy propose a more efficient technique for texture synthesis.
They use the same distance function as in [EL99] but the searching is accelerated with
the use of tree-structured vector quantization. According to [Fid08], this acceleration
leads to a decreased convergence time, but also to a reduced quality compared to [EL99].

Ashikhmin [Ash01] extends the texture synthesis by Wei and Levoy [WL00]: He sug-
gests reducing the search space, by only allowing a few candidate positions, from which
sampling may take place. The basic idea of the search space reduction is to store the co-
ordinates from which each pixel was sampled. When it comes to the filling of a pixel, the
algorithm considers the sampling coordinates of the already filled pixels in a local neigh-
borhood. Searching takes place in the near of those coordinates. Thereby, the search time
is reduced, compared to the method in [WL00]. Additionally local structures - like edges
- are better preserved.

The texture synthesis methods discussed so far are pixel-based techniques, since they
fill one pixel at a time. In the following, patch-based methods are explained. Those
approaches copy entire patches from an input sample. Patch-based algorithms produce
textures with a higher quality, compared to pixel-based techniques, since they preserve
the global texture structure in a better way [KEBK05], [BSFG09].

One of the first patch-based methods is proposed by Efros and Freeman in [EF01].
The algorithm starts with a tile of the output texture with equal sized blocks randomly
extracted from the input texture. In a second step smaller blocks are pasted into the
boundary regions between the blocks, which were inserted in the previous step. The

17



smaller blocks are not extracted randomly, but instead are chosen in such a way that the
difference between neighboring pixel values belonging to different blocks is minimized.
The authors state that their method produces similar or even better results than the
method in [EL99], while needing less time to converge.

A similar algorithm is published by Liang et al. in [LLX+01]. The authors mention
that the search for appropriate patches is a search for the nearest neighbors. To speed up
the synthesis task, Liang et al. propose to search for the Approximate Nearest Neighbors
(ANN). The search is accelerated with the use of an optimized kd-tree and principal
components analysis. The authors report that their generated textures overwhelm results
that are obtained by [EL99] and [WL00].

Kwatra et al. [KSE+03] suggest an improved version of the algorithm in [EF01].
Instead of copying entire patches the authors propose to select a candidate patch and to
copy an irregularly shaped region from this candidate patch. A graph cut algorithm is
used for the determination of the shape of the copied region. In Figure 2.8 (d) an image is
shown that was generated with the graph cut synthesis method. Additionally the outputs
of the methods in [EF01] and [WL00] are presented in Figure 2.8 (b) and Figure 2.8 (c).

(a) (b) (c) (d)

Figure 2.8: Comparison of different synthesis methods. (a) Input sample (b) Result
obtained using the patch-based method in [EF01]. (c) Texture generated with the pixel-
based approach in [WL00]. (d) Output of the graph cut synthesis algorithm in [KSE+03].
It is remarkable that the patch-based methods clearly overwhelm the pixel-based synthesis.
[KEBK05]

2.2.2 Image Completion

Image Completion is an inpainting category that combines the strengths of the just de-
scribed texture synthesis methods and geometrical inpainting approaches. As with struc-
tural inpainting, image completion techniques pay special attention to the continuation
of linear structures. Textural inpainting methods are additionally able to overcome the
major drawback of structural inpainting techniques, which is that they tend to blur out
large inpainting regions.

One of the first attempts to fulfill the inpainting task with the use of texture synthesis
is proposed by Bornard et al. in [BLLC02]. Their texture synthesis algorithm extends
the algorithm in [EL99] by using a synthesis order. The proposed fill order depends on
the number of the already filled pixels in the neighborhood. Thus pixels, having more
reliable information in their neighborhood, are filled in an early stage of the inpainting
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procedure. The suggested fill sequence is more appropriate for image inpainting than the
sequential fill order used in [EL99]. However, the circumstance that the synthesis order
does not depend on the image content may lead to an unsatisfying continuation of image
features.

Another early work on textural inpainting is published in [BVSO03] by Bertalmio et
al. In this method the input image is decomposed into two images, one that contains
the basic image structure and one that captures texture. The image, which contains
the image structure, is inpainted with the PDE based algorithm in [BSCB00] and the
inpainting region of the second image is filled with the exemplar-based synthesis method
in [EL99]. The two manipulated images are then added back together, which produces
the final output image. The proposed method is able to inpaint texture, but it is still
limited to small and narrow inpainting regions and tends to oversmooth the inpainting
area [CPT04], [TLD06]. A schematic illustration of the algorithm steps is presented in
Figure 2.9.

(a) (b)

(c) (d)

Figure 2.9: Textural inpainting result achieved by Bertalmio et al. (a) Input image with
superimposed, white mask. (b) The structure of the image is inpainted separately. (c)
The texture is inpainted independently too. (d) The final output is the combination of
the inpainted structure and texture images. [BVSO03]

Drori et al. propose an image completion algorithm in [DCOY03] that uses an extended
version of the patch-based algorithm in [EF01]. The authors suggest copying circular
fragments from the known region into the unknown region. The fragment radius is not
fixed and allows the copying of large fragments. In order to avoid smearing artifacts, large
fragments are favored over small fragments. Similar to [BLLC02] a fill order is defined
that favors pixels that have more filled pixels in their local neighborhood.

A textural inpainting method that pays special attention to curve connection is pro-
posed in [JT03] by Jia and Tang. The first step in the algorithm is a texture based
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segmentation. The boundary curves of the segmented regions are afterwards encoded
into 2D stick tensors and 2D tensor voting is applied. Once the voting procedure is fin-
ished, connecting curves are extracted from the voting field inside the inpainting region.
At this time the whole image - including the inpainting area - is segmented. Afterwards
the texture is synthesized for each segmented region separately with the use of ND tensor
voting. Figure 2.10 shows an example for object removal obtained by tensor voting. The
proposed method maintains curvature and is capable of filling large holes. However, the
algorithm relies on image segmentation, which is an expensive task [CPT04] and hard to
achieve correctly [TLD06].

(a) (b)

(c) (d)

Figure 2.10: Object removal based on tensor voting. (a) The tree that partially overlaps
the house and the grassland should be removed. (b) Segmentation of the regions, which
are not occluded by the tree. (c) The partitioning curves are connected with the use of
tensor voting. (d) In the final step, the segmented regions are inpainted with texture
synthesis. [JT03]

Criminisi et al. propose a method - called exemplar-based inpainting - in [CPT04]
that combines the strengths of PDE based inpainting methods and patch based texture
synthesis in [EF01]. The main focus of PDE-based image inpainting methods lies on
the preservation of linear structures (e.g. edges). The authors take this circumstance
into account, by defining a fill order, which gives pixels belonging to edges a higher
priority, than pixels belonging to homogeneous regions. The priority of one pixel is also
determined by its confidence, which is a measurement of the reliability of the information
surrounding the pixel: The confidence is directly proportional to the number of the pixels
in the neighborhood that have been known from the beginning, or that have already been
filled. Once the fill order is calculated, the patch with the highest priority is filled, which
means that a similar patch from the outside of the inpainting hole is copied into the hole.
The similarity measure used is the SSD.
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The authors provide an exhaustive comparison between their method and the meth-
ods in [BSCB00], [DCOY03], [JT03] and [BVSO03]. The juxtaposition shows that just
the algorithm based on tensor voting in [JT03] is able to produce images of comparable
quality, while the other algorithms are outperformed. One example for the outstanding
performance of the proposed method is shown in Figure 2.11, where a large object is re-
moved. The result of the exemplar-based method in Figure 2.11 (b) is relatively satisfying,
whereas the result in (c) is visually implausible. The latter one was obtained using the
structural inpainting method by Bertalmio et al. in [BSCB00]. The patch-based synthesis
approach leads to a reduction of the convergence time, compared to pixel-based methods.

(a) (b) (c)

Figure 2.11: Comparison of textural and structural inpainting methods. (a) The bungee
jumper should be removed. (b) Output of the algorithm published by Criminisi et al. (c)
Result obtained with the structural inpainting method proposed by Bertalmio et al. in
[BSCB00]. It is noticeable that the second result is clearly inferior, since it introduces
blur and does not inpaint texture. [CPT04]

Although the algorithm by Criminisi et al. produces similar or even better results
than previous methods it still has some drawbacks: The algorithm is not able to connect
curves [Fid08]. Since the algorithm uses a greedy search for a similar patch in the whole
known image, the synthesis is a time-consuming task [CZL07]. Another disadvantage is
the fact that a patch is directly copied into a target region, without any modification, and
once it has been synthesized it cannot be altered anymore [Cuz09].

Chen et al. reduce the convergence time of Criminisi’s approach in [CZL07] by restrict-
ing the search range to a window centered on the target patch. They further propose to
transfer the copied patch based on the color information in the local neighborhood of the
patch, which is going to be filled. Another extension to the method [CPT04] is described
in [WR09]: Instead of using a fixed patch size, the algorithm makes use of a dynamic
patch size that is adapted to the size of a specific texture pattern. In [SJZW07] Shen et
al. state that the SSD is not always suffice to achieve satisfying completion result. Shen
et al. propose instead a similarity measurement which is based on color and gradient
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differences. In the proposed framework the use of this similarity measurement leads to
better results than the use of the SSD. Another extension to the algorithm by Criminisi
et al. is described in [HHL+08]. In this paper the authors pay special attention to the
maintaining of curvature. Therefore the image is segmented and contour lines that belong
together are connected with fitted Bezier curves. The following texture synthesis step is
similar to the one used by Criminisi et al.

Chen and Xu propose a new exemplar-based algorithm in [CX10]. Similar to [JT03]
the input image is segmented and the contour lines are connected with tensor voting. The
following texture synthesis is inspired by the graph cuts texture synthesis algorithm in
[KSE+03]. Instead of copying an entire patch - like in [CPT04] - the authors propose to
copy an optimal portion of a patch, which leads to a reduction of artifacts that stem from
rectangular patches. A comparison of the described method and the one by Criminisi et
al. [CPT04] is given in Figure 2.12.

(a) (b) (c)

Figure 2.12: Comparison of object removal algorithms. The result obtained by Chen and
Xu in (b) outperforms the outcome of the method proposed by Criminisi et al. in (c). The
curvature in (b) is better maintained, since the curves are connected with tensor voting.
[CX10]

Recently a further extension to the algorithm proposed by Criminisi et al. was pub-
lished by Zhou and Robles-Kelly in [ZRK10]. The authors stress out that the basic fill
order is not sufficient, since two neighboring pixels may have the same priority. If this
is case the algorithm by Criminisi et al. has no clear answer which pixel should be filled
first. Zhou and Robles-Kelly propose instead, to compute a list of candidate patches for
an unknown pixel. Further patch lists, for the unknown neighboring pixels, are generated
in a subsequent step. Afterwards the final patch, which maximizes the local consistency
with respect to neighboring candidate patches, is selected. Figure 2.13 shows that the
proposed method may overtop the approach by Criminisi et al. The basic exemplar-based
method produces defects, which stem from the fact that only the current unknown pixel
is considered in the inpainting process.

Contrary to the introduced exemplar-based methods is the attempt to fulfill inpainting
with the use of sparse representations. In [FSM09], [ESQD05], [YSM10] and [Gul06] sparse
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(a) (b) (c)

Figure 2.13: Comparison of two exemplar-based methods. (a) Input image with overlying
mask (blue). (b) Outcome of the extended algorithm proposed by Zhou and Robles-
Kelly. (c) Output of the basic exemplar-based algorithm published by Criminisi et al. It
is obvious that the basic algorithm produces artifacts, which are avoided by the extended
version. [ZRK10]

coding techniques are applied to recover unknown image data. The proposed methods
are able to reproduce fine textures in a satisfying manner.

Textural Inpainting as a Global Optimization

Komodakis and Tziritas [KT07] stress out that the exemplar-based methods in [DCOY03]
and [CPT04] are based on heuristics and ad hoc principles. Komodakis and Tziritas pro-
pose instead to formulate the image completion task as a global optimization problem.
Therefore they suggest the use of an MRF, which poses the filling task as labeling prob-
lem. A label in this MRF framework corresponds to a patch and the labeling problem is
solved with an extension of Belief Propagation (BP), which is called Priority-BP. This
extension reduces the number of labels and leads to a decreased computation time (namely
up to two minutes for a 256x170 image). The proposed algorithm produces images with a
higher quality as in [CPT04] - as it is shown in Figure 2.14. It is stated in [BSFG09] that
although the described method produces excellent results; the presented resulting images
are small.

(a) (b) (c)

Figure 2.14: Resulting image of the algorithm, suggested by Komodakis and Tziritas.
(a) Input image with superimposed, black mask (b) Output of the approach proposed by
Komodakis and Tziritas (c) Inpainted image achieved by Criminisi et al. [KT07]

Lately Hsin et al. [HLLC10] proposed an algorithm similar to the just depicted MRF
approach by Komodakis and Tziritas [KT07]. Like in [KT07] the labeling problem is
solved with Priority-BP. The label set in the work of Hsin et al. contains labels of
the known image regions. Additionally the set is enlarged with transformations of the
original labels. Those transformations include scaling, vertical and horizontal flipping and
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rotations in 90◦ step. Figure 2.15 shows how the enlargement of the label set enhances the
inpainting result. In this example the symmetric Eiffel tower is effectively reconstructed,
because the label set contains flipped patches of the known image regions.

(a) (b) (c) (d)

Figure 2.15: Comparison of global optimization methods: (a) Original image. (b) Masked
image. (c) Output of the method in [KT07]. (d) Output of Hsin et al. [HLLC10]

Another global optimization approach is published by Wexler et al. in [WSI07]. Al-
though the main purpose of this paper is the completion of video, the presented method
is capable of filling holes in images. Image completion is achieved with a search for similar
patches which are copied into the unknown image region. The method described uses a
global objective function, which ranks the quality of the filling. The algorithm searches
for a maximum in this function, which denotes the best solution for the completion task.
Wexler et al. propose to fulfill the completion in an iterative process which starts with a
low resolution and the found solution is afterwards propagated to a finer resolution level.
The output images in Figure 2.16 show that the proposed method is able to produce
images with higher quality as the exemplar-based method in [CPT04].

Recently an approach similar to [WSI07] was published by Barnes et al. in [BSFG09].
The algorithm by Wexler et al. searches for nearest neighbor patches and is typically slow
[BSFG09]. Barnes et al. suggest a faster search method inspired by the ANN method in
[Ash01]. The core idea of this method is that for a patch, which is going to be synthesized,
there are several patches in its local neighborhood existing that are already synthesized.
The locations from which those neighboring patches were sampled are stored and the
search for the new patch takes place in regions around those locations. This search space
reduction - along with other extensions - makes the algorithm by Wexler et al. applicable
to greater images. The proposed algorithm is faster than the methods in [KT07] and
[WSI07] and the speed up allows the usage of the algorithm in interactive editing tools.
Figure 2.17 shows an image completion result, which was obtained in a few seconds.

2.3 Summary

In this chapter, algorithms found in the inpainting related literature, have been explained.
It was shown that textural inpainting algorithms are better suited for the restoration of
large unknown regions than structural techniques. The term digital image inpainting
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(a) (b) (c)

Figure 2.16: Object removal comparison: The result obtained by Wexler et al. in (b)
looks more visual plausible than the output of the algorithm proposed by Criminisi et al.
in (c). [WSI07]

(a) (b) (c)

Figure 2.17: Inpainting of a large area. (a) Input image. (b) The inpainting mask overlaps
various texture regions. (c) Inpainted result. It is remarkable that all textured regions
are restored in a satisfying manner. [BSFG09]

exists now for about a decade, although a related algorithm [MM98] was published in
1993. Nevertheless, the majority of the papers were introduced in the last 10 years and
the capabilities of the algorithms increased with time. The state-of-the-art restoration
algorithms - depicted at the end of this chapter - are able to restore complex image scenes,
but inpainting remains an open field of research, since the inpainting problem is certainly
ill-posed [FSM09], [LZW03].

25



Chapter 3

Methodology

The main focus of this work lies on the reconstruction of unknown text portions. Two
techniques have been examined for this purpose and they will be discussed in the following.
It was depicted in the previous section that textural inpainting outperforms structural
techniques, when both are applied on textured images. Nonetheless, two geometrical in-
painting algorithms have been chosen, because images containing text are far less textured
than natural images.

The proposed approaches differ greatly on their underlying concepts. The first in-
painting algorithm makes use of the FoE framework, which is based on Bayesian image
analysis. Since the underlying theory of the FoE framework is relatively complex, it will
be explained separately in Section 3.2. Subsequently inpainting with the FoE model is
detailed in Section 3.3. The first part of this section deals with the inpainting of natural
images, while the second one is dedicated to text reconstructions.

The second proposed method is depicted in Section 3.4. The algorithm is based on an
ad-hoc principle - namely tensor voting - and is exclusively designed for the inpainting
of text characters. The heuristical approach considers image gradients - in contrast to
the FoE algorithm. The inpainting quality of the heuristic method relies strongly on
an edge detection step. Thus, this approach is only applicable to images, where the
handwritings are clearly identifiable. In the case of the palimpsests that are considered
in this thesis, the contrast between the older text and the background is not sufficient
enough to achieve satisfying inpainting results. Therefore the second approach is only
used for the restoration of non-degraded texts.

Inpainting of palimpsest texts is fulfilled with the FoE model. Before inpainting
may take place, it is necessary to extract an inpainting mask from the overwritten text.
Although the overwriting is generally in a better condition than the older text, it still
suffers from certain degradation processes. In order to extract a reliable inpainting mask,
a binarization algorithm for degraded documents was implemented. The binarization step
is briefly explained in Section 3.1.
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3.1 Extracting Inpainting Masks from Palimpsests

The underwriting is not visible under red light, whereas the overwriting is still present
[Kno08]. Therefore the inpainting masks are generated from photographs of parchments,
which have been exposed to tungsten illumination. The contrast between the foreground
and the background of those documents is strongly varying, which complicates the bina-
rization step. Recently Su et al. proposed a simple but yet effective binarization approach
in [SLT10]. Their method is especially designed for historical documents, which makes it
suitable for our needs.

The binarization algorithm starts with the construction of a contrast image. Each
pixel in this image encodes the difference between the maximum and the minimum in-
tensity value in a local neighborhood. The contrast is higher at the border of character
strokes, compared to the homogeneous image regions. However, Su et al. note that taking
the absolute difference is insufficient, because the high background variation in historical
documents may lead to false foreground classifications. In order to suppress the back-
ground variation, the absolute difference is normalized and the contrast image is defined
by:

D(x, y) =
fmax(x, y)− fmin(x, y)

fmax(x, y) + fmin(x, y) + ε
(3.1)

where fmax(x, y) and fmin(x, y) denote the maximum and minimum gray value in a
local neighborhood. In this work a window size of 3 × 3 is used. ε > 0 is an infinitely
small value that avoids a division by zero.

The denominator is smaller if a dark stroke is surrounded by slightly brighter back-
ground pixels, compared to a character that has a higher background contrast. However,
in the former mentioned case the nominator is also smaller - compared to the latter case
- and thus the influence of the dark background region is lowered. If the absolute con-
trast value is higher, the greater value of the denominator diminishes the overall image
contrast. Thus, the normalization reduces the influence of the background variation. In
Figure 3.1 the contrast image of a parchment part is shown.

Once the contrast image is calculated, pixels are marked as high contrast pixels if they
exceed a global threshold. This threshold is determined with Otsu’s [Ots79] thresholding
approach. At this juncture the pixels around stroke borders are classified as high contrast
pixels. What needs to be remained is a classification of the strokes. A pixel is classified
as a foreground pixel, if two requirements are met: First, the pixel should be in the near
of high contrast pixels. Second, the pixel intensity must be smaller or equal than the
mean intensity of the high contrast pixels in a local neighborhood window Nw. This
considerations lead to the following equation:

R(x, y) =

{
1 Ne ≥ Nmin&I(x, y) ≤ Emean + Estd/2

0 otherwise
(3.2)

where Ne is the number of high contrast pixels in a local neighborhood window. Nmin

is the minimum number of high contrast neighbors. The mean and the standard deviation
of the intensity of the high contrast pixels in a local neighborhood are denoted as Emean
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and Estd. The neighborhood sizes of both conditions in Equation 3.2 are equal. The
choice of the local neighborhood window depends on the stroke width. Figure 3.1 (c)
shows the binarization result of the contrast image in Figure 3.1 (b). For this example a
local neighborhood window size of 11× 11 was used and Nmin was set to 4.

(a) (b) (c)

Figure 3.1: Binarization of an image part belonging to leaf 40r. (a) Input image, which
was illuminated with tungsten light. (b) Contrast image. (c) Binarized output, obtained
with the method proposed by Su et al.

3.2 Fields of Experts framework

In order to understand the FoE model - which is a kind of MRF - it is necessary to
understand the concepts of MRF models. Therefore, the basic concepts of MRF and the
related terminology will be explained in the first part of this section. A detailed discussion
of MRF models is far beyond the scope of this thesis and the interested reader is referred
to Li’s [Li09] exhaustive monograph on MRFs in computer vision. Once MRFs in general
are introduced, the FoE model will be explained in detail.

3.2.1 Markov Random Fields

Bayesian image analysis

Bayesian statistics play an important role in the FoE-framework, since the learning and
inference algorithms are based on the Bayes theorem, which is defined as:

p(x|y) =
p(y|x) · p(x)

p(y)
(3.3)

where the posterior p(x|y) depends on the likelihood p(y|x) and the priors p(x) and
p(y). The posterior probability p(x|y) is the conditional probability that an event x occurs
after another event y has already occurred. The likelihood p(y|x) describes a model of
the observation process. The prior p(x) is a prior probability which represents an a-priori
knowledge about an event x that is defined without a concrete observation. Finally, p(y)
acts as a normalizing constant.
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The Bayes theorem may be used for image restoration, where the aim is to restore
an ideal image x from an observed image y. In the work of Roth and Black [RB05b]
the FoE model is used for two image restoration tasks: Image denoising and image
inpainting. Image denoising is a more generic case of image restoration, while the latter
task is more specialized - as we will see later on. Therefore, a short description of image
denoising with Bayesian statistics may provide a more comprehensible explanation of
Bayesian image analysis: The goal in image denoising is to restore a noise free image x
from an observed image y that is corrupted with noise. The likelihood p(y|x) contains
information about the noise that corrupted the ideal image x. For example the noise
may be assumed to be Gaussian. The prior p(x) contains information about natural
image statistics [Rot07]. With the use of Bayesian inference it is possible to maximize the
posterior p(x|y) in Equation 3.3, which leads to the desired noise reduction. Since p(y) is
a constant it can be omitted and Equation 3.3 becomes:

p(x|y) ∝ p(y|x) · p(x). (3.4)

In image restoration one is seeking for the optimal solution x∗ that maximizes the
posterior probability p(x|y). This inference technique is named MAP estimation and is
formally defined by:

x∗ = arg max p(x|y) (3.5)

The MAP criterion is the most commonly used inference technique in MRF modeling
[Li09]. In this field the MAP technique is called the MAP-MRF framework, which was
advocated by Geman and Geman [GG84] for low level vision [Pér98]. Since then MRFs
have been utilized for certain low level vision applications, including image restoration
[Bes86], [GG84], [Rot07], optical flow estimation [LH08], [RG00], image interpolation
[GYZ+09] etc..

MRF modeling consists of two main parts: The inference technique and learning of
the MRF parameters Θ. The parameters of an FoE model are learnt with the ML
approach. This method is - like the MAP approach - based on the Bayes theorem. The
ML approach estimates the optimal parameters Θ∗ by maximizing the likelihood of a
training dataset X :

Θ∗ = arg max p(X ; Θ). (3.6)

In general there is no closed form solution for the ML equation existing [Rot07].
Therefore, the parameters Θ∗ have to be approximated.

Graphical Models

An MRF is an undirected graphical model. Such a graph G = (V,E) consists of nodes
v ∈ V and edges e ∈ E that connect the nodes. With this graph G it is possible to model
a d-dimensional random vector x. Each random variable xv is represented by a node
v. The edges describe the relationships between the nodes - or respectively the random
variables. A clique c ∈ C is a subset of neighboring nodes v. For each clique c there
is a potential function fc existing that assigns a positive value to the clique. The joint
distribution is defined as:
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p(x) =
1

Z

∏
c∈C

fc(x(c)) (3.7)

where

Z =

∫
x

∏
c∈C

fc(x(c)) dx (3.8)

is a normalizing constant. Z is also named partition function and assures that p(x)
integrates to 1. Usually the computation of the partition function is intractable and it
has to be approximated. This circumstance is a main difficulty in MRF modeling. Most
MRF models - including the FoE model - are said to be homogeneous, which means that
the potential functions are independent of their position on the graph [Li09]. Thus, the
prior depends only on the actual configuration of a clique and is translation invariant.

A graph G is an MRF if the following two conditions are met:

p(x) > 0 (3.9)

p(xv|xV \{v}) = p(xv|xN (v)) (3.10)

where V \{v} is the set of all nodes except the node v and N (v) is a subset, which
contains the nodes in a local neighborhood of v. Equation 3.9 is called positivity and is
usually fulfilled [Li09]. Equation 3.10 is named Markovianity, which describes the fact
that v depends only on its local neighborhoodN (v) and is conditionally independent of all
the other nodes in the graph. In the FoE framework, a graph models a two dimensional
image. Each node of a graph corresponds to an image pixel. The Markovianity depicts
the assumption that the value of an actual pixel is conditionally independent of the other
pixels in the image, given its neighboring pixels. Figure 3.2 illustrates an MRF as a
graphical model that is used for image denoising. It is notable that the observed pixels
are only connected to their noise free counterparts and not to other observed pixels, while
each restored pixel is connected to its four neighbors. This models the assumption that
each restored pixel is dependent on its restored neighbors and the associated observation.
The edges between the observed and restored pixels represent the observation model,
which is described by the likelihood.

Depending on the maximal clique size there are two different MRF types existing:
Pairwise MRFs and high-order MRFs. An example for a pairwise MRF is shown in
Figure 3.2. In such a pairwise MRF the largest clique size is two. Thus, the prior is
obtained, by connecting each node to its four direct neighbors. If the clique size is larger
than two, the graphical model is called a high-order MRF.

3.2.2 Fields of Experts

In the past MRFs were typically pairwise and the parameters for the potential functions
were often chosen by hand [Rot07]. The MRFs used for geometrical inpainting - outlined
in Section 2.1.2 - are for instance pairwise models. Roth and Black propose a high-order
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Figure 3.2: An MRF that is used for image denoising. The green nodes represent the
observed, noisy pixels, while the red ones denote the restored, noise free pixels.

MRF in [RB05b]. The authors show that the FoE model outperforms simple pairwise
graphical models, because it is able to model long-range correlations in images, while
pairwise models are only able to model dependencies between direct neighboring pixels.
Schmidt [Sch10] reasserts this hypothesis in an exhaustive comparison between the FoE
model and pairwise MRF models.

Basic Model

The potential functions that are used in the FoE framework are called experts and were
introduced by Hinton in [Hin99]. The experts are defined as:

f(x(k)) = fPoE(x(k); Θ) =
N∏
i=1

φ(JT
i x(k);αi), (3.11)

where x(k) is the k-th patch of an image x. The image patch x(k) is projected onto a
linear filter Ji. Thus, the maximal clique size is equal to the size of the filters. In this
thesis 3 × 3 filters are evaluated, although a higher performance can be gained by using
larger filters [Rot07]. Filters with a larger size are nevertheless not used in this work due
to time restrictions, since the usage of larger filters leads to an increased learning and
inference time.

There are N filters and expert parameters existing. It is worth noting that this number
of experts N is not predefined, but is instead chosen by the designer of the MRF. For
the inpainting results presented in this work, N was set to 8, as it is recommended by
Roth [Rot07] for the clique size chosen.

What needs to be defined is an appropriate expert function φ. According to Roth
and Black the expert functions should be heavy tailed functions, since those functions
are able to model the statistics of natural images. The marginal distributions of the
derivates of such natural images are strongly non Gaussian. This can be seen in Figure 3.3,
where the blue line denotes the intensity differences of neighboring pixels (in horizontal
and vertical directions). The intensity differences are computed from a database that
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consists of natural images (see Section 3.3.1 for details). The dashed red line in Figure
3.3 denotes a Gaussian fit of the intensity differences. The Gaussian distribution is not
able to model the heavy-tailed property of the intensity differences. Instead of using a
Gaussian distribution, Roth and Black suggest to use Student t-distributions as expert
functions. Those functions are heavy-tailed distributions, as it can be seen in Figure 3.3,
where the green line is a Student t-distribution. The utilized expert functions are in fact
simplified Student t-distributions, which are defined by:

φ(JT
i x;αi) =

(
1 +

1

2
(JT

i x)2
)−αi

(3.12)
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Figure 3.3: Log plot of the first order image derivates. The fitted Gaussian distribu-
tion (dashed red line) is not able to model the images derivates (blue line) sufficiently.
The Student t-distribution (green line) models the heavy-tailed property of the intensity
differences more accurately.

Since the potential functions are now defined, the generic MRF prior in Equation 3.7
can be reformulated into the FoE prior:

pFoE(x; Θ) =
1

Z(Θ)

K∏
k=1

fPoE(x(k); Θ)

=
1

Z(Θ)

K∏
k=1

N∏
i=1

φ(JT
i x(k);αi),

(3.13)

where K is the number of nodes - or respectively pixels1 - of an image x, Z(Θ) is the
partition function for a concrete parameter set Θ and the other variables are defined as

1The number of pixels where the prior is evaluated is smaller than the number of pixels of an image,
strictly speaking. This stems from the required boundary handling in the FoE framework: A pixel is
only evaluated if its corresponding clique has the maximal clique size.
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above. The learning procedure is fulfilled on the log of the FoE and therefore the prior
is reformulated as:

pFoE(x; Θ) =
1

Z(Θ)
exp{−EFoE(x; Θ)}

=
1

Z(Θ)
exp

{
K∑
k=1

N∑
n=1

ψ(JT
i x(k);αi)

}
,

(3.14)

where ψ(JT
i x(k);αi) = log φ(JT

i x(k);αi). The above formulation is in fact a Gibbs dis-
tribution. The equivalence of the probability density of an MRF and a Gibbs distribution
is established in the Hammersley-Clifford theorem [HC71].

Training

The filters and the corresponding expert parameters are learned from a dataset X that
consists of D image patches. Since the training of an FoE model is a highly time-
consuming task, the model is trained on 15× 15 patches instead of whole images - as it is
suggested by Roth and Black [RB05b]. Although this patch size is dramatically smaller
than the size of the inpainted images, it nevertheless affords a modeling of the overlapping
cliques in the FoE framework. In the case of 3×3 filters each training patch still consists
of 13× 13 cliques.

The training algorithm is based on the ML approach defined in Equation 3.6. Thus,
the likelihood is maximized w.r.t. the parameter set Θ. Unfortunately there is no closed
form solution for the optimal parameters Θ∗ existing and the parameters have to be esti-
mated in an approximate manner: In an iterative process a gradient ascent is performed
on the log of the likelihood. In each iteration all parameters θj - this includes the filter
coefficients and the expert parameters - are updated. The update formula that is used
during the training sequence is defined by:

δθj = η

{
−
〈
∂EFoE

∂θj

〉
X

+

〈
∂EFoE

∂θj

〉
pFoE

}
, (3.15)

where η is a learning rate and the energy EFoE is defined as in Equation 3.14. In the
present work η is set to 0.01 - as it is proposed in [Rot07]. The partial derivates of the
energy w.r.t. to the parameters are presented in [Rot07]. 〈.〉X represents the expectation
over the training data and 〈.〉pFoE denotes the expectation w.r.t. the model distribution
p(x).

While the computation of the average over the training data X is feasible, the ex-
pectation over the model distribution has to be approximated. The expectation over
the model distribution is approximated by taking the average of samples that are drawn
from pFoE(x; Θ). The samples are generated using a Markov Chain Monte Carlo (MCMC)
method. MCMC methods are useful when complex or high-dimensional probability func-
tions cannot be analyzed directly. The aim of MCMC techniques is to sample from a
distribution that is as close as possible to the demanded distribution. Such a distribution
is constructed with the help of a Markov Chain (MC) [Nea93]. The MCMC method that
is used in the FoE framework is called Hybrid Monte Carlo (HMC) sampler, which is an
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efficient sampler and was proposed by Duane et al. in [Dua87]. An exhaustive explanation
of the HMC sampler is given in [Nea93].

Although an efficient sampler is used, there is still a need for a further decrease of the
learning time: To reduce the computational burden, Roth and Black suppose to make use
of the Contrastive Divergence (CD) [Hin02] criterion. The idea of CD is to initialize the
MC with the training data X . Thereby only a few iterations are necessary until the MC
converges to the desired model distribution. In this thesis only one MCMC iteration is
used. Roth [Rot07] demonstrates that this is sufficient for the parameter estimation.

20.000 patches are used for the training task - as it is recommend in [RB05b]. In
order to lower the training time a further measure is taken: Instead of processing the
whole training set in one iteration, 100 patches are selected randomly from the training
set. This random selection and a randomized process, required by the HMC sampler,
lead to non converging parameter updates. Thus, the parameter updates are manually
observed. It was found that around 5.000 iterations are necessary to obtain mainly stabi-
lized parameters. The manual monitoring of the parameter updates is also proposed by
Roth.

Inference

The inference in the FoE framework is based on the MAP approach that was discussed in
Section 3.2.1. Unfortunately, for graphical models the computation of the exact inference
in Equation 3.5 is NP hard in general [Rot07]. Therefore - like in the training algorithm
- an approximate technique is applied: In an iterative procedure, a gradient ascent is
performed on the log of the posterior:

x← x + η[∇x log p(y|x) +∇x log pFoE(x)], (3.16)

where η is a user defined step size. The likelihood term in Equation 3.16 describes
the observation model and has not been defined yet. In the case of image denoising, the
likelihood contains information about the noise that corrupted the image. The likelihood
for inpainting is different, because of two reasons: On the one hand, the area that is
not part of the inpainting mask M must not be altered, because it is not damaged. On
the other hand, we assume that no observation is made in the inpainting region. This
considerations lead to the following likelihood formula:

p(y|x) =
M∏
j=1

p(yi|xi) =
M∏
j=1

{
1 j ∈M
δ(yj − xj) j 6∈ M

(3.17)

where the Dirac delta is defined by δ(f) = 0 for all f 6= 0. The Dirac delta assures
that any inpainting operation, which alters the known image area, has a probability of
0. Since the likelihood is now defined, we can formulate the overall inpainting algorithm,
which is defined by:

x(t+1) = x(t) + ηM [∇x log pFoE(x(t))]

= x(t) + ηM

[
N∑
i=1

J−i ∗ψ
′(Ji ∗ x(t);αi)

]
.

(3.18)
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For the sake of simplicity the derivation of ∇x log pFoE(x) is not explained here. The
filter J−i is obtained by mirroring Ji around its center and t is the actual iteration of the
inpainting process. The derivate of the log of the Student t-distribution is defined as:

ψ′(y;α) = − αy

1 + 1
2
y2
, (3.19)

where the scalar input y may be replaced with the dot product JT
i x(k). However, the

input of ψ′ in Equation 3.18 is not a scalar value, but instead an image, which results
from the convolution Ji ∗ x(t). In Equation 3.18, ψ′(x) is a vector, which contains all
ψ′(xk). This element-wise evaluation allows a simple and efficient implementation of the
inpainting algorithm, with the use of convolutions [Rot07].

The models that are used in this thesis are all trained on grayscale images. If the input
image is a color image, each channel is convolved separately. It is possible to train an
FoE prior successfully on color images, as it is reported by McAuley et al. [MCSF06]. In
their proposed extension the FoE parameters are learnt for each color channel separately,
which leads to a tripling of the parameter number. Although this might enhance the
inpainting of color images, the approach is not investigated here, since the increased
parameter number would lead to a raised learning time.

It is notable that the convolutions, which are performed during the restoration task,
are very similar to anisotropic diffusion. It was shown in Section 2.1 that the structural
inpainting algorithms proposed in [BSCB00], [CS00], [CS01] and [Tsc06] make use of
nonlinear diffusion. The main difference between the FoE approach and the aforesaid
methods is that the FoE inpainting technique requires no computation of the image
gradient. Another advantage over usual diffusion techniques is the fact that the FoE
framework allows the usage of more filters.

FoE Applications

Beside image inpainting and denoising the FoE framework has also been applied success-
fully to novel view synthesis [WRTF06], image interpolation [GYZ+09] and optical flow
estimation [Rot07]. In the case of optical flow estimation the statistical model is trained
on a database that contains scene depth information. In the other papers named above
always the same database [MFTM01] is used in the training task. To the best of my
knowledge there is just one work existing [Gui09] that uses an FoE prior for the inpaint-
ing of a specific type of images, namely building images. Images belonging to this group
are used in the learning and the inference algorithm - as it is done in this thesis for hand-
written characters. In [Gui09] the model that was trained on a specific image type did
not outperform the model that was trained on natural images. It will be discussed later,
whether a specialized prior overtops a general prior in the case of text reconstruction.
Before, FoE inpainting of usual images will be described in the subsequent section.

3.3 Inpainting using FoE priors

The following section is divided into two parts: The inpainting of natural images will be
explained in the first part, while the second part deals with the restoration of characters.
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It was found that similar parameter settings may be used for the two applications. Some
properties of the FoE inpainting process are better observable in the case of text restora-
tion. Those characteristics are convergence and rotation variance, which will be detailed
at the end of this section.

3.3.1 Natural Images

It is necessary to define the meaning of natural images in the context of this thesis:
The term natural images describes images that contain scenes that one can find in real
life. Those scenes may contain humans, animals, landscapes, plants, architectures etc.
The Berkley segmentation dataset [MFTM01] is comprised of such natural images. This
database is used in the work of Roth and Black [RB05b] and in the present work it
is utilized for the training of priors that model natural image statistics. The database
consists of 200 color images, which are used for the training of generic FoE priors.

Inpainting Characteristics

Inpainting, using FoE models, exhibits two characteristics of structural inpainting meth-
ods: On the one hand inpainting regions belonging to large and homogeneous areas are
inpainted successfully. On the other hand, if the inpainted area is surrounded by textured
regions, the inpainted region tends to blur out. This can be seen in Figure 3.4, where
a wire that partially occludes the bull and the surrounding is removed. The inpainted
regions belonging to the bull are successfully inpainted. A human observer, who has no
prior knowledge of the inpainting mask, would probably primarily identify the restored
grass as an inpainted region. It can also be seen that the FoE model connects strong
edges (like the silhouette of the bull) and maintains curvature.

Figure 3.4: Removal of a wire. (a) Image with superimposed mask (colored red). (b)
Restored image. The input image is taken from [Gre08].

However, this is only true, if the unknown region is thin and elongated. The thicker the
mask gets, the lower the quality of the resulting image gets. This is illustrated in Figure
3.5: For this example an artificial mask was generated. Although the total number of
unknown pixels is nearly the same as in Figure 3.4, the quality of the output is certainly
lower. Both images were initialized with the same color value, but in the case of the latter
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one, the centers of the mask regions are not altered adequately. This stems from the fact
that the FoE prior favors large and homogeneous areas. The example images show that
the inpainting quality is not only dependent on the number of unknown pixels, but also
on the structure of the mask - and of course on the complexity of the input image.

Figure 3.5: A large mask leads to an inappropriate inpainting result. (a) Inpainting
problem. (b) Resulting image. The original photography is taken from [Gre08].

The choice of the inpainting step size has not been discussed yet. In most experiments
a step size of 100 was used in the first 2300 iterations of the restoration task. This
relatively large step size causes numerical instabilities, which become apparent in the
form of artifacts. In order to get rid off those artifacts, which make the inpainted image
look noisy, η is set to 1 for the last 450 iterations. This cleanup step is a reliable measure to
remove the undesired artifacts. It was found that the inpainting result is not very sensitive
on the step size. However, a well-founded statement about the step size influence can only
be made with the help of a similarity measurement. Therefore, various step sizes will be
compared in a quantitative evaluation in the result section.

Learnt filters

It is not straightforward to interpret a learnt FoE model. The structure of the learnt filters
often seems to be irregular [Rot07]. In Figure 3.6 the filters of a learnt model are shown,
along with their responses on the input image in Figure 3.4. The filter responses provide
a more comprehensible way to interpret the learnt filters. It can be seen that the filter
responses are larger at high-frequencies, compared to pixels belonging to homogeneous
regions, e. g. the back of the bull. This becomes obvious if we consider the strong edges -
like the silhouette of the bull - in the input image and the corresponding filter responses.
The responses on such edges are diverse, which means that the filters encourage edges
with different directions. The filter in the upper right corner encourages vertical edges,
for instance. The student t-distribution dislikes large filter responses and favors responses
close to zero. Thus, homogeneous regions become very likely for the FoE prior. This
circumstance explains the poor quality of the inpainting result in Figure 3.5: Since the
FoE model favors large homogeneous regions, it tends to inpaint large areas with one
dominant color.
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Input image α: 0.014892 α: 0.056302

α: 0.023592 α: 0.030195 α: 0.038585

α: 0.27231 α: 0.49127 α: 0.28517

Figure 3.6: Filter responses of a learnt FoE model. The first image is the input image.
The filter responses are given subsequently, along with the filters, which are shown in the
upper left corner of each response image.

Initialization

Roth [Rot07] does not mention that the initialization of the inpainting area has an in-
fluence on the overall restoration quality. In the inpainting code provided by Roth, each
unknown pixel is initialized with zero. During the tests conducted for this thesis, it was
still observed that the inpainting result is dependent on the initialization. Small inpainting
areas tend to converge to the same output, independent of the assigned gray values. The
inpainting quality of larger regions on the contrary, depends on the initialization values.
The restoration quality can be improved by initializing the inpainting region with a gray
value that is similar to the known gray values in the surrounding of the unknown region.
It was also found that less iterations are required until the inpainted image stabilizes, if
the inpainting area is initialized appropriately.

Figure 3.7 shows an example for the initialization influence. In this experiment the
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inpainting domains are initialized with zero or the mean gray value in a band around
the mask region. Two different mask sizes are evaluated. In the case of the smaller
mask width, the inpainting algorithm produces the same outputs, independent of the
initialization value. However, if the mask size is slightly increased, diverse inpainting
results are obtained. In the depicted images it is not evident which initialization should
be used overall, since both produce convincing images and implausible results as well.
In the result section the two mentioned initialization types will be compared, along with
other initialization values.

Groundtruth Black Initialization Mean Initialization Black Initialization Mean Initialization

Figure 3.7: Comparison of inpainting domain initializations. In the case of mean ini-
tialization, the inpainting region is filled with the mean intensity of the pixels that are
contained in a 3 pixel wide band around the unknown region. (Left column) Groundtruth
images. (Second and third column) Black and mean initialization of the mask region.
The mask perimeter is 11 pixels. (Fourth and fifth column) The inpainting area is again
initialized with zero and the mean gray value. The unknown region has a perimeter of 13
pixels.

3.3.2 Text Restoration

In this section properties of text restoration, based on image priors, are provided. The
priors that are used for text reconstruction are trained on a handwriting database, which
is introduced in [MB02]. The FoE models, which are trained on handwritten text, overtop
image priors that are learnt from natural image statistics. This can be seen in Figure 3.8:
In Figure 3.8 (b) the output of a generic prior is given. The image in Figure 3.8 (c) is
inpainted with a model that was trained on text images. It can be seen that the second
prior introduces more blur than the generic model. Nevertheless, the second inpainting
result is more satisfying compared to the image in Figure 3.8 (b), since the large inpainting
regions, which partially occlude the characters ’u’ and ’e’, are inpainted with connecting
strokes. The generic FoE model fills those holes with the background color.

The main disadvantage of structural inpainting approaches, compared to textural
methods, is that the inpainted areas are smeared, if they belong to heterogeneous re-
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(a) (b) (c)

Figure 3.8: Text restoration using different FoE priors. (a) Input image with superim-
posed mask. (b) Image inpainted with a prior that models natural image statistics. (c)
Inpainting result obtained with a model, which is trained on handwritings.

gions. This is also true in the case of the FoE approach - as it is demonstrated in Figure
3.8. It was found that the blurring is reinforced if the unknown area is surrounded by a
region that is corrupted with noise. The image inpainting definition by Bertalmio et al.
[BSCB00] assumes that the known image area is not damaged. This requirement is not
met, when it comes to the inpainting of degraded documents - like palimpsests. Figure
3.9 shows how noise impairs the restoration quality. The noise in Figure 3.9 (c) is actu-
ally enhanced and smearing artifacts are present in the inpainting domain. This example
suggests that a preceding noise removal step is necessary, if the image is corrupted with
noise.

(a) (b) (c)

Figure 3.9: Influence of noise. (a) Noise free input image and inpainting mask. (b)
Inpainted image. (c) Gaussian noise - with a variance of 0.1 - is added to the input image
in (a). The noise is reinforced during the inpainting process.

The training patches are randomly extracted from an image database. In the case
of text priors, the patches are also randomly chosen. Although the patches are selected
randomly for both applications, the sampling strategy differs significantly in one aspect:
Each patch, which is sampled from a handwriting database, must contain at least one
pixel that belongs to a character stroke. Otherwise the patch is discarded. Thus, the
prior learns the statistics of the characters, in place of the uniform background.

The rest of this section explains typical properties of text reconstruction. Those char-
acteristics become also apparent if an FoE prior is used for the restoration of natural
images. However, those properties are easier observable in the case of character inpaint-
ing, due to the reduced complexity of the input images.

Convergence

Several inpainting stages of a single character are shown in Figure 3.10. Additionally
the respective gradients inside the inpainting regions are presented in the second row.
One could expect that the gradients converge towards zero during the gradient ascent
procedure, since the posterior values should reach maximas after a certain amount of
time.

Figure 3.11, which shows the sum of the absolute gradient values, implies that this is
not the case. It can be seen that the sum of the gradient converges to a certain value
till the cleanup - with a smaller step size - is started at iteration 2301. The smaller step
size causes an increase of the absolute gradient values. During the cleanup process, the
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Iteration: 1 Iteration: 100 Iteration: 500 Iteration: 1300 Iteration: 2300 Iteration: 2750

Figure 3.10: Six stages of the inpainting progress. In the upper row the inpainted images
are shown. The corresponding gradients of the unknown areas are given in the lower row.

gradient sum converges also to a certain value. Although the gradient does not converge to
zero, the overall inpainting result stabilizes during time, because the mean of the gradient
values moves towards zero. The mean gradient value is shown in Figure 3.12. In the
depicted example mainly positive gradient values are added in the first 1300 iterations,
because the inpainting areas are initialized with zeros. Afterwards minor changes are
made, until the cleanup process is started. The smaller step size leads to a removal of
numerical instabilities, which are caused by the relatively high step size used in the first
2300 iterations. It is notable that the mean gradient value gets stabilized during the
cleanup process. The main image structure is propagated in the first 1300 iterations, as
it can be seen in Figure 3.10. This circumstance is also observable in Figure 3.12, where
the mean intensity inside the inpainting domain, is depicted by the green line. The mean
gray value stabilizes around iteration 1300, but it is still varying due to the large step
size.

Rotation Variance

It is stated in [Bov05] that MRFs are inherently rotation variant. The FoE model is
also rotation variant. In order to evaluate the influence of the stroke orientation, the
characters in Figure 3.13 (a) are inpainted with different FoE priors. The lower image
in (a) is the 270 degree rotated version of the upper image. The orientation of the upper
image is typical for the character orientation in the training database. The images in
Figure 3.13 (b) are inpainted with a prior that is trained on the original database. The
stroke gap in the lower left corner of the upper image is inpainted successfully. If we
consider the bottom image in (b), we can see that the same gap is not restored in an
appropriate manner. The reason for this circumstance is the fact that the prior is learnt
from a database, in which the majority of the strokes has an orientation that is similar
to the long stroke in the upper row. In order to prove this claim, the training patches
are rotated through 270 degrees and a new prior is trained on the rotated database. The
inpainting results obtained with the modified prior are presented in Figure 3.13 (c). The
rotation of the training patches leads to a decreased inpainting quality of the upper image,
because the aforesaid stroke gap gets blurred out. The quality of the bottom image is in
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Figure 3.11: Sum of the absolute gradient values in each iteration. It is notable that
the smaller step size (starting at iteration 2301) causes higher gradient values than the
greater step size. The gray line shows the absolute gradient values and the red line is a
Gauss filtered function of the absolute gradient. The size of the Gaussian window is 21.
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Figure 3.12: Mean of the gradient values during inpainting. As the inpainting procedure
proceeds, the mean gradient value moves towards zero. Once the cleanup takes place the
mean changes, because the artifacts are removed. It can be seen that the mean gray value
(green line) stabilizes about iteration 1300. Due to the large step size the mean gray value
is still varying, until the cleanup is started.
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contrast more satisfying.
The depicted example images show that the FoE prior is rotation variant. This

rotation variance becomes clearly evident if we consider the structure of the learnt filters,
which are given in Figure 3.14. The structure of the majority of the filters is similar,
putting aside the fact that the filters on the right side are rotated through 90 or 270
degrees. This rotation stems obviously from the rotation of the database. The expert
parameters learned are also similar. The differences between the corresponding α values
are small: The largest absolute difference is 0.0021 and the mean difference is 0.000588.
These differences are caused by the random selection of the training patches that are used
in one learning iteration.

The filters shown prove that the FoE prior learns the main orientation of the strokes,
which is a major characteristic of text characters. Nevertheless, the blurred out inpainting
areas shown in Figure 3.13 are certainly not desirable. For the purpose of reducing
the influence of the stroke orientation, another experiment was conducted: The images
from which the training patches have been extracted were rotated randomly, before the
sampling was carried out. The inpainted images in Figure 3.13 (d) exhibit that this
modification results in a trade-off between the satisfying inpainting of common strokes
and the inadequate restoration of seldom strokes. It will be evaluated in the next chapter,
if a random rotation of the training images leads to improved inpainting results.

3.4 Text Restoration based on Tensor Voting

The main goal of tensor voting is to perform perceptual grouping of elements that en-
code image primitives. In the case of image inpainting this perceptual grouping leads
to a connection of geometric structures. Unlike the FoE approach, tensor voting is not
based on image statistics. Tensor voting is instead a heuristical approach, which aims at
preserving local structures. Those structures are formed by curves or points, which are
called tokens. Basically each token propagates its information to nearby tokens and accu-
mulates the information that it receives from the neighborhood. “Tokens with compatible
orientations that can form salient structures reinforce each other. The support of a token
for its neighbors is expressed by votes that are cast according to the Gestalt principles of
proximity, co-linearity and co-curvilinearity.”[MK04] (Medioni and Kang, 2000, p. 195)
In this thesis only two-dimensional tensor voting is explained, but it is notable that the
tensor voting framework can be extended to any dimensionality. For this reason tensor
voting is also called ND tensor voting.

3.4.1 2D-Tensor Voting Framework

Tensor Encoding

A tensor encodes the saliency that he belongs to a certain perceptual structure, which
may be a region or a curve. If a tensor belongs to a curve, it additionally encodes the
orientation of the vector perpendicular to the curve tangent. A tensor T can be expressed
as a 2× 2 matrix:

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 = (λ1 − λ2)ê1êT1 + λ2(ê1ê

T
1 + ê2ê

T
2 ) (3.20)
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(a) (b) (c) (d)

Figure 3.13: Influence of the stroke orientations in the learning database. The input
images are shown in the first column, whereby the orientation of the upper image is
typical for the character orientation in the training database. The lower image is the 270
degree rotated version of the upper image. (b) The images are inpainted with a model
that is trained on the original dataset. The major orientation of the characters in the
original database is similar to the orientation of the large stroke in the first upper image.
(c) The learning patches used for the training of the prior used in (b) have been rotated
through 270 degrees. The model that is trained on the rotated patches, gains a successful
closing of the most gaps in the rotated lower image. (d) The utilized FoE prior is trained
on patches that were sampled from randomly rotated images.

α = 0.0079304 α = 0.0098646 α = 0.025262

α = 0.047903 α = 0.069189 α = 0.072098

α = 0.15743 α = 0.12189

α = 0.0079377 α = 0.0098316 α = 0.024907

α = 0.047356 α = 0.069218 α = 0.074225

α = 0.15628 α = 0.12142

Figure 3.14: The character orientation affects the orientation of the learnt filters. The
shown filters are used for the inpainting of the images in Figure 3.13 (b) and (c). The
filters on the left side (bordered blue) are learnt on training patches that are randomly
extracted from the database. Those training patches have been rotated through 270
degrees and were used for the training of the filters on the right (bordered red).
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where λ1 ≥ λ2 ≥ 0 are the eigenvalues and ê1 and ê2 are the corresponding eigenvectors.
The first term of Equation 3.20 may be interpreted as a stretched ellipsoid, which encodes
the orientation of the curve normal. This tensor is named the stick tensor. The second
part of Equation 3.20 describes a circle, which is called the ball tensor. A ball tensor
has no clear orientation. The size of a tensor indicates the saliency about the geometric
structure. In the encoding step the perceptual structure is known and therefore each
tensor has a size of 1. Table 3.1 illustrates how the tensors are initialized.

Geometric structure Tensor visualization Eigenvalues Tensor

n

Curve

λ1 = 1, λ2 = 0

[
n2
1 n1n2

n1n2 n2
2

]

Unorientated

λ1 = λ2 = 1

[
1 0
0 1

]

Table 3.1: Tensor encoding of two-dimensional structures

Tensor voting

Once the tensors are encoded, tensor voting takes place. In this process each token
refines its information contained by receiving the information, which is casted by its local
neighbors. In the following the voting scheme for stick tensors is explained. Voting of ball
tensors is not discussed here, since the implemented inpainting algorithm makes only use
of stick tensor voting. In the original tensor voting framework ball tensors are useful if a
structure is damaged and its orientation is unknown. Although ball tensors might help
to restore a degraded structure, they are not encoded, because the known image area is
assumed to be undamaged.

The basic idea of stick tensor voting is illustrated in Figure 3.15. Suppose that we are
searching for the most likely curve that connects the origin O and the point P . Medioni
and Kang claim that “the arc of the osculating circle (the circle that shares the same
normal as a curve at the given point) at O that goes through P is the most likely smooth
path, since it maintains constant curvature.” [MK04] (Medioni and Kang, 2000, p. 205)
In Figure 3.15 the center of the osculating circle is the point C. The vote that is casted
by O to P is also a stick tensor.

Since every tensor in the neighborhood of P casts a vote to the token in P , it is
important to weight the votes. The weight of a vote is inversely proportional to the
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Figure 3.15: The stick tensor in O casts a vote to the tensor in P .

length of the connection. Thus, nearby tokens have a greater influence than faraway
tokens. The weighting function suggested by Medioni and Kang is named saliency decay
function and is defined by:

DF (s, κ, σ) = e−(
s2 + cκ2

σ2
) (3.21)

where s is the arc length, κ the corresponding curvature and σ defines the scale of
voting. σ is the only parameter that is chosen by the user and controls the neighborhood
size and the smoothness of the connecting curve. A large σ causes a higher degree of
smoothness, which leads to the grouping of compatible structures even if s is relatively
great. Hence, the tensor voting approach is able to restore strokes that are interrupted
by relatively large gaps. A small σ favors the votes of tokens in the local neighborhood
and thereby preserves local structures. c is a constant that depends on σ:

c =
−16 log(0.1)(σ − 1)

π2
(3.22)

Since the saliency decay function has now been defined, we can move on with the
definition of the stick vote. The vote that is casted from a stick tensor located at point
O to a tensor located at P is defined by:

S(l, θ) = DF (s, κ, σ)

[
− sin(2θ)
cos(2θ)

]
[− sin(2θ) cos(2θ)]

κ =
2 sin(θ)

l
, s =

θl

sin(θ)

(3.23)

where l is the distance between O and P and θ is the angle enclosed by the vector
~OP and the tangent of the curve in O (see Figure 3.15). The votes that are casted by O

to each token in the neighborhood are also stick tensors. These votes build up the voting
field of O. The field is restricted by the constraint that the enclosed angle θ is less or
equal than 45 degrees.

In Figure 3.16 two partially overlapping voting fields are shown. It is obvious that
the size of the tensors decreases with the distance to the voter, which stems from the
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explained saliency decay function. Each tensor accumulates the votes by simply adding it
to itself. This process is called tensor addition. If a stick tensor receives various stick votes
with parallel curve normals its saliency increases. If a stick tensor receives in contrast
votes with varying normal vectors its saliency decreases. An extreme example for this
circumstance is a tensor that receives two votes with perpendicular vectors. In this case
the receiving tensor is transformed into a ball tensor, which means that this tensor has
no preferable orientation.

3.4.2 Inpainting Algorithm

In the previous section the general 2D-Tensor voting framework was discussed. The
result of the voting process is a field of tensors which encode orientated or un-oriented
structures. It has not been explained yet how features are extracted from the final tensor
field. This feature extraction step and the overall inpainting algorithm will be explained
in the following.

Tensor Encoding and Voting

Before the tensor encoding may take place a few preprocessing steps are necessary. Those
steps are shown in Figure 3.17. In the first preprocessing step the unknown pixels are ini-
tialized with the background color (see Figure 3.17 (b)). In the second step the horizontal
and vertical image gradients of the image are computed with a first order edge detector -
namely the Canny [Can86] edge detector. In Figure 3.17 (c) the corresponding edge image
is shown. The image gradients that exceed a certain threshold serve as the curve normals
in the tensor encoding step. However, before the encoding may be conducted a further
preprocessing step is required: Since false edges are introduced at the mask border, the
corresponding gradients must be deleted. The unwanted edges are caused by character
strokes that immediately end at the mask border. In the removal step (illustrated in

O P

Figure 3.16: Voting fields of two tensors located at O and P . The tensors belong to the
same structure, namely the gray line that should be restored. A tensor that receives votes
by O and P accumulates the votes by simply summing them up. It is notable that from
the subset of tensors, which receive two votes, only tensors located at the straight line are
still stick tensors after the voting process. Hence the connecting line is the most likely
connection.
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Figure 3.17 (d)) the mask is slightly dilated and the gradient values inside the dilated
mask are set to zero. The remaining image gradients are afterwards encoded into tensors.
The points, where the gradients do not exceed a global threshold, are initialized with zero
matrices.

(a) (b)

(c) (d)

Figure 3.17: Necessary preprocessing steps before tensor encoding. (a) Input image with
overlapping mask. (b) Initialization of the inpainting region. (c) Result of edge detection.
(d) A dilation of the mask removes the unwanted edges.

Once the stick tensors are encoded, tensor voting takes place. The voting procedure
was already discussed in Section 3.4.1. However, the voting formula in Equation 3.23 is
only defined for a voter, whose curve tangent is a horizontal vector. If a curve tangent
has another orientation, the corresponding voting field must be rotated. The interested
reader is referred to [MK04] for an explanation of this rotation.

Feature Extraction

Once the voting process is finished, the restored image is encoded as a field of tensors. To
extract the saliency and the normal vector from a tensor, the corresponding eigenvalues
λ1 ≥ λ2 ≥ 0 and eigenvectors ê1 and ê2 are calculated. The eigenvalues are needed for
the construction of a curve saliency map. This map encodes the saliency that an actual
tensor is a stick tensor, which is defined by λ1 − λ2. Figure 3.18 (a) shows the saliency
map for the input image in Figure 3.17 (a). In the illustrated example it is obvious that
tensors belonging to large linear structures reinforce themselves, which results in a high
saliency. In the inpainting regions the saliency is generally smaller than in the known
image regions, since those areas are initialized with zero matrices. This circumstance
is unapparent in the shown saliency map, because the saliency inside the known image
region is normalized in order to provide a better visualization.
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(a) Curve saliency map. The red contour borders the inpainting areas.

(b) Result of feature extraction. The green marked pixels are incorporated into the
edge image.

Figure 3.18: The curve saliency map in (a) is used in the edge detection step illustrated
in (b).

Before the edge extraction is started, unlikely tensors are eliminated with a simple
thresholding technique: A tensor is declared as unlikely, if the following condition is met:

λ1 − λ2 ≤ t, (3.24)

where t is a user defined threshold. The curve saliency map serves as the basis for the
extraction of the edges inside the inpainting area. It can be seen in Figure 3.18 (a) that
the connecting edges assume local maximas. A simple thresholding method is insufficient
for the edge extraction, since the saliency of local non-maximas at the mask border is
higher than the saliency of more distant local maximas. Therefore the non-maximum
suppression method that is introduced in [Can86] is applied. In the Canny edge detection
algorithm this method is used for the detection of local maximas in the direction of the
image gradient. It is straightforward to adapt the non-maximum suppression method to
our needs, since the eigenvector ê1 of a tensor describes the image gradient. In Figure
3.18 (b) the local maximas of the saliency map are marked green.

Region Filling and Postprecessing

Before region filling takes place the edge image is post processed. The post processing is
necessary since edges are partially interrupted, which stems mainly from great distances
between the voting and the receiving tensors. Small interruptions are eliminated by
bridging unconnected pixels. This means that a pixel is incorporated into the edge image,
if it has two not connected neighboring edge pixels.

Each pixel in the restored edge image is then set to the foreground text color, if it
belongs to an edge, or otherwise to the background color. The unknown regions of the
input image are afterwards replaced with the adequate parts of the edge image. Now holes
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inside the inpainting areas are filled with the foreground color. A hole is a region that
is enclosed by a set of 8 connected foreground pixels. Although the character strokes are
filled at this time, there is still a need for a further manipulation: Usually there are edges
in the filled image that do not enclose a hole. To get rid of those edges, a pixel is set to
the background color if there are only 4 or less foreground pixels in its 9×9 neighborhood.
Finally all inpainted foreground pixels that are not connected to the known foreground
are set to the background color.

The proposed post processing steps are heuristics, since they do not rely on the in-
formation encoded in the final tensor field. Nevertheless the use of those methods leads
to an improved result, as it can be seen on the final inpainting results provided in Figure
3.19. The restored text in Figure 3.19 (c) is obtained without using the discussed post
processing steps, while the inpainted image in Figure 3.19 (d) is created with the help of
the heuristics. Apparently the elimination of isolated edges erases mainly visual implausi-
ble edges. Those unlikely edges are caused by votes casted by tensors belonging to large,
linear structures that do not immediately touch the inpainting mask. While the erasing
of such edges mainly acts as a noise removal step, the bridging of the edge image may
introduce noise in the resulting image. Although this noise might introduce not existing
strokes, the bridging step is useful, because it helps to wipe out small interruptions in
existing structures. In the example image presented especially the character ’K’ benefits
from the bridging step. It is notable that the connection of unconnected neighboring
pixels results partially in thickened strokes. In the post processed image in Figure 3.19
the characters ’N’ and ’S’ contain such thickened strokes.

(a) Undamaged original image (b) Input image used for inpainting

(c) Image restored without heuristics (d) Image restored with the help of heuristics

Figure 3.19: Final inpainting results.

3.5 Summary

In this chapter the principles of the methods, which have been investigated, were ex-
plained. First it was depicted how the overwritten palimpsest regions are detected. The
detection of these areas is fulfilled on tungsten illuminated parchments, which exhibit
mainly the overwritings. The binarization algorithm used relies on a contrast image,
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which encodes the difference between the maximum and minimum intensity value within
a local neighborhood. Secondly, the concept of the FoE algorithm was outlined. The
underlying MRF theory was briefly introduced and the learning and inference equations,
which are used in the FoE framework, were explained. Characteristics of the inpainting
technique were illustrated using example results that were gained on natural images and
images containing handwritings. Finally the heuristical restoration method was depicted.
This method is based on tensor voting, which performs a grouping of elements. The
general two-dimensional tensor voting framework was explained and the additional steps,
which are part of the inpainting algorithm, were described.
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Chapter 4

Results

This chapter provides an evaluation of the methods that were depicted in the last sec-
tion. The inpainting of natural images will be analyzed as well as the restoration of
handwritings. Since the tensor voting algorithm is restricted to the recovery of high con-
trast letters, the majority of the following experiments shows characteristics of the FoE
inpainting algorithm.

The chapter is structured as follows: In Section 4.1 the inpainting of natural images is
evaluated. The first test shows how the performance of the FoE approach is affected by
the inpainting parameters. Additionally the influence of the mask extent is analyzed. In
the subsequent experiment the FoE algorithm is applied to the recovery of masks, which
are generated from salt & pepper noise. The section is concluded by a comparison to
other inpainting techniques.

In Section 4.2 the recovery of synthetic handwriting data is analyzed. The section
starts with an analysis of the statistically based method. First it is shown how the train-
ing data affects the text restoration performance of the FoE algorithm. Therefore, the
performances of four priors, which were trained on different data sets, will be compared.
Furthermore, a parameter evaluation of the statistical approach is given by means of two
experiments. In Section 4.2.2 the parameter dependency of the text recovery based on
tensor voting is analyzed. The performances of both restoration algorithms are compared
in Section 4.2.3. Therein the strengths and weaknesses of the investigated systems are
depicted and special attention is paid to the question, which occlusions can be restored
in a satisfying manner.

The recovery of historical underwritings is evaluated in Section 4.3. A ground truth
set was created manually in order to provide an assessment of the inpainting results. At
first it is argued, why it was necessary to shrink the utilized images. The parameter
dependency of the mask extraction step and the inpainting sequence is evaluated. The
proposed method suffers from various drawbacks, which will be explained in the course
of the section. Finally the outputs of a prior trained on synthetic data are contrasted to
restorations produced by a prior, which was trained on underwritings.

Similarity Measurement

In the subsequent experiments the PSNR is used to measure the similarity between an
inpainted image I ′ and the corresponding ground truth image I. The PSNR is defined
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as:

PSNR = 20log10

(
255√
MSE

)
, (4.1)

where the Mean Squared Error (MSE) for two equally sized images I and I ′ is given
by:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)− I ′(i, j)]2 (4.2)

A PSNR value is given in decibels (dB) and a high PSNR value indicates a high
restoration quality. It is noteworthy that the MSE and PSNR are not sophisticated
measures of the human perception of similarity and that no other similarity measurement
has yet been established for image inpainting [BLLC02]. This explains why the majority
of the papers, introduced in Section 2, do not make use of any error measurement. Only a
minority of the introduced papers1 provide PSNR values to measure the inpainting qual-
ity. Nevertheless, the PSNR is utilized in this section, because it allows for a statistical
evaluation of multiple inpainting results. The numerical results are presented along with
selected inpainted images, in order to allow for a subjective assessment by the reader.

The aforementioned papers provide PSNR values of entire images, regardless of the
amount of unknown pixels. In order to enable comparability to this works, this notation
kind is also used in the following section, which deals with the recovery of natural images.
The masks that are used in these experiments have similar ratios between known and
unknown pixels and the PSNR values are not biased by varying mask structures or sizes.

In the experiments, which are conducted on handwritings, the mask areas are in con-
trast varying. Therefore, it is necessary to provide the PSNR values inside the inpainting
domains, because otherwise the results for different handwritings are not comparable.

4.1 Experiments on Natural Images

The following two tests are conducted on the Miscellaneous volume of the USC-SIPI image
database [Web97]. The volume consists of 44 images, which are frequently used in image
processing - like Lena, mandrill monkey, etc. The volume contains 16 color images, which
have been converted to grayscale images in order to reduce the computational burden.
Additionally four large pictures - with a size of 1024 × 1024 px - have been down sized
by a factor of two. The modified data set contains 14 images with a size of 256 × 256 px
and 30 images with a size of 512 × 512 px.

4.1.1 Parameter Evaluation

The first experiment demonstrates how the inpainting rate η and the extent of the in-
painting mask influence the restoration quality. The utilized masks can be categorized

1Those papers are namely: [YSM10], [Gul06], [FSM09], [ESQD05], [Rot07], [Gui09] and [BLC08].
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into three domain types: Hand drawn strokes, circles and text masks. Common to all do-
mains is the ratio between the unknown and known pixels: Each inpainting mask occludes
about 25 % of the corresponding input image. Two different masks have been generated
for each domain type. This was necessary, because the dataset is comprised of images
with two different sizes. Masks belonging to the same group have similar attributes, e.g.
the same font size or diameter, regardless of the mask size.

14 different inpainting rates - ranging from 20 to 140 - have been evaluated and the
gained mean PSNR values are provided in Figure 4.1. For the moment only the black
initialization is discussed, while the mean initialization will be evaluated later on.
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Figure 4.1: Evaluation of mask types and inpainting rates η. The y-axis, which shows the
mean PSNR values, is partially shrinked in order to provide a detailed representation for
each mask type. The dotted red lines on the y-axis mark the decreased ranges.

Although the percentage of the occluded area is nearly the same for each mask type, the
numerical results gained are varying: The maximum PSNR values of the text, strokes and
circles masks are 33.48 dB, 32.23 dB and 31.35 dB. A qualitative analysis by the author
confirmed that the recoveries of the text masks look most pleading, while the restorations
of the circles domains are less convincing than the retouchings of the remaining mask
types. This is attributed to the fact that the widths of the distinct mask regions are
varying: The most character lines are 3 pixels wide, a stroke has a width of 5 pixels and
the diameter of a circle is 11 pixels. It can be concluded that the width of the mask regions
has a direct impact on the inpainting quality. The mask lengths have less influence on the
restoration, since the stroke lengths are larger than the circle diameters. This behavior
is common to most geometric inpainting methods, which “are known to work well with
’narrow’ inpainting domains.” [CK06] (Chan and Kang, 2006, p. 87)

The width of the distinct inpainting regions must be considered when it comes to the
selection of the inpainting rate η. In the case of the narrow text characters the best result
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- 33.48 dB - is achieved if η is set to 60. It turned out that local structures are preserved
by this inpainting rate. If a higher rate is applied, fine structures are more likely to get
vanished, because of the influence of nearby homogeneous regions.

An example for the text mask recovery is shown in Figure 4.2. The input image and
the inpainting domain are shown on left. The image on the right is obtained by setting η
to 60. The PSNR value of the restored image is 34.88 dB. A lower similarity, namely 34.85
dB is gained, if η is set 110. The differences between both images become only apparent
at a closer look. Therefore, a detail view of the yellow bordered square in Figure 4.2 (left)
is given in Figure 4.3. The image in Figure 4.2 (b) is restored with η = 60, whereas the
image in Figure 4.2 (c) is inpainted with η = 110. The edges at the top of the jet fighter
are better preserved by the smaller inpainting rate. However, the images exhibit only
minor differences, which shows that the inpainting rate has hardly any influence on the
restoration of small mask regions.

Figure 4.2: Recovery of a text mask, shown left. The image on the right is restored, by
using an inpainting rate of 60.

(a) (b) (c)

Figure 4.3: Detail view. (a) Ground truth image. (b) Result of η = 60. (c) Result of
η = 110.

It turned out that the inpainting rate has also a minor effect on the restoration quality
of the strokes masks. The highest similarity is gained, if η is set to 90. The corresponding
mean PSNR value is 32.23 dB. The inpainting rate has to be enlarged, compared to the
text masks, in order to ensure propagation into the mask centers. Otherwise the unknown
regions are not altered sufficiently.
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However, the differences are again only recognizable, if very different rates are applied.
One example for the strokes mask recovery is given in Figure 4.4, where the right image is
restored with η = 90. The similarity to the ground truth image is 39.16 dB. A considerably
lower performance, namely 38.09 dB, is gained, if η is set to 30. Portions of the inpainted
images are shown in Figure 4.5. The image in Figure 4.5 (b) is retouched, using a rate
of 30, whereas the photography in Figure 4.5 (c) is inpainted with η = 90. The image,
produced with the lower rate, looks visually implausible, since regions, which are located
at the boundary of the milk, are partially filled with the background color.

Figure 4.4: Restoration of the strokes mask. The utilized inpainting rate is 90.

(a) (b) (c)

Figure 4.5: Detail view. (a) Inpainting problem. (b) Result of η = 30. (c) Result of
η = 90.

The circles masks are the most challenging inpainting domains in this experiment.
The highest mean PSNR value - 31.35 dB - is gained, if η is set to 110. This relatively
large rate has to be applied, in order to accomplish an alteration of the mask centers.
However, if a mask region is surrounded by heterogeneous regions, the inner pixels are
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oversmoothed and the inpainting process is evident. An extreme example for the weak
performance on the circles masks is shown in Figure 4.6. The image exhibits that the
inpainting algorithm is incapable of reproducing texture in a satisfying manner, as it is
also noted in [Rot07].

(a) (b) (c)

Figure 4.6: Limitation of the inpainting algorithm. (a) Input image. (b) Ground truth
image. (c) Image inpainted with η = 110. The PSNR value of the inpainting result is
low, namely 24.93 dB.

Initialization Dependency

It has not been discussed yet, whether the mean initialization improves the inpainting
performance. The term mean initialization describes the initialization with the mean
intensity of the known pixels that are contained in a 3 pixel wide band around a distinct
inpainting region. The PSNR values that are gained with this initialization kind are
given in the already presented Figure 4.1. In order to provide a more comprehensible
comparison of the two initialization kinds, the highest PSNR values - regardless of the
inpainting rate - are given in Table 4.1.

Mask type Text Stroke Circle

Black initialization:
Optimal rate 60 90 110
PSNR 33.48 32.23 31.35

Mean initialization:
Optimal rate 80 80 110
PSNR 33.45 32.25 31.37

Table 4.1: Influence of the initialization value.

It can be seen that the text masks are better restored, if the unknown regions are ini-
tialized with zero. The PSNR values, obtained with a black initialization, are greater for
each examined rate, compared to the mean initialization. On the contrary, the inpainting
quality of the other mask groups is most of the times higher, if the unknown areas are
initialized with mean gray values. In the case of the stroke masks, only for η = 20 and
η = 30 a higher similarity is achieved with a zero initialization.
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The recovery of the circle masks benefits also most of the times from the mean ini-
tialization. Only four inpainting rates - namely 20, 30, 130 and 140 - gain a greater
PSNR value with the black initialization. It can be seen in Figure 4.1 that the graph,
which depicts the black initialization (solid green line) is more varying than the graph,
which shows the mean initialization (dashed green line). The mean initialization enhances
therefore slightly the restoration result, but the results for the circles masks are in general
modest, as it was previously shown.

If η is set to 110 the highest PSNR values for the circles masks are gained by both
initializations. This rate was used for the restoration of the image that is shown in Figure
4.7. The inpainting regions of the image shown in Figure 4.7 (b) were initialized with
zeros. The result of the mean initialization is given in Figure 4.7 (c). The corresponding
detail images are given in Figure 4.8. It can be seen that the input image in Figure 4.8 (a)
contains 3 strong, vertical edges, which are better restored by the mean initialization. This
effect is also indicated by the higher PSNR value of the image that was initialized with
mean values, but it has to be mentioned that both restorations look visually implausible,
since blurred out areas are present in both images.

The plot in Figure 4.1 exhibits that the initialization value has a certain effect on
the inpainting quality. However, the investigated mean initialization is not a guarantor
for improved results, since the results for the character masks are worsened by the mean
initialization. The quality of the restoration of the larger masks is slightly enhanced, but
the investigated initialization kind is not a generally applicable extension of the FoE
inpainting algorithm.

4.1.2 Removal of Salt & Pepper Noise

In this experiment, the inpainting of salt & pepper noise masks is analyzed. The removal
of salt & pepper noise is usually accomplished by image denoising algorithms - like [Rot07]
and [Tsc06] -, which make no assumption about the location of the perturbation. This is
contrary to the conducted experiment, where the position of the noise is encoded in the in-
painting domain. Therefore, this experiment is artificial, because in practical applications
the location of the disturbance is unknown. Masnou [Mas02] has suggested to identify
damaged pixels with a so-called grain filter and to generate an inpainting mask from the
found noise locations. This approach is not investigated here, but it is remarkable that
image inpainting can be used for noise removal.

The domains that are used in this experiment have been generated from salt & pep-
per noise and occlude 40%, 60% and 80% of the input images. The input images that
were used in the preceding experiment are also utilized in actual experiment. The images
were restored by setting η to 70. The influence of the initialization value is again ana-
lyzed, but this time different initialization values are used. The mean initialization is not
investigated, since a dilated mask would cover the majority of the corresponding input
image.

Instead, the inpainting regions are initialized with statistical measures that are com-
puted from the entire known image. The investigated measures are the mean, the median
and the Otsu threshold of the known pixels. The mean PSNR values that are achieved by
the different initialization values are provided in Table 4.2. It can be seen that relatively
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(a) (b) (c)

Figure 4.7: Inpainting of the circle mask, shown in (a). (b) Black initialization result:
PSNR = 33.54 dB. (c) Mean initialization result: PSNR = 34.30 dB.

(a) (b) (c)

Figure 4.8: Detail view. (a) Image with superimposed mask. (b) Result of the black
initialization. (c) Result of the mean initialization.

similar performances are gained. This indicates that the restored regions converged to
similar intensity values, independent of the initial values.

The stable convergence is attributed to the irregular structure of the masks. In the
masks utilized the distances from the unknown pixels to the closest known pixels, are
short, compared to the previously used masks. Even if 80% of the pixels are unknown,
the maximal distance is still just 4.12 pixels and the average distance is 1.04 pixels.
Therefore, the performance gained on the noise masks, which occlude 40% of the input

Initialization 40 % 60 % 80 %

Zero 34.13 31.27 28.02
Mean 34.14 31.25 28.01
Median 34.14 31.24 28.01
Otsu threshold 34.12 31.26 28.01

Table 4.2: Performances gained in the noise removal experiment. The initialization values
are computed from the entire known image.
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images, is higher than the performances that were achieved in the last experiment. The
masks that were used in the preceding experiment cover just 25% of the input images,
which confirms the statement that the inpainting performance is highly dependent on the
structure of the distinct mask regions.

If the noise level is set to 40% or 60%, the restoration with an FoE prior produces
convincible results. If 80% of the pixels are missing, the recovery becomes apparent,
particularly in textured regions. This can be seen in Figure 4.9, where the three different
disturbances are removed from an input image. The restorations of the masks that occlude
40% and 60% (shown in the first two rows of Figure 4.9) look plausible. On the contrary,
the recovery of the remaining domain (given in the last row of Figure 4.9) looks unnatural,
since edges are frayed and image details, like parts of the man’s mouth, are lost.

4.1.3 Comparison with other Inpainting Algorithms

This section provides a comparison between results found in the inpainting literature and
outputs that are obtained with a generic FoE prior. The basic ideas of the algorithms
selected were already introduced in Chapter 2. The majority of the compared algorithms
presents no numerical results. Therefore, a side-by-side comparison is given and numerical
results are provided if they are available. The presented FoE outputs have been inpainted
with η = 100 and the inpainting regions were initialized with zero.

The first image compared is produced by the PDE based algorithm suggested by
Bertalmio et al. in [BSCB00]. The input image and the associated inpainting mask are
shown in Figure 4.10 (a). The inpainting result of the PDE based method is presented
in Figure 4.10 (b) and the output of the FoE algorithm is given in Figure 4.10 (c). The
output produced by the FoE prior, is slightly inferior compared to the inpainting result
of the gradient based approach, since the inpainting regions are more blurred out by the
statistically based method. The blurring becomes especially apparent in the inpainting
region that is partially occluding the hauberk of the knight.

In the previous experiment an artificial mask was restored. A more practical applica-
tion field of image inpainting is scratch removal. One example for this application field
is given in Figure 4.11, where a scratch is removed from a photography of Lincoln. The
inpainted result in Figure 4.11 (b) is obtained by the diffusion based approach that is
presented in [OBMC01]. The output of the FoE approach - given in Figure 4.11 (c) - is
slightly inferior, because the region, which is covering the hair of Lincoln, is oversmoothed.

Figure 4.12 provides a comparison to the TV based inpainting algorithm that is sug-
gested by Loeza and Chen [BLC08]. The image in Figure 4.12 (b) is produced by this
method. The output of the FoE algorithm is given in Figure 4.12 (c). It is not evident,
which restoration result should be favored, because of two reasons: One the hand, it is
noticeable that the FoE result looks smoother than the image in Figure 4.12 (b), in which
curvature is often not maintained. On the other hand, the FoE algorithm is incapable of
reconnecting the thin hair part (2 pixels wide), whereas the TV based method fills the
unknown area.

A further practical application for inpainting is object removal. A challenging prob-
lem, belonging to this category, is shown in Figure 4.13 (a). The birdcage is covered by
an inpainting mask, which is considerably thicker than the domains that were used in the
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Figure 4.9: Inpainting of three different random masks. In the left column the input
image and the superimposed masks are shown. In the right column the corresponding
results are given. The PSNR values of the restorations - from top to bottom - are: 33.25
dB (40% masked), 30.17 dB (60% masked) and 26.90 dB (80% masked).
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(a) (b) (c)

Figure 4.10: Inpainting of a hand drawn mask. (a) Frame of the movie “Monty Python
and the Holy Grail” and superimposed mask. (b) Inpainting result of [BSCB00]. (c)
Output of the examined algorithm.

(a) (b) (c)

Figure 4.11: Scratch removal. (a) The photography of Lincoln is damaged by a scratch.
(b) Restoration result of [OBMC01]. (c) Image recovered by the FoE algorithm. The
images in (a) and (b) are taken from [OBMC01].

previous examples. The inpainting task is further complicated by the fact that the input
image contains textured regions. The tensor-driven method proposed by Tschumperle
[Tsc06] is capable of overcoming those difficulties, since the resulting image in Figure 4.13
(b) is inpainted in a satisfying manner. On the contrary, the quality of the FoE restora-
tion, shown in Figure 4.13 (c), is certainly lower since image details are not recovered and
the silhouette of the bird is blurred. The example shows that the main weakness of the
FoE inpainting approach is the inability to reproduce large and textured regions.

Finally, the FoE method is compared to four algorithms, which use sparse represen-
tations for the recovery of missing image regions. The four algorithms have been applied
for the retouching of four noise masks that are similar to the domains, which were used
in Section 4.1.2. The utilized masks cover 60% of the input images.

The PSNR values that are gained by the compared algorithms are given in the first
four columns of Table 4.3. The performance of the FoE approach is presented in the
last column. Especially noticeable is the weak performance that is gained by the FoE
algorithm on the Barbara image. This can be attributed to the fact, that this image
contains fine image structures, which are not reproduced by the investigated inpainting
method. The similarities that are gained on the three residual images are in contrast
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(a) (b) (c)

Figure 4.12: Text removal example. (a) Lena image and inpainting mask (b) Result
obtained by the TV based algorithm in [BLC08]. (c) Image inpainted with the help of
an FoE prior.

(a) (b) (c)

Figure 4.13: Object Removal. (a) The parrot is partially occluded by a cage, which
serves as the inpainting mask. (b) The PDE based algorithm in [Tsc06] is able to fill
the relatively wide mask in an adequate manner. (c) The output of the FoE approach is
clearly inferior to the result of the PDE based method.

significantly higher.
The algorithm in [YSM10] achieves the highest performance on each image. Two

resulting images of this approach are shown in Figure 4.14, along with the outputs that
were produced by the FoE approach. The method in [YSM10] is able to inpaint the
challenging Barbara image in a satisfying manner, while the FoE algorithm fails in the
reproduction of the textured regions. The restoration of the Lena image looks in contrast
more natural, but it is still inferior to the output of the method proposed in [YSM10].

63



Algorithm [YSM10] [Gul06] [FSM09] [ESQD05] FoE

Lena 36.02 33.43 29.91 33.95 34.34
Barbara 34.05 29.77 28.52 32.33 26.60
House 37.41 34.10 29.56 35.23 33.86
Boat 32.53 30.40 27.58 31.00 31.74

Table 4.3: Performance (in PSNR) of the FoE approach compared to other state-of-the-
art algorithms. The inpainting regions cover 60% of the images. The masks used for the
images ’Lena’ and ’Barbara’ are obtained from [YSM10]. The other inpainting masks are
not provided in [YSM10] and are therefore randomly generated.

Figure 4.14: Inpainting of a randomly generated mask. (Left) Input images with super-
imposed masks. (Middle) Resulting images produced by the method in [YSM10]. (Right)
Images recovered with an FoE prior.

4.2 Experiments on Synthetic Text Data

This section deals with the restoration of words that consist of Latin letters. The utilized
words are taken from the IAM handwriting database [MB02], which contains handwritings
that were scanned at a resolution of 300 Dots per Inch (dpi). The stroke widths and colors
are varying and the text orientations are additionally diverse, since the database contains
writings from over 600 writers.

The majority of the subsequent experiments are carried out on images containing a
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word that is overlapped by another word. Such test sets will be herein also referred to
as “artificial palimpsests”. All input images, belonging to such sets, are randomly chosen
from the database. (Except the input images that are utilized in the first experiment,
which is conducted on a subset of the database.)

The inpainting masks are created from images, which have a similar size as the corre-
sponding input images. If a randomly picked mask was greater or smaller than its assigned
input image, the mask was cropped or zero-padded, respectively. It is noteworthy that
from now on only the similarity (in terms of PSNR) inside the mask regions is provided.
This is necessary due to the fact that the utilized masks have various extents.

The section starts with experiments that are performed using FoE priors. Afterwards
a parameter evaluation of the tensor voting approach is given. The section ends with a
comparative analysis of both examined approaches.

4.2.1 FoE Text Recovery

In the following, three experiments are conducted, which demonstrate the characteristics
of the FoE based handwriting recovery. Firstly, it is analyzed how the statistics of
the training database influences the inpainting result. Secondly, an evaluation of two
parameters, namely the inpainting rate and the initialization value, is given.

Learning the Statistics of Handwritings

In the following experiment the performances of four different FoE models are compared.
One prior captures the statistics of natural images. This image model was used for the
recovery of the images that were presented in Section 4.1. The remaining three priors
model the statistics of handwritings. The first handwriting model is trained on images
that are randomly extracted from the IAM database. This database contains mainly
words that are written in cursive lowercase. The second prior is instead trained on a
subset of the database. The subset contains only words, which consist of uppercase letters.
Those letters have another stroke orientation, than the cursive written words. The third
handwriting model is again trained on images, extracted from the entire database. The
images were randomly rotated before the sampling of the training patches was carried
out.

Two different sets, containing artificial palimpsests, have been generated: The first
set is comprised of 100 input images, which contain words that are written in lowercase.
The second set contains instead 100 words that are written in uppercase.

Table 4.4 shows the average PSNR values that are gained inside the inpainting masks.
It can be seen that the handwritings models gain a higher performance if the statistics
of the test images are similar to the statistics of the patches, which have been used in
the learning sequence. Hence, the weakest performance is achieved by the model that is
trained on natural images.

It can be concluded that a handwriting prior favors the propagation of strokes, which
have orientations that are similar to the main orientation of the training set. Connections
with different orientations are more likely to get vanished, due to the rotation variance of
the image model. The random rotation of the training images is not sufficient to overcome
this drawback, as it is indicated by the low PSNR value.
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Test set \Training set Mixed letters Capitals Rotated patches Natural images
Lower case letters 19.03 dB 18.78 dB 18.86 18.06 dB
Upper case letters 17.08 dB 17.37 dB 16.78 16.34 dB

Table 4.4: Restoration performance of four different image priors.

One example for the influence of the training data is given in Figure 4.15. The image
in Figure 4.15 (c) was restored by the prior that is trained on the entire dataset. Figure
4.15 (d) shows the output of an FoE prior that models the statistics of uppercase letters.
It is obvious that the cursive written word is better recovered by the former mentioned
image model. This prior is used in the following experiments.

(a) (b)

(c) (d)

Figure 4.15: Text restoration using different FoE priors. (a) Input image and correspond-
ing mask. (b) Ground truth image. (c) Restoration result of a model, which has been
trained mainly on cursive words (PSNR: 17.47 dB). The retouched image looks more
natural than the image in (d), which is produced by a prior that captures the statistics
of uppercase letters (PSNR: 16.84 dB).

Parameter Evaluation

In this experiment the influence of the initialization value is evaluated. The analyzed
dataset contains 100 artificial palimpsests and the utilized inpainting rate is 100. The
background of the inpainted images is uniformly white and the text color is varying. 11
initialization values in the range between 0 and 1 are evaluated, whereby 1 represents the
maximum intensity value. The average PSNR values achieved are presented in Figure
4.16.

The plot reveals that an initialization, which is similar to the background color, im-
proves the inpainting result. The highest similarity is gained, if the unknown regions are
initialized with 0.9. The initialization with the dominant background color prevents an
introduction of smearing artifacts. Those artifacts are present in large inpainting regions
if they are initialized with a gray value that is at least smaller than 0.5.

One example is shown in Figure 4.17. The results shown depict that the restora-
tion process benefits from an initialization with the dominant background color. From
this point on, only the initialization with the dominant background color is used in the
subsequent experiments.

In the next experiment, the FoE inpainting algorithm is used for the removal of
ruling lines that are partially occluding handwritings. The impact of the inpainting rate
η is analyzed. The utilized test set includes 100 input images. Three masks have been

66



0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
18.65

18.7

18.75

18.8

18.85

18.9

18.95

19

Initialization value

PS
N

R

Figure 4.16: Evaluation of the initialization value.

(a) (b)

(c) (d)

Figure 4.17: Handwriting restoration, using different initialization values. (a) Disocclusion
task. (b) Initialization value: 0, PSNR: 15.48 dB. (c) Initialization value: 0.5, PSNR:
16.18 dB. (d) Initialization value: 1, PSNR: 16.48 dB.

generated for each input image. The masks contain horizontal ruling lines, which are
evenly spread over the input images. The vertical distance between two line centers is
20 pixels and the number of lines depends on the height of the input image. The three
masks that belong to an input image contain lines with different thicknesses: The ruling
lines have vertical extents of 3, 5 and 7 pixels. One example for the ruling line removal
scenario is given in Figure 4.18.

Figure 4.18: Ruling line removal example. (a) Ground truth image. (b) Restoration result
(PSNR: 19.67 dB). The borders of the ruling lines are illustrated by the red boxes. The
lines have a thickness of 7 pixels.

The results gained are presented in the plot, shown in Figure 4.19. The broadening of
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the ruling lines leads to a reduction of the PSNR values. The maximum PSNR value is
22.59 dB. This similarity is scored, if an inpainting rate of 110 is utilized for the restoration
of the three pixels wide lines. The highest PSNR value gained on the 5 pixels wide mask
regions is 20.03 dB. This similarity is obtained by applying an inpainting rate of 130. The
worst results are obtained in the case of the restoration of the 7 pixels wide lines. The
maximum PSNR value for this mask type is 18.24 dB. This similarity value is achieved,
if η is set to 120.

The inpainting result is not sensitive on the inpainting rate, since there are only minor
performance differences for the rates in the range from 80 to 140. This insensitivity to the
step rate was already observed on natural images and will not be evaluated any further.
In the following experiments η will always be set to 100.

4.2.2 Tensor Voting

In the following experiment the performance of the tensor voting approach is evaluated.
The dataset, which was utilized in the ruling line removal experiment, is also used in
this test. It was mentioned in Section 3.4 that the tensor voting approach is exclusively
designed for the restoration of binarized text images. The preceding test was instead
carried out on gray scale images. Therefore it was necessary to convert the binary images,
produced by the tensor voting approach, into gray scale images, in order to enable a
comparison between the heuristical and the statistical approach. The conversion is fulfilled
by using the following, simple technique:

At first the color of each distinct foreground region in the inpainting domain is de-
termined. Therefore, the known foreground pixels in a three pixel wide band around the
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Figure 4.19: Performance of the FoE approach gained on three different mask types. The
masks contain horizontal ruling lines with various thicknesses (see legend for details).
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restored region are considered. The recovered foreground region is filled with the median
of the gray values belonging to the considered pixels. In the second step, the fading of
the character strokes is imitated. The inner regions of the utilized handwritings are typi-
cally darker than the outer regions, where the ink is faded out. Therefore, a second post
processing step is applied, in order to approximate this property: The restored gray scale
image is filtered with a 5 × 5 Gaussian filter. The color recovery technique explained is
not capable of filling in color gradients. This drawback becomes apparent, if the restored
region is relatively large.

The result of the tensor voting approach depends mainly on the parameter σ, which
defines the scale of voting. This means that a relatively high σ allows for a connection
of faraway tokens, while a small σ preserves local structure. In this experiment it is
evaluated, how σ affects the recovery of the regions that are occluded by ruling lines.

The mean similarities that are gained for each ruling line type are presented in Figure
4.20. The investigated σ values are given on the horizontal axis and the PSNR values
are depicted on the vertical axis. Two remarkable circumstances can be seen in the
figure: Firstly, the inpainting performance is inversely proportional to the line width and
considerably lower than the results, which are scored by the FoE approach. Secondly,
the maximum similarity values for each mask class are obtained with diverse σ values: In
the case of the 3 pixels wide lines, the highest similarity is 19.20 dB. This PSNR value
is gained if σ is set to 4. A higher σ is more appropriate for the reconstruction of the
5 pixels wide mask regions: If σ is set to 5, the highest similarity, namely 17.17 dB, is
gained. Finally, the maximum PSNR value inside the 7 pixels wide mask regions is 15.85
dB. This similarity is gained, if σ is set to 6.
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Figure 4.20: Performance of the tensor voting based approach. The utilized masks contain
horizontal ruling lines with varying thicknesses.

69



In the case of the 3 pixels wide mask regions, a small σ enables a satisfying filling
of the relatively small gaps. By the use of this small scale of voting, the influence of
faraway tensors is prevented and only nearby tensors cast votes into the inpainting domain.
Nevertheless, if the inpainting area is thicker (like the 5 and 7 pixels wide regions), σ must
be increased in order to enable a connection of matching edges. By raising σ, the impact of
distant tensors is increased and tensors in the inpainting area receive votes from multiple
tokens, with different orientations. Thus, the saliency of tensors inside the unknown area
is lowered and local structures are often not preserved.

In Figure 4.21 an example is given, which illustrates how σ affects the restoration
result. The input image and the 5 pixels thick mask are shown in Figure 4.21 (a) and the
ground truth image is given in Figure 4.21 (b). The image in Figure 4.21 (c) is inpainted
with σ = 3. This value is too small for a successful closing of the gaps, since the votes
are not casted into the mask centers and the extracted edges are therefore interrupted.
The image in Figure 4.21 (d) is restored with a more appropriate σ value, namely 5. The
image in Figure 4.21 (e) is inpainted with σ = 9.

(a) (b)

(c) (d)

(e) (f)

Figure 4.21: Impact of σ. (a) Input image with superimposed mask. The mask regions
are 5 pixels wide. (b) Ground truth image. (c) σ = 3: 14.83 dB. (d) σ = 5: 15.83 dB. (e)
σ = 9: 16.14 dB. (f) σ = 12: 15.03 dB.

If we compare Figure 4.21 (d) and Figure 4.21 (e), we can see that the hole in the
letter ’p’ is better reconstructed with the greater σ value, since it is located at the end
of a large, linear structure. By contrast, the letters ’a’ and ’m’ in Figure 4.21 (e) contain
small holes, which are not present in Figure 4.21 (d). Those local structures are better
preserved by the smaller scale of voting. Finally, the output of σ = 12 is given in Figure
4.21 (f). The extracted edge image contains interrupted edges, caused by votes of faraway
tensors. Thus, only large structures with very similar orientations are preserved, while
edges with a high curvature are not propagated.

The images in Figure 4.21 demonstrate that a single σ value is suitable for the closing
of particular inpainting regions, while other σ values are more appropriate for the recovery
of the remaining holes. Hence, the performance can be increased by applying various σ
values during the inpainting sequence. The scale of voting can be adapted to the extent of
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the holes or to the curvature of the nearby edges. This extension has not been investigated
due to time restrictions, but will be explored in the future work.

In the current implementation only a fixed σ value is used for a particular test set.
Figure 4.22 shows an example for the restoration of line regions with increasing extents.
The 3 pixels thick regions are inpainted with σ = 4 (Figure 4.22 (a)), the 5 pixels thick lines
are restored with σ = 5 (Figure 4.22 (b)) and the largest inpainting regions are recovered
by setting σ to 6 (Figure 4.22 (c)). All images contain small disturbing artifacts that are
either caused by votes of multiple tokens or by the morphological operations, which were
depicted in Section 3.4.2. Those artifacts are especially apparent in the border regions of
the inpainting domains.

Furthermore, it can be seen that the broadening of the domains leads to a reduction of
the similarity. While most gaps in the first restoration given are successfully closed, the
remaining images contain more interrupted strokes. The tensor voting based approach
is generally only capable of restoring small gaps. However, the term small is imprecise
and therefore it will be clarified in the following section, which gaps can be restored
successfully by both handwriting recovery methods.

(a) (b)

(c) (d)

Figure 4.22: Restoring regions that are occluded by ruling lines. (a) Ground truth image.
(b) 3 pixels wide ruling lines. σ = 3: 17.79 dB. (c) 5 pixels wide ruling lines. σ = 4: 14.55
dB. (d) 7 pixels wide ruling lines. σ = 7: 12.90 dB.

4.2.3 Comparative Analysis

In the last experiment that is conducted on synthetic data, the performances of both
restoration techniques are compared. The actual test addresses the issue which kind of
occlusions, caused by overwritings can be restored in an appropriate manner. Therefore,
it is necessary to characterize the masks or occlusions, respectively. It was already shown
that it is inappropriate to classify the masks based on the number of unknown pixels.
Therefore the masks are instead categorized by the mean width of the overlapping strokes2.

The classification described does not consider whether the foreground or the back-
ground is occluded. The occluded regions should also be regarded, since the recovery of

2The mean stroke width of a mask is determined as follows: At first the skeleton of the binary image
is computed. Afterwards the distances between the skeleton pixels and the nearest background pixels in
the mask image are computed. The average of this distances serves as the mean stroke width.
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the uniform background is trivial, whereas an appropriate restoration of the foreground
is more complicated than a correct reconstruction of the uniform background. Hence, an-
other classification kind is also utilized in this experiment: The occlusions are described
with the ratio between the amount of occluded foreground pixels and the overall number
of foreground pixels. This categorization takes into account that the restoration quality
depends not only on the extent of the inpainting mask, but also on the occluded image
content.

The investigated dataset is comprised of 1000 artificial palimpsests. The retouching
with the FoE algorithm took about 11 hours, whereas the tensor voting based approach
needed considerably less time for convergence, namely about one hour. The experiment
was performed on a single PC, which was equipped with an Intel Core 2 Duo processor
(2.4 GHz) and 4 GB RAM.

Firstly, the test set is divided into 8 groups, based on the occlusion ratio (ranging from
10% to 50%). For the statistical approach an inpainting rate of 100 was applied, while
tensor voting was fulfilled by setting the scale of voting to 6. The similarity values gained
are presented in Table 4.5 and in Figure 4.23. Additionally, a further series of PSNR
values is provided in order to allow for a better evaluation of the gained results. These
similarity values are achieved, by simply filling the inpainting regions with the background
color.

Both inpainting approaches produce results with a higher similarity than the back-
ground filling. Furthermore, the similarity values gained by the statistical inpainting
approach are superior to the results obtained by the heuristic method. This can be at-
tributed to the fact that the tensor voting approach is only capable of filling holes that
are surrounded by edges with compatible orientations. Other inpainting regions are left
untouched, whereas the FoE tends to alter such regions, if the occlusion ratio does not
exceed a certain value. It is difficult to draw a general conclusion about this value, since
the results depend on the complexity of the input image and the mask. However, it can
be seen in Table 4.5 that the PSNR values, gained by the FoE approach, are at least
around 20 dB, if the occlusion ratio is not greater than 20%. The heuristical inpainting
approach gains a similar PSNR value only if less than 10% of the foreground pixels are
occluded.

The performance of both methods is monotonically decreasing with respect to the
occlusion ratio. The difference of both algorithms is 3.379 dB on average. It can be
concluded that the FoE approach restores handwritings in a more appropriate way than
the method that is based on tensor voting.

Table 4.6 and Figure 4.24 present the results that are gained by grouping the masks
based on the width of the strokes contained. The mean performance difference of both
restoration approaches is 3.71 dB. The difference between the tensor voting approach
and the background filling is 3.28 dB on average. Contrary to the preceding results, the
PSNR values of the tensor voting approach are not monotonically decreasing: The mean
PSNR value gained on the 8 pixels wide mask regions is 14.00 dB. A considerably smaller
similarity value, namely 13.31 dB, is in contrast achieved on the 7.5 pixels broad regions.
If we consider the performance gained by the background filling, we can see that the
last PSNR value is also considerably higher than the second last similarity value. This
indicates that the last subset of the test data contains more occluded background regions
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Occlusion (in %) 10 15 20 25 30 35 40 50

FoE 23.12 20.78 19.34 18.03 17.12 16.42 15.58 14.84
Tensor voting 20.01 17.46 15.82 14.50 13.65 13.04 12.04 11.67
Background 15.36 13.14 11.69 10.80 10.48 10.24 9.67 9.71

# of samples 67 135 224 263 168 95 31 17

Table 4.5: Performance comparison of the examined inpainting techniques. 1000 artificial
palimpsests are grouped based on their occlusion ratio. The upper bounds of the particular
ratios are given in the first row.
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Figure 4.23: Performances gained by both systems. The utilized test set is divided based
on the occlusion ratio. The red bars depict, which similarity values are gained by filling
the mask regions with the background color.

than the second last subset.
In order to provide an idea of how different inpainting problems are solved by both

approaches, four representative examples are given in Figure 4.25 to Figure 4.28. Addi-
tionally, the results of the background filling are provided. Figure 4.25 and Figure 4.26
show the recoveries of masks with a relatively small extend. Both restoration techniques
produce relatively convincing results. Nevertheless, the numerical results are diverse which
can be attributed to the fact that the tensor voting based approach fills distinct regions
with a solid color, while the FoE approach is able to fill in color gradients. Furthermore,
it can be seen that the statistical approach tends to over smooth the inpainting areas,
whereas the heuristical approach generates strokes with a higher background contrast.

Figure 4.27 and 4.28 illustrate the restoration of greater masks. The tensor voting al-
gorithm is not capable of connecting most matching edges and does not alter the majority
of the holes. The statistical algorithm alters more inpainting regions, but the inpainting
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Mask stroke width (in px) 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

FoE 20.82 20.15 19.62 19.12 18.14 17.24 17.00 16.50
Tensor voting 16.96 16.43 15.67 14.73 13.91 13.87 13.31 14.00
Background 11.71 11.65 11.65 11.65 10.95 11.65 10.35 13.00

# of samples 56 135 190 184 186 125 57 67

Table 4.6: Performance evaluation of both recovery methods. The used masks are clas-
sified by their mean stroke widths. The upper bounds of the chosen stroke widths are
given in the first row.
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Figure 4.24: Evaluation of both systems. The masks are grouped based on their mean
stroke width.

process is clearly observable, since the restored strokes are blurred out. The greatest
occluded regions are also filled with the background color.

The numerical results and images presented exhibit that the FoE algorithm produces
more satisfying restorations than the tensor voting method. The latter algorithm is based
on the assumption that edges, which are belonging together, are detected trough the
voting process. However, it turned out the usage of a single σ value is not appropriate,
since small values are on the one hand not suitable for the filling of large holes. On the
other hand, smaller regions require a small σ in order to restore local structures. The
FoE approach is able to fill larger regions, but the inpainting process becomes more
visible with the mask extent.
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(a) (b)

(c) (d)

Figure 4.25: Inpainting of an overwritten area (Occlusion ratio: 10.6 %, mask width: 4.35
pixels) (a) Inpainting problem. (b) Background filling result (PSNR = 13.77 dB). (c)
FoE result (PSNR = 21.72 dB). (d) Tensor voting result (PSNR = 19.69 dB).

(a) (b)

(c) (d)

Figure 4.26: Inpainting of an overwritten area (Occlusion ratio: 18.9 %, mask width: 5.4
pixels) (a) Inpainting problem. (b) Background filling result (PSNR = 13.02 dB). (c)
FoE result (PSNR = 20.18 dB). (d) Tensor voting result (PSNR = 18.21 dB).

4.3 Palimpsest Reconstruction

In this section the recovery of the utilized palimpsests is evaluated by means of manually
created ground truth data. Four test panels have been extracted from different leaves be-
longing to the Archimedes palimpsest. The corresponding ground truth images have been
created with the help of transcriptions that are provided from the Archimedes Palimpsest
Project [NAW04]. It has to be mentioned that the ground truth was not generated by
a philologist, but instead by the thesis author. Hence, the presented numerical results
should be treated with caution.

The section is structured as follows: At first it is argued, why the palimpsest images
used were downsized before the binarization and inpainting steps took place. Secondly, the
mask generation step and its parameter sensitivity are analyzed. It turned out that it is
necessary to enlarge the generated masks in order to prevent a propagation of overwriting
vestiges that are located at the mask boundary. The necessity for this mask enlargement
is shown in a separate experiment, where the restorations of untampered and enlarged
masks are contrasted. Furthermore, a test is conducted that demonstrates the insensitivity
to the inpainting rate. Finally, the outputs produced by a prior, which was trained on
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(a) (b)

(c) (d)

Figure 4.27: Inpainting of an overwritten area (Occlusion ratio: 31.2 %, mask width: 6.4
pixels) (a) Inpainting problem. (b) Background filling result (PSNR = 9.00 dB). (c) FoE
result (PSNR = 14.47 dB). (d) Tensor voting result (PSNR = 11.41 dB).

(a) (b)

(c) (d)

Figure 4.28: Inpainting of an overwritten area (Occlusion ratio: 45.8 %, mask width: 7.3
pixels) (a) Inpainting problem. (b) Background filling result (PSNR = 9.83 dB). (c) FoE
result (PSNR = 16.47 dB). (d) Tensor voting result (PSNR = 12.24 dB).

underwritings, are compared to restorations that are generated by an image model that
was trained on the IAM database.

4.3.1 Influence of the Gap Width

The statistical inpainting method is only capable of filling thin inpainting regions in a
satisfying manner. Large regions are not altered sufficiently, which becomes also apparent
when it comes to the restoration of the investigated historical writings. The parchments
containing these writings, have been imaged at 700 dpi. While this resolution was con-
sidered to be adequate by scholars3, it is too high for an adequate filling of the occluded
areas. Therefore, the four test panels were downsized from 2001 × 2001 pixels to 501 ×
501 pixels, which represents a resize factor of 0.25. The images were resized using bicubic
interpolation.

The resize factor was chosen, based on a qualitative assessment of the recovered un-
derwritings and based on the results that were obtained on synthetic data. The IAM
database is scanned at a resolution of 300 dpi and the ratio between the resolution of the
synthetic and the real world data is therefore 0.43 : 1. This indicates that the palimpsest
images have to be downsized, but the ratio is not used as downsampling factor, since it
cannot be assumed that both datasets have similar mask widths.

3From: http://www.archimedespalimpsest.org/imaging production1.html, last accessed on 11. Au-
gust 2011
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Instead, a resize factor of 0.25 was chosen. The masks that are generated from such
resized images have an average mask width of 7.2 pixels4. The preceding test showed
that the recovery of mask regions with a width of 7 pixels or more leads to relatively
poor results, because the unknown regions are often not altered sufficiently or blurred.
Nevertheless, the parchment images were not downsized any further, since this would lead
to an increased loss of image details.

One example for the inability to restore the panels at a high resolution is given in
Figure 4.29: The image in Figure 4.29 (b) is restored at the original resolution of 700 dpi.
The inpainted image in Figure 4.29 (c) was resized by a factor of 0.7, before inpainting
took place. The restoration in Figure 4.29 (d) was obtained by applying a resize factor
of 0.25. We can see that the usage of the latter factor leads to a worsened legibility of
the underwritings. Nevertheless, a drastic downsizing of the input images is necessary,
because otherwise the occluded areas are not altered sufficiently during the inpainting
process.

4.3.2 Evaluation of the Mask Generation Step

In the following the sensitivity to the binarization parameters is analyzed. It was found
that it is essential to dilate the binarized images by one pixel, because otherwise remaining
overwritings vestiges are propagated into the mask region. Therefore, the masks that are
presented in the following were dilated by one pixel. It will be depicted later on, why this
measurement is inevitable.

Evaluation of the Binarization Parameters

The parameters, which are used in the utilized binarization algorithm, have to be adjusted
according to the width of the strokes that are contained in the ancient documents. The
segmentation method relies mainly on two parameters, which are used in Equation 3.2:
The first parameter is Nmin, which defines the minimum number of high contrast pixels
in a local neighborhood window that are necessary for a foreground classification. The
size of the neighborhood window is defined by the second parameter Nw.

Since Equation 3.2 depends both on Nmin and Nw, it is essential to find an appropriate
parameter combination. Therefore, it has been analyzed how several combinations of Nmin

and Nw affect the restoration results. A binarization evaluation in terms of recall and
precision is not made, since we are interested in the overall recovery performance, which
depends also on the inpainting step. Hence, the influence of the binarization parameters
is analyzed by comparing the restored images with their ground truth counterparts.

The restored images have been inpainted with a rate of 100. The performance of 8
Nmin values and 6 neighborhood sizes has been analyzed. In contrast to the experiments
conducted on synthetic data, it is necessary to compare entire image domains, since the
mask is not always covering the overwritings.

The mean similarities - in terms of PSNR - between the inpainted images and the
corresponding ground truth images are given in Table 4.7. Each column shows PSNR

4This mask width is achieved under the following conditions: The utilized binarization parameters
are: Nmin = 4 and Nw = 9 × 9. The masks, which have been generated with these parameters, are
afterwards dilated by one pixel. (See Section 4.3.2 for a justification of the chosen settings.)
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(a) (b)

(c) (d)

Figure 4.29: Restoring underwritings at different resolutions. (a) Input image. (b) Image
inpainted at the original resolution of 700 dpi. (c) The input image was resized by a
factor of 0.7. (d) Restoration obtained with the chosen resize factor of 0.25.

values for a fixed neighborhood size and the utilized thresholds are given in the table
rows. The maximum PSNR value for a particular neighborhood size is printed in bold.
The highest mean similarity is 24.99 dB, which is gained, if Nw = 9× 9 and Nmin = 4.

The maximum PSNR values in the table columns indicate that an increasing of Nw

must go in hand with a raising of Nmin. This statement is based on the consideration of
the given mean PSNR values. In order to substantiate this claim, the performance gained
on panel 58 verso, is presented in the plot that is given in Figure 4.30. The horizontal
axis depicts the investigated window sizes and the ordinate shows the scored similarity
values. Each Nmin value is represented by a single graph.

It can be seen that for a window size of 5×5 the highest PSNR value is achieved if the
minimum number of high contrast pixels is set to 1. This Nmin value is represented by the
blue graph. If a higher Nmin is combined with this small window size, the performance
is significantly worsened. The performance for Nw = 5 × 5 is in general low. There are
two reasons for the weak performance caused by the small window size: On the one hand,
text pixels, which are not marked as high contrast pixels, are often misclassified because
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Nmin \Nw 5× 5 7× 7 9× 9 11× 11 13× 13 15× 15

1 24.4848 24.9050 24.8882 24.7317 24.6022 24.5934
2 24.2419 24.8749 24.9352 24.8062 24.6602 24.6620
3 23.9097 24.7803 24.9881 24.8598 24.7396 24.6947
4 23.5745 24.6677 24.9885 24.9011 24.7930 24.7480
5 20.6459 24.5347 24.9162 24.9475 24.8370 24.7911
6 22.5438 24.3276 24.9038 24.9301 24.8375 24.8104
7 22.0258 24.1440 24.8438 24.9385 24.8739 24.8313
8 19.4116 23.9658 24.7772 24.9415 24.8763 24.8494

Table 4.7: Mean PSNR values that are gained using various parameters combinations.
The maximum PSNR value for each neighborhood size is written in bold.
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Nmin = 1
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Figure 4.30: Restoration of panel 58 verso with varying binarization parameters. The
restoration quality is shown on the vertical axis and the utilized window sizes are presented
on the horizontal axis. The applied Nmin values are illustrated by separate graphs.

their distance to high contrast pixels is mostly larger than the utilized window size. On
the other hand, a relatively low Nmin value must be used in combination with the small
neighborhood window, because otherwise the image is under-segmented. However, by
lowering the threshold, the sensitivity to noise gets enlarged. Thus, varying background
regions are incorporated into the inpainting mask.

A higher similarity is instead achieved, if the window length is set to 7, 9 or 11.
However, a high performance is only gained if Nmin is chosen according to the window
size. Appropriate Nmin values for Nw = 7× 7 are 1 (blue graph) and 2 (red graph). For a
window length of 9, the highest similarity is gained if the number of high contrast pixels
is set to 4 (green graph). It can be seen in Figure 4.30 that if Nmin is set to 1, 2 or
3 similar, but slightly decreased PSNR values are achieved. If these thresholds are in
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contrast used in combination with greater window sizes, the performance is significantly
worsened. This stems from the fact that the binarized images are over-segmented. The
over-segmentation becomes especially apparent, if a Nmin value that is smaller than 4 is
used in combination with a window length that is larger than 11. By making use of a
greater Nmin value, the number of false positives is decreased, but the performance is still
weak, compared to more appropriate parameter combinations, e. g. Nw = 9 × 9 and
Nmin = 4.

The dependency between Nmin and Nw was also observed on the other panels. In
order to enable a vivid comparison of the performances gained on the four test panels, a
subset of the parameter combinations presented is used in the following analysis. For each
neighborhood size a fixed Nmin value was chosen: Each value was selected in order that the
highest mean similarity - already presented in Table 4.7 - is gained for a particular window
size. The resulting similarity values are presented in Figure 4.31. It can be seen that the
overall results for different panels are diverse. While the reason for this circumstance
will be explained later on, we will focus on the results for each panel separately for the
moment.
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Figure 4.31: Restoration of four panels, using various binarization parameter combina-
tions. The Nmin values are given on the abscissa, along with the utilized window sizes.

It is conspicuous that the highest similarity for panel 48 verso is yield if Nw is set
to 5 × 5, whereas the remaining panels are better restored by higher Nw values. This
can be attributed to the fact that the tungsten illuminated photography of leaf 48 verso
contains characters with a high background contrast, compared to the other investigated
parchments. Since panel 48 verso contains less faded overwriting characters than the
remaining panels, the panel is best restored with Nw = 5 × 5, whereas the other panels
require a greater window size.

A portion of the tungsten illuminated photography of this parchment is shown in
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Figure 4.32 (a). In Figure 4.32 (b) the corresponding part of the UV photography is
shown, along with the inpainting mask that is generated by applying Nw = 5 × 5 and
Nmin = 1. The mask in Figure 4.32 (c) is obtained by setting Nmin to 4 for a neighborhood
size of 9 × 9. It can be seen that the latter inpainting mask contains more regions that
stem from a high background variation. The resulting images are given underneath and
the corresponding ground truth image is shown in Figure 4.32 (d). The restoration quality
is mainly affected by the false positives found, since similar true positives are detected.
Therefore, the usage of Nw = 5 × 5 leads to a PSNR value of 24.72 dB, whereas a
similarity of 24.44 dB is gained for Nw = 9× 9.

(a) (b) (c)

(d) (e) (f)

Figure 4.32: Retouching panel 48 verso with different binarization parameters. (a) Tung-
sten illuminated photography. (b) UV image with superimposed inpainting mask. The
mask was generated using Nw = 5 × 5 and Nmin = 1. (c) Inpainting mask obtained by
applying Nw = 9 × 9 and Nmin = 4. (d) Ground truth image. The restorations of the
inpainting problems, shown in (b) and (c), are given underneath in (e) and (f).

Contrary to panel 48 verso, the other panels benefit from an increased window size,
due to the more varying contrast between foreground and background pixels. A portion
of leaf 58 verso is shown in Figure 4.30. The images in the middle column are generated
by applying Nw = 9 × 9 and the images in the right column are produced by utilizing a
window length of 15. The tungsten illuminated photography of the parchment is given in
Figure 4.30 (a). Therein a narrow stroke is marked by a green circle. It can be seen in
Figure 4.30 (b) that only the upper part of this stroke is segmented, if Nw is set to 9× 9.
This is because the boundary pixels of the lower stroke part are not high contrast pixels.
Those pixels are only marked as foreground pixels if a relatively large neighborhood - e.
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g. Nw = 15× 15 - is considered, as it can be seen in Figure 4.30 (c). However, the usage
of the larger neighborhood size leads to an increased sensitivity to noise, as it can be seen
in the bottom left of Figure 4.30 (c). This image part contains background pixels that are
wrongly classified, because they are in the near of high contrast pixels, which are located
at the stroke boundaries. The recovery with Nw = 9 × 9 yields a PSNR value of 25.42
dB, while for Nw = 15× 15 a similarity of 25.09 dB is gained.

(a) (b) (c)

(d) (e) (f)

Figure 4.33: Retouching panel 58 verso with different binarization parameters. (a) Tung-
sten illuminated photography. (b) UV image with superimposed inpainting mask. The
mask was generated using Nw = 9 × 9 and Nmin = 4. (c) Inpainting mask obtained by
applying Nw = 15 × 15 and Nmin = 8. (d) Ground truth image. The restorations of the
inpainting problems, shown in (b) and (c), are given underneath in (e) and (f).

The recovery of panel 99 verso is extremely dependent on the binarization parameters:
The lowest similarity, namely 25.56 dB, is achieved for a window length of 5. For Nw =
9×9 a PSNR value of 26.97 dB is gained. Portions of the generated masks and inpainted
images are given in Figure 4.34. The mask in Figure 4.34 (b) is generated by using a
window length of 5, whereas the domain in Figure 4.34 (c) is obtained by utilizing a
window length of 9. The former domain is inappropriate, since it contains more false
negatives, which are located at the centers of stroke regions5. Those foreground pixels
are misclassified, because they are not in the immediate near of high contrast pixels.
Therefore, more vestiges of the overwritings are remaining in the inpainted image. Those

5Figure 4.34 (b) contains 33 holes located at stroke centers, while in Figure 4.34 (c) only 3 holes are
present.
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remaining parts lead to the introduction of non existing structures.

(a) (b) (c)

(d) (e) (f)

Figure 4.34: Retouching panel 99 verso with different binarization parameters. (a) Tung-
sten illuminated photography. (b) UV image with superimposed inpainting mask. The
mask was generated using Nw = 5 × 5 and Nmin = 1. (c) Inpainting mask obtained by
applying Nw = 9 × 9 and Nmin = 4. (d) Ground truth image. The restorations of the
inpainting problems, shown in (b) and (c), are given underneath in (e) and (f).

The results show that the binarization algorithm suggested by Su et al. [SLT10] is
capable to identify strokes with a relatively low contrast to the background. The imple-
mented algorithm depends heavily on the parameter combination of Nw and Nmin. The
parameters have to be chosen according to the stroke width. The best overall performance
is gained by setting Nw to 9×9 and Nmin to 4. Although the highest mean PSNR value is
achieved by this parameter setting, it has to be mentioned that the binarization algorithm
is still sensitive to varying background regions. Especially noisy regions, which are in the
near of high contrast pixels, are likely to get classified as foreground regions. It was also
found that faded-out stroke endings are wrongly classified, if they are not in the near of
high contrast pixels. Therefore, the usage of the aforementioned parameters leads to a
trade-off between noise insensibility and the ability to identify foreground pixels. Since
the former mentioned parameter combination gains the highest average performance -
in terms of PSNR - it will be used for the generation of the inpainting masks that are
utilized in the following experiments.
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Mask Dilation

The masks, which were utilized in the preceding experiment, were dilated by a circu-
lar Structuring Element (SE). This measurement causes a loss of known pixels, if a
foreground region found in the binarization step is already covering an entire character.
Nevertheless, it is indispensable to enlarge the mask as it is shown in the following ex-
periment, where the inpainting masks have been modified in the following ways: Firstly,
the binary images, which were produced by the binarization algorithm, have been used as
inpainting masks. Secondly, the binary images have been dilated by one pixel. Further-
more, the binarization outputs were dilated by two pixels. The dilatations were fulfilled
by using disk-shaped SE. Each image was inpainted with η set to 100 and the resulting
PSNR values are given in Table 4.8.

Mask dilation \Panel 40 recto 48 verso 58 verso 99 verso
No dilation 17.05 dB 16.85 dB 17.76 20.98 dB

SE radius = 1 23.13 dB 24.44 dB 25.42 26.97 dB
SE radius = 2 23.76 dB 24.10 dB 25.08 24.08 dB

Table 4.8: Evaluation of the mask dilation step.

The restoration of masks, which have not been post processed, leads to the worst re-
sults for each panel. The similarity is significantly increased, if the domains are enlarged
by one pixel. This can be attributed to the fact that pixels, which are immediately touch-
ing the inpainting mask, have the largest influence on the inpainting result. Therefore,
strokes belonging to the younger text are often propagated, if they are adjoining the mask
regions. The dilation step helps to avoid this introduction of not existing structures.

Table 4.8 shows that a dilation with a SE, which has a radius of one, leads to the
highest performance in three of the four cases investigated. Only for panel 40 recto a higher
similarity is gained by a dilation with the larger SE. It was already shown above that
the lowest inpainting performance is gained for this panel. The low performance can be
attributed to the fact that the parchment is in a poorer condition than the remaining folios,
since the contrast between fore- and background is smaller than in the other investigated
parchments. The bad state of folio 40 recto reduces the inpainting quality because of
two reasons: On the one hand, the background in the UV image is strongly varying. On
the other hand, the image, which is used in the mask generation step, contains faded-
out characters that are not fully segmented. Hence, less overwritten areas are correctly
classified, compared to the other panels. The remaining vestiges of the overwritings and
the dark background regions are propagated during the inpainting process. In the case
of panel 40 verso, a dilation by one pixel is not sufficient to avoid the introduction of
artifacts and a dilation by two pixels is more appropriate, as it is indicated by the higher
PSNR value. Contrary, the highest performances for the other panels are gained, if the
masks are enlarged by one pixel.

Figure 4.35 illustrates, why it is necessary to enlarge the mask. The restoration of
panel 40 recto, given in Figure 4.35 (e), is produced by using the binary image that is
produced by the segmentation method. The restoration of the dilated mask, shown in
Figure 4.35 (f), is superior to the former mentioned image. The recovery of the dilated
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mask contains fewer artifacts than the restoration of the untampered mask. However, it
can also be seen that remaining overwritings vestiges are even propagated, if the mask
regions are dilated by one pixel.

4.3.3 Evaluation of the Inpainting Step

This section provides an evaluation of the inpainting sequence. In the following experiment
the sensitivity to the inpainting rate is evaluated. The second part of this section provides
a comparison to inpainting results that are obtained by a prior, which was trained on
synthetic data. The main characteristics of the palimpsest recovery were already explained
in the preceding experiments. This section is shortened, compared to the previous section,
since it was already shown that the proposed system fails at recovering palimpsests in an
adequate manner. Two possibilities of improvement are discussed at the end of this
section.

Inpainting Rate

The four test panels have been restored using 10 different inpainting rates - ranging from
75 to 120. The PSNR values inside the inpainting regions are presented in Table 4.9. It
turned out that the inpainting rate has only a minor impact on the restoration results.
This property was already observed on natural images and on synthetic text data. It
is not evident from Table 4.9 which inpainting rate should be used in general, since the
highest performances are gained by diverse rates. The inpainted images were qualitatively
analyzed by the thesis author, but it was also not found that a particular inpainting rate
should be favored, since the outputs look akin, regardless of the inpainting rate utilized.

Rate 75 80 85 90 95 100 105 110 115 120

40r 18.53 18.56 18.56 18.56 18.56 18.52 18.51 18.51 18.46 18.42
48v 19.48 19.48 19.49 19.46 19.45 19.46 19.44 19.45 19.45 19.43
58v 20.32 20.33 20.35 20.37 20.37 20.36 20.38 20.39 20.36 20.35
99v 23.05 23.07 23.08 23.10 23.07 23.04 23.01 23.02 22.97 22.90

Table 4.9: Varying the inpainting rate η. The maximum PSNR value in each row is
printed in bold.

The greatest performance difference - namely 0.2 dB - arises for panel 99 verso. A
portion of this panel is given in Figure 4.36. The image in Figure 4.36 (c) is inpainted
using a rate of 75, while the image in Figure 4.36 (d) was restored with η = 120. The
differences between both panels become only apparent at a closer look. Therefore, a
region, which is restored differently, is marked by the green circle in Figure 4.36 (b).
However, the images exhibit that the inpainting rate has hardly any influence on the
recovery performance. Therefore, it can be concluded that the restoration quality depends
mainly on the binarization step and on the trained prior. The influence of the image prior
is evaluated in the following and concluding experiment.
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Comparison to a Prior trained on Synthetic Data

The inpainted underwritings that have been presented so far were produced by a prior,
which was trained on historical handwritings. It was shown that this prior produces
modest results, because gaps are only partially closed and remaining parts of overwritings
are propagated into the inpainting domain. Several FoE priors, which model the statistics
of the underwritings, have been trained during the course of this thesis. Those models are
not able to overcome the aforementioned drawbacks and their inpainting performances
are similar to the performance of the presented prior.

The restorations produced by the image model, which was utilized for the recovery
of the artificial palimpsests, are on the contrary different. This image model was applied
for the recovery of the four real palimpsests. The inpainting rate was set to 100 and the
gained results are presented in Table 4.10.

Training set \Panel 40 recto 48 verso 58 verso 99 verso

IAM database 19.76 20.64 21.18 23.94
Palimpsest 18.52 19.46 20.36 23.04

Table 4.10: Palimpsest reconstruction using priors that trained on diverse handwriting
datasets.

The results are counter-intuitively, since the model that was trained on the IAM
database gains higher PSNR values than the model, which was trained on the ancient
writings. The higher performances can be attributed to the circumstance that the former
mentioned FoE prior produces smoother inpainting results. The model is less sensitive to
varying background regions and residuals of overwritings, but it tends to oversmooth the
inpainting regions. This can be seen in Figure 4.37 and Figure 4.38, where parchments
portions are given that are restored by both image models. It is apparent that the prior,
which is trained on ancient underwritings tends to favor a propagation of dark regions.
This leads to an introduction of not existing structures. The FoE prior that was instead
trained on the IAM database produces fewer artifacts. The inpainting regions that are
restored by this model are blurred out and clearly distinguishable from the surrounding
regions.

The circumstance that the prior, which is trained on underwriting patches, introduces
more artifacts indicates that the FoE models are extremely sensitive on the nature of the
utilized training patches. The background in the underwriting patches is highly varying,
while the background of the synthetic patches is uniformly white. It can be assumed
that the model, which was trained on the IAM database, favors therefore homogeneous
inpainting regions, while the other prior favors varying regions.

The numerical results suggest that the underwriting model is overwhelmed by the prior
trained on the IAM database. However, a qualitative analysis shows that the performances
of both models are limited. Neither the prior that models Latin letters, nor the model,
which was trained on the ancient underwritings, are able to produce convincing palimpsest
restorations.

It has to be mentioned that the inpainting quality can be increased by making use of
the full potential of the FoE framework. Roth and Black suggest the following measures
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in order to enhance the denoising and inpainting performance:

• Roth [Rot07] reports that the usage of 5× 5 models leads to a higher performance
compared to 3 × 3 filters. The greater filters capture long-range dependencies in a
more accurate way.

• Roth and Black [RB05b] propose a whitening transformation of the training data.
This measurement allows for a better recovery of high-frequency domains. Addi-
tionally, an insensibility to brightness changes is achieved. This step can reduce the
sensitivity to varying background regions.

The extensions described were not successfully implemented, due to time restrictions.
The capacity of the system would certainly benefit from a realization of the mentioned
possibilities of improvement. However, it can be assumed that the FoE framework is
generally not suitable for the reconstruction of the utilized palimpsests at the original res-
olution. This statement is based on the circumstance that the FoE algorithm is designed
for small inpainting regions [Woh09], which is typical for geometrical inpainting methods.
Since these inpainting techniques are in general limited to small and narrow inpainting
domains [CPT04], [KT07], [CK06], a textural inpainting algorithm is more appropriate
for the automated recovery of unknown palimpsest regions.

4.4 Summary

The performances of the investigated methods were evaluated in this chapter. The first
subsection dealt with the inpainting of natural images. It turned out that the FoE in-
painting technique is capable of filling thin and narrow domains successfully. This is
a typical property of geometrical inpainting techniques [CK06] and the algorithm pro-
duces similar or slightly inferior results than other algorithms - [BSCB00], [OBMC01]
and [BLC08] - falling in this category, as it was shown at the end of the subsection. The
recovery of larger mask regions is in contrast evident in the restored images, especially if
the surrounding image regions are textured.

Secondly the recovery of modern handwritings was analyzed. It turned out that the
statistical based inpainting method favors a propagation of strokes, which have a similar
orientation as the main orientation of the strokes contained in the training database. The
performance of the statistically based technique was compared to the performance of the
heuristical based algorithm. The latter one needs less time for the reconstruction task,
but the retouched images are less visually plausible than the images that are produced
by the FoE algorithm.

Finally, the recovery of ancient underwritings was analyzed. It was shown that the
FoE algorithm is incapable of restoring the palimpsest images at the original resolution
and that a down sampling of the images used is necessary. The parameter dependency of
the binarization algorithm was evaluated by comparing restored images with their ground
truth counterparts. It was shown that the trained FoE prior is sensitive to dark image
regions and that a dilation of the inpainting mask is needed in order to avoid a propagation
of overwriting vestiges into the inpainting domain. An FoE prior, which was in contrast
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trained on synthetic data is less sensitive to such vestiges, but blurs out the inpainting
region. The outputs produced by both priors are generally not satisfying and hence the
system is currently inapplicable for a subsequent analysis by scholars.
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(a) Tungsten illuminated photography.

(b) Binarization result of (a). The borders of the segmented characters are colored red. Some foreground
regions, which have a low contrast to the background, are not detected - like the character κ that is
indicated by the green circle.

(c) UV image.

(d) Ground truth image.

(e) Restoration of the domain that is detected by the binarization method. PSNR: 17.05 dB

(f) The segmentation result was dilated by one pixel, before the inpainting task took place. PSNR:
23.13 dB

Figure 4.35: Restorations of leaf 40 recto, showing the necessity for the mask enlargement
step. The retouching of the mask, which is detected by the binarization algorithm, is
provided in (e). This mask was dilated by one pixel and the resulting recovery is given in
(f).
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(a) Ground truth image.

(b) Inpainting problem.

(c) Restoration result of η = 75. PSNR: 23.05 dB

(d) Inpainting fulfilled with η = 120. PSNR: 22.90 dB

Figure 4.36: Influence of the inpainting rate. There are only minor differences between
(c) and (d). A region, where the difference is recognizable, is marked by the green circle
in (b).
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(a) UV image.

(b) Inpainting problem.

(c) Ground truth image.

(d) Output produced by an FoE prior that was trained on the ancient writings.

(e) Inpainting result of an FoE prior, which was trained on the IAM database.

Figure 4.37: Restorations of panel 48 verso, produced by different handwriting models.
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(a) UV image.

(b) Inpainting problem.

(c) Ground truth image.

(d) Output produced by an FoE prior that was trained on the ancient writings.

(e) Inpainting result of an FoE prior, which was trained on the IAM database.

Figure 4.38: Restorations of panel 99 verso, produced by different handwriting models.
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Chapter 5

Conclusion

This work was concerned with the automated filling of unknown regions in natural images
and handwritings. The restoration of modern handwritings was investigated, as well as
the recovery of palimpsests. Palimpsests are ancient writings, which were overwritten and
the system proposed aims at restoring the overwritten regions automatically in order to
enhance the legibility of the underwritings.

This task is stated as an inpainting problem and hence it is necessary to generate an
inpainting mask, which encodes the locations of the overwritten image regions. The
mask is generated by applying a binarization method on photographs of parchments
that have been exposed to tungsten illumination. Such photographs exhibit only the
overwritten regions, while the underwritings are mostly visible under UV light. Therefore,
the inpainting process is carried out on photographs of leafs, which have been illuminated
with UV light.

The inpainting of handwritings and natural images is fulfilled with the FoE framework,
which is an approach for MRF modeling. The FoE framework allows for an offline
learning of image statistics that can be used in inference tasks, including image inpainting.
The equation, which is used in the inpainting sequence, is based on the MAP approach
and makes use of a trained FoE prior. The priors, which were used in the presented
experiments, have been trained on natural images and modern and ancient handwritings.

A second algorithm was evaluated, which is exclusively designed for the restoration of
recent handwritings. The proposed algorithm relies on an ad-hoc principle, namely tensor
voting: The essential idea of two-dimensional tensor voting is to encode the direction of a
vector perpendicular to a curve tangent into a corresponding tensor and to subsequently
cast the information of this tensor into its local neighborhood. Thus, a grouping of to-
gether belonging tokens is achieved. The presented method makes use of two-dimensional
tensor voting in order to propagate interrupted edges into the unknown image regions.

The performances of both algorithms were analyzed in several experiments. Firstly,
the inpainting of natural images - with the FoE approach - was investigated. Special
attention was paid to the question, which kind of inpainting masks can be restored in
an adequate manner. Hence, three different mask sets have been generated for 44 input
images. The performance was evaluated by comparing undamaged input images with
the corresponding restoration results. The similarity was measured with the PSNR. It
turned out that the capacity of the inpainting approach is dependent on the width of
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the distinct mask regions: The highest performance was gained for the mask type, which
contained the thinnest regions, while the restoration of the thickest regions led to the
lowest similarity values. The tests showed that the FoE approach is capable of producing
convincing inpainting results if the mask regions are thin: For 5 pixels thick mask regions
an average PSNR value of 32.25 dB was gained. Contrary, the inpainting process becomes
evident if the inpainting regions are thicker: The recovery of 11 pixels wide regions led
to a mean PSNR value of 31.37 dB. The recovery of large and textured regions is better
fulfilled by the inpainting techniques proposed in [Tsc06] and [YSM10] - as it was shown
in Section 4.1.3.

Secondly the recovery of synthetic handwriting data was analyzed. It was shown that
FoE priors learn the main orientation of writings, which can be attributed to the rotation
variance of MRF models. Furthermore it was demonstrated that priors, which model the
statistics of handwritten text, are better suited for the recovery of images containing
handwritings than models that have been trained on natural images. The performance
of the tensor voting based recovery system was also investigated. It was shown that the
performance of the approach is dependent on a parameter, which defines the scale of
voting. The current implementation suffers from the drawback that the same parameter
value is used for one input image, while it would be more appropriate to adapt the scale of
voting to the extent of the inpainting region. The section, which deals with the recovery of
modern writings, was concluded by a comparison of both restoration techniques. It turned
out that the tensor voting based approach is clearly overwhelmed by the statistical based
technique: For example, the heuristical approach gained an average similarity of 16.43 dB
for the recovery of 5 pixels wide overwritings, while the FoE approach achieved an average
PSNR value of 20.15 dB for the same class of inpainting problems. The performances
of both techniques are indirectly proportional to the width of the overwritings. Hence,
the restoration of the thickest overwritings - with an average width of 8 pixels - led to
the worst results: The heuristical approach gained a similarity value of 14.00 dB for this
overwriting class, whereas the statistical based inpainting method achieved a performance
of 16.5 dB. Although the FoE approach gained a considerably higher performance for this
mask class, the inpainting process is observable, since mask centers are not altered and
the inpainted strokes are blurred.

The circumstance that the FoE is only capable of restoring small mask regions in
a convincing manner became also apparent, when the recovery of palimpsest underwrit-
ings was analyzed. The resolution of the photographs utilized is around 700 dpi1. The
photographs had to be resampled using a factor of 0.25 in order to assure that the mask
centers are altered adequately. The results gained on the downsized images showed that
some occluded character portions are successfully restored by the inpainting technique,
while others are not altered adequately. A drawback of the proposed method is the cir-
cumstance that it cannot distinguish between underwritings and vestiges of overwritings
that have not been detected in the mask generation step. If such a leftover of the younger
text is bordering the inpainting region it is likely that the vestige is propagated into
the inpainting region. Therefore, it was necessary to enlarge the binarization result by
one pixel, before the inpainting process was started. Otherwise pixels belonging to the

1From: http://www.archimedespalimpsest.org/imaging production1.html, last accessed on 11. Au-
gust 2011
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overwriting boundaries might not be covered by the inpainting mask and the FoE prior
would continue this vestiges into the inpainting regions. The average PSNR value that
was gained inside the inpainting regions is 20.34 dB and the mean similarity of the entire
test images is 24.99 dB. Because of the disadvantage that the images had to be downsized,
the palimpsest recovery system is currently inapplicable for a subsequent text analysis by
philologists.

Future Work

The performance of the system could be improved by using larger clique sizes and by
a whitening of the training data. A further measure of improvement is suggested in
[HWH09]: Heess et al. suggest using bimodal potential functions instead of unimodal
Student-t distributions. The authors report that such functions are more accurate for
the modeling of natural images and that the inpainting performance can be increased
significantly. The recovery of handwritings could also benefit from the use of bimodal
potential functions.

The restoration of handwritings could also be improved by using a textural inpainting
technique instead of a geometrical inpainting approach. It was depicted in Section 2 that
algorithms falling into the former mentioned group are not limited to narrow inpainting
domains. Hence, a preceding downsizing of the images could be avoided. This would meet
the requirements by scholars, who prefer to analyze high-resolution images [FK06].
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List of acronyms

ANN Approximate Nearest Neighbors

BP Belief Propagation

CD Contrastive Divergence

dpi Dots per Inch

FoE Fields of Experts

HMC Hybrid Monte Carlo

MAP Maximum A Posteriori

MC Markov Chain

MCMC Markov Chain Monte Carlo

ML Maximum Likelihood

MRF Markov Random Field

MSE Mean Squared Error

MSI Multi-Spectral Images

OCR Optical Character Recognition system

PDE Partial Differential Equation

PSNR Peak Signal-to-Noise-Ratio

SSD Sum of Squared Differences

SE Structuring Element

TV Total Variation

UV UltraViolet
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[Pér98] P. Pérez. Markov Random Fields and images. CWI Quarterly, 11(4):413–437,
1998.

[RB05a] K. Rapantzikos and C. Balas. Hyperspectral imaging: potential in non-
destructive analysis of palimpsests. In IEEE International Conference on
Image Processing, volume 2, pages II – 618–21, 2005.

[RB05b] Stefan Roth and Michael J. Black. Fields of Experts: A framework for learning
image priors. In CVPR (2), pages 860–867, 2005.
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