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Abstract

Calibration of surveillance cameras requires using appropriate methods to handle different
limitations, such as large distortion of the camera lenses, because of a wide field of view.
Another limitation is blur in the image which can decrease the sharpness because of
fixed focus lenses. To deal with these limitations a fully automatic calibration method
from Svoboda is compared with a specialized technique for internal calibration and with a
method for external calibration. The former is the Matlab Calibration Toolbox which uses
a planar checkerboard pattern as a calibration object. The latter calculates the external
camera parameters with a-priori knowledge of the internal parameters. Finally Svoboda’s
method is compared to another method which estimates the rotation of cameras with
the use of an inertial sensor. Through experimental evaluation it will be shown that
the specialized methods for internal and external calibration will outperform the fully
automatic calibration method from Svoboda, both in terms of accuracy and robustness
under the stated limitations.

1has been funded by the Vienna Science and Technology Fund
(WWTF) through project ICT08-030.
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Chapter 1

Introduction

Hoiem showed that object detection from one camera can be significantly improved if
knowledge of the geometry is used [3]. This knowledge can be acquired through calibration
of the camera. Other applications of camera calibration are, 3D tracking with one camera
[5], multi-camera tracking [4] or video surveillance systems [1].

The purpose of this work is to find a suitable calibration method in the context of the
latter application. In this application the cameras can have large non-linear lens distortion
because of a wide-angle field of view. With a fixed focus lens the image sharpness can be
decreased because of blur from regions which are out of focus. The calibration method
has to overcome these limitations and be able to calibrate multiple cameras internally and
externally. The internal calibration includes the estimation of the focal length, the pixel
aspect ratio, the principle point and the radial lens distortion of each camera regarding
to the pinhole camera model [2].The external parameters are the rotation and translation
of each camera in a common three dimensional coordinate frame in metric space. It is
assumed that the cameras have a slight or full overlapping field of view.

In order to be able to make a comparison, two state-of-the-art calibration methods for
each calibration task are selected, which are experimentally evaluated and compared. The
evaluation focuses on the robustness and maximal possible accuracy of those methods.
The first method is a calibration framework, which was developed by Svoboda [8]. This
method is selected because it can estimate the entire calibration of multiple overlapping
synchronized cameras simultaneously. Furthermore it is not influenced by blur of regions
which are out of focus, because a point light source is used as a calibration object. A
change of the camera focus will also changes the size of the projected light source but
not its center which is used for the calibration. Apart from that the radial distortion is
estimated.

Svoboda’s method has to perform against one commonly used approach for internal
calibration. This approach uses a calibration object of a chessboard pattern. It is called
the Matlab Calibration Framework and is based on the method developed by Tsai [9].
This method is not invariant to changes of the camera focus. For that reason the minimal
size of the chessboard pattern is experimentally evaluated.

The Matlab Calibration Framework lacks the external calibration of multiple cameras
and therefore another method, which estimates the essential matrix to get the rotation
and translation of multiple cameras [2], is taken. This method uses a point light source
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as a calibration object similar to the technique from Svoboda. Thus it overcomes the
limitation of image blur. The robustness and accuracy of this method is compared to the
results from the approach of Svoboda for the rotation and translation.

Both methods of the external calibration have the limitations of a calibration object,
which must be visible in at least two views. Therefore a third method is additional
evaluated. This approach is basically different to the others because it uses an inertial
sensor and is therefore not image based. The direct advantage is that the cameras do not
have to be overlapped and it is not influenced by the limitations of image distortion and
image blur. Also for this method the robustness and maximal accuracy will be compared.

For each of the stated methods one experiment is performed to estimate the robust-
ness and maximal possible accuracy. Svoboda’s method is evaluated in two separated
experiments, because it calcuates the internal and external calibration in one run. One
experiment is used for the evaluation of the internal parameter estimation and the other
for the external parameter estimation.

The experiments are realized with CCD Cameras from Sony. The type of sensor and
lens used can be typically found in common surveillance cameras at the time of writing
this report in 2012. The sensor has a resolution of 640 pixels in x and 480 pixels in
y direction and it is assumed that the lens has a non-linear radial distortion. For all
experiments there is no ground truth available. That is why the variance of each method
is analyzed which provides information about the maximal possible accuracy.

It will be shown that the Matlab Calibration Toolbox clearly outperforms Svoboda’s
method in estimating the internal camera parameters. Svoboda’s method has a maximal
error of 99 pixels of the estimated focal lengths compared to the Matlab Calibration
Toolbox which only has an error of 2 pixels. The accuracy of the estimated principle
point gives a similar view. The first method has an error of less than 1.4 pixels and
the latter method has a maximal error of 59 pixels. The experimental evaluation of the
external parameters shows that Svoboda’s method is outperformed by the specialized
method again. Here the calculated rotation matrices from Svoboda have a variation of
up to 38 degrees and the camera centers have a variation of up to factor 2 of their actual
relative position. The specialized method which estimates the essential matrix results in
a residual error of maximal one ninth of a pixel, which is lower than the reprojection error
from Svoboda.

This report is split into two major sections. Chapter 2 deals with the evaluation of the
two methods of the internal camera calibration and Chapter 3 includes the evaluation of
the remaining methods for external camera calibration. Each chapter contains a section
about the methodology, two respectively three sections, which explain the experiments
and a final conclusion.
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Chapter 2

Internal Camera Parameters

This chapter requires a well defined camera model that is used for the internal calibration
process and regarding to that model certain needed parameters are estimated using state
of the art methods [7] and [8].

Based on central projection of points, the pinhole camera model (Figure 2.1) is used
as a fundamental concept. A 3D point X = (X1, X2, X3,W )T ∈ P3 is projected onto the
image plane at point x = (x1, x2, w)T ∈ P2 through x = (fX1 + X3px , fX2 + X3py , X3)

T

whereby px and py defines the principle point (Figure 2.1) and Pn is the n-dimensional
projective space. If x is converted from homogenous coordinates to Euclidian coordinates
then x = (fX1/X3 + px , fX2/X3 + py)T .
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Figure 2.1: Pinhole camera geometry: 3D point X is projected on the image plane at
position x (Source [2])

Not every camera has squared pixels so a small adaption to this simple model has to
be made. Therefore the focal length is determined with 2 parameters, one in x and one
in y-direction. Now the camera model is represented as the linear mapping between the
homogeneous coordinates:

 x1
x2
w

 =

fx s px 0
0 fy py 0
0 0 1 0




X1

X2

X3

W

 (2.1)
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whereby w and W are the homogenous parts of the vectors and s is called skew and
is assumed to be zero.

Let be

K =

fx s px
0 fy py
0 0 1

 (2.2)

then
x = K[I | 0]X (2.3)

The matrix K is called camera calibration matrix and it includes all intrinsic param-
eters of the calibration process.

This linear model with homogenous coordinates of projective mapping from 3D points
to the 2D image plane of a camera is not sufficient to describe the non-linear properties
which are introduced by the lens [2]. To keep the model simple a radial distortion is
assumed. Each normalized image point (x1, x2) is distorted to another position (xd1, xd2)
under (

xd1
xd2

)
= L(r)

(
x1
x2

)
(2.4)

where L is a function of the radial distance r =
√
x21 + x22 to the distortion center

which is assumed to be identical to the principle point [9]. Normalized image points
refer to image points that were multiplied with the inverse of K, thus its coordinates are
measured in units of the focal length. The function L can be approximated with the
Taylor expansion L(r) = 1 + κ1r + κ2r

2 + κ3r
3 + .... In the following experiments only

the second, fourth and sixth order is taken into account. This is κ2, κ4 and κ6 from the
Taylor expansion.

This chapter deals with the evaluation of two different approaches that are used to
estimate the focal length, principle point and radial distortion of perspective cameras in
real world scenarios.

2.1 Methodology

In the following experiment, two different methods for internal camera calibration will be
evaluated. To maximize the performance of each method a special setup is established.
The aim is to find at least one method which can determine the internal camera parameters
up to a variance of 5 pixels for the estimated focal length and the principle point.

The first evaluated method is one part of the Svoboda Multi-Camera Self-Calibration
Framework [8]. One advantage is that all cameras can be calibrated simultaneously. In
the case of surveillance cameras though there is another advantage which is even more
important. As stated in Chapter 1 an assumption is made that surveillance cameras are
typically focused to infinity and therefore objects which are close to the lens appear blurry
in the image. Because the Svoboda Framework detects a projected point light source, the
blur effects only the size of the blob but not the position of its center. Thus the detection
accuracy is not significantly influenced by the blur.
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Matlab’s Calibration Toolbox is used as the second method. In this calibration process
each camera has to be calibrated separately but its potential lies in the fact that it detects
rectangular structures from a chessboard pattern. The angles of viewing vectors can
be determined with the calibration matrix K and this information is reflected by the
rectilinear structure on the calibration pattern. This fact is promising with regards to the
desired accuracy with a maximum error of 1% for the estimated focal length.

2.1.1 Svoboda Multi-Camera Self-Calibration Framework

Svoboda’s idea of his framework is to calibrate not only one camera but many in one batch
without the requirement of a large calibration object. Instead only a freely moving bright
spot is required [8]. The outcomes are not only internal camera parameters including
radial distortion, but also the orientation and position of all the cameras. With the
assumption that columns and rows of the camera sensors are orthogonal, the framework
can stratify projective structures to Euclidean ones. Thus complete camera projection
models are estimated through the detection of the moving bright spot.

The algorithm consists of the following steps. First the bright spot is projected on
each camera image if it is visible in that camera view. With a 2D Gaussian fitting, used as
a point spread function, sub-pixel precision for the blob detection of the bright spot can
be reached independently in each image. Next epipolar constraints are applied in pairs
to each point and are used for their validation. With a rank-4 factorization projective
motion and shape are estimated. Finally parameters of a non-linear distortion model are
calculated with iterative refinement [8].

To give a brief mathematical background of the idea behind that algorithm, m cameras
and n object points Xj = [Xj, Yj, Zj, 1]T , j = 1, ..., n are assumed. According to the
pinhole camera model (see Chapter 2) the following equation holds

λij

 uij
vij
1

 = λiju
i
j = P iXj, λij ∈ R+ (2.5)

where uij and vij are the measured pixel coordinates of the j-th point in the i-th camera.
λ is a scaling factor to keep the homogenous part equal to 1 of the vector u. The
corresponding 3D points are Xj and P i is the camera matrix of the i-th camera which
includes the internal and the external parameters of that camera

P = K[R | t] (2.6)

where K is the camera calibration matrix, R ∈ R3x3 is the rotation matrix and t ∈ R3

is the translation vector [2]. R and t are referring to the external parameters of a camera
(see Chapter 3 for more details).

To estimate projection matrices P i and scale factors λij Svoboda et al. plugged all
points and camera projections into one matrix Ws
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Ws =



λ11

 u11
v11
1

 · · · λ1n

 u1n
v1n
1


...

...
...

λm1

 um1
vm1
1

 · · · λmn

 umn
vmn
1




=

 P 1

...
Pm


3m×4

[X1 · · ·Xn]4×n (2.7)

Ws = PX (2.8)

The matrix Ws is called the scaled measurement matrix [8] and P and X relates to
the projective motion and the projective shape, respectively. If λij are known and there
is a minimum of point measurements then Ws has rank 4 and can be factored into P
and X [8]. Through that factorization P and X are estimated up to a 4 × 4 projective
transformation. Under certain assumptions as stated above this can be calculated too to
obtain Euclidean results. Svoboda et al. also proposed a way to estimate the projective
depth λij. It uses the calculation of the fundamental matrix from the cameras pairwise.

2.1.2 Matlab Calibration Toolbox

Instead of calculating every parameter of the camera projection matrix like Svoboda et
al. does, the Calibration Toolbox from Matlab focuses on estimating the focal length,
principle point and radial distortion. The same perspective projection model for the
camera is used as stated in Chapter 2.

The underlying idea is to estimate a homography between a planar calibration object
and the image plane. Therefore there has to be a well detectable structure on that plane.
One solution is a chessboard pattern with evenly distributed corners of each cell. With a
corner detector their positions in the image can be estimated.

There exists a 3 × 3 homography because of their coplanarity that depends on the
relative position of the camera and the plane and the camera’s intrinsic parameters [7].
If it is assumed that the calibration plane is the plane Z = 0 then the following equation
holds

H ∼= KR

1 0
0 1 −t
0 0

 (2.9)

Where R is the rotation matrix of the camera regarding the calibration object and
−t is the translation vector of the camera to the calibration object. K is the camera
calibration matrix defined in Chapter 2. The homography H can be calculated from four
or more point correspondences. If the metric structure of the plane is known then H can
be decomposed in its parts which are shown in Equation 2.9. The desired parameters are
included in K. To estimate the homography H an over-determined equation system of
the measured point coordinates has to be solved by least square minimization. To make
that process more stable in terms of accuracy more than one view of the calibration object
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should be used [10]. In Chapter 2.3.2 it is shown that about 10 different views give stable
results.

The calibration toolbox concurrently calculates the camera matrix K and the pa-
rameters of the radial distortion model. Therefore the radial distortion parameters are
initialized with zero and in an iterative procedure the reprojection error of the chessboard
corners are minimized by gradient descent. In each step of the iteration K is refined with
the previous estimated distortion parameters.

2.2 Experiments Svoboda Calibration Framework

In this chapter the calibration framework from Svoboda [8] will be experimentally evalu-
ated in terms of robustness and accuracy regarding the internal camera parameters. In the
following sections the environment of the experiments is depicted, the results are detailed
and then discussed with a final conclusion.

2.2.1 Setup

Calibrating multiple cameras simultaneously with the Self-Calibration Framework from
Tomas Svoboda requires that the cameras are synchronized for taking images at the
same time and all targeting the same scene. The calibration object has to be visible
and detectable in at least 3 cameras at each timestamp when frames are captured. To
establish these demands the four Sony cameras were mounted on tripods, placed next to
each other and directed in the same direction so that each viewing volume is overlapping
with the other three. An external hardware trigger is connected to each camera and is
used to cause the recording of images by generating periodical events.

Due to a suggestion from Svoboda [8] a standard laser pointer is used to generate a
small spot at each camera image with an average diameter of 3 pixels. This calibration
device is moved manually through the overlapping viewing volume. To improve the cali-
bration results the projected laser light on each camera sensor has to cover as much space
as possible of the image plane [8].

For each camera the focal length, principle point, non-linear radial distortion (2nd
order) and the standard derivation of the reprojection error in x and y direction is esti-
mated.

There are four different sets of image of a moving bright spot. Each set is evaluated
separately and contains 2700 images (set 1) or 500 images (set 2-4).

2.2.2 Results

The first step of the Svoboda Multi-Camera Self-Calibration Framework detects the spots
in each image for each camera with subpixel accuracy [8]. Figure 2.2 shows one sample
image from camera 1 and image set 1 with the detected center.

At the final step, the bundle adjustment tries to minimize the reprojection error. The
final result is shown in Figure 2.3. The outcome is that about 60% of the measured points
can be reconstructed with a visual verifiable low reconstruction error relative to the image
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Figure 2.2: Crop of an image with the projected laser light (green) and detected center
with subpixel accuracy (red cross)

size (see Figure 2.3). Also some points are reprojected to the outlying part of the image
plane. These were detected by the other 3 cameras.

Figure 2.3: Detected points classified as outliers (red circles), detected points detected
as inliers (blue circles) and reprojected points (black crosses) on the image plane of a
camera. The black dotted rectangle is the camera image border

The estimated focal length varies for camera 1 respective to the different image sets
in a range from 616 to 711 pixels in the x and y direction. Similar results point out for
the other cameras, concrete 617 to 704 pixels for camera 2, 616 to 715 pixels for camera
3 and 649 to 706 pixels for camera 4. The maximal difference between the focal length in
x and in y direction is over all cameras for all image sets 1.543 pixel and the minimum is
0.001 pixel (Table 2.1). Therefore from this method it can be assumed that the sensing
elements of the camera has and aspect ratio of 1 in our model.
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Another estimated parameter is the principle point. The calculated principle points
for each camera are in the range of 304 to 363 pixels in x direction and for y it’s in 222 to
255 pixels (Table 2.1). These results are closed to the half of the image height and width
which are 640/2 = 320 pixels and 480/2 = 240 pixels respectively .

To minimize the reprojection error the non linear lens distortion is taken into account.
A non linear radial distortion model is used and the estimated parameter (2nd order) is
in the range of −0.042 to −0.002 for all four cameras (Table 2.1).

The minimized standard derivation of the reprojection error could be reduced for each
camera with each image set to a value less than 0.241 pixel in x and 0.244 pixel in y
within 10 iterations of the algorithm (Table 2.1).

Focal Length Principle Point distortion Error (Std)
x y x y 2nd order x y

C
a
m
er
a
1 Set 1 (2700) 710.266 710.407 338.833 241.069 -0.040 0.141 0.142

Set 2 (500) 688.973 689.000 331.740 240.487 -0.027 0.150 0.153
Set 3 (500) 616.208 616.320 332.320 236.395 -0.017 0.123 0.133
Set 4 (500) 672.457 672.558 315.238 235.606 -0.029 0.136 0.140

C
am

er
a
2 Set 1 (2700) 705.016 704.838 341.536 240.487 -0.029 0.142 0.190

Set 2 (500) 684.546 683.884 326.574 241.922 -0.016 0.161 0.201
Set 3 (500) 617.219 617.097 306.711 254.094 -0.002 0.134 0.178
Set 4 (500) 672.774 673.104 300.832 241.554 -0.021 0.125 0.179

C
am

er
a
3 Set 1 (2700) 714.818 714.959 305.236 222.204 -0.041 0.155 0.168

Set 2 (500) 686.983 687.054 304.113 227.193 -0.018 0.151 0.167
Set 3 (500) 616.567 616.547 334.030 247.854 -0.017 0.241 0.204
Set 4 (500) 663.426 663.767 298.112 229.038 -0.011 0.176 0.174

C
am

er
a
4 Set 1 (2700) 705.572 705.247 306.523 225.640 -0.042 0.134 0.180

Set 2 (500) 682.637 682.062 313.167 230.410 -0.009 0.118 0.186
Set 3 (500) 649.833 651.375 362.671 255.181 -0.020 0.189 0.244
Set 4 (500) 672.231 672.232 320.715 235.085 -0.036 0.113 0.154

Table 2.1: Results of internal calibration with Svoboda Calibration Framework and all 4
Sony cameras. With each setup the cameras were calibrated simultaneously.

2.2.3 Discussion

While the results have a low reprojection error of less than 0.25 pixels, the estimated focal
lengths of all four cameras in one set of images varies significantly less than the estimated
focal lengths of one camera in all four different sets. This indicates that the results are not
unbiased from this method. This effect can not be identified for the estimated principle
point, but from the results it is still not possible to make a unique prediction for each
camera due to its variance.

As a consequence the Svoboda Multi-Camera Self-Calibration Framework does not
produce results which are accurate enough in each determined internal parameter for the
purpose of this work. The variation within the different image sets is too large with a
range of 99 pixels for the focal length. The difference of the largest and smallest value of
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the determined principle point is 59 pixels for x and 33 pixels for y which is even a large
uncertainty under the initial premises (see Chapter 1).

There is a correlation between the estimated parameter of the radial distortion and
the focal length. The higher the focal length the lower is the value of the distortion model.
Despite of the large variation of the estimated values for the parameter the reprojection
error remains always smaller than a quarter of a pixel. This indicates that Svoboda’s
method is overfitting the data.

Besides the assumption of overfitting, another reason for the large variation of the focal
length and principle point, with respect to the different image sets, the decomposition of
the actual camera matrix P plays a significant role (see Chapter 2.1.1).

2.3 Experiments Matlab Calibration Toolbox

As well as the experimental evaluation of Svoboda’s calibration framework this chapter
covers another experimental evaluation. In this case it is dealing with the performance
and robustness estimation of the Matlab calibration toolbox. Finally the two experiments
give an opportunity to conclude which one is preferable regarding the environment. First
the setup, the results and the discussion of the second experiment are presented.

2.3.1 Setup

To estimate the internal parameters of the surveillance camera, with the Matlab Calibra-
tion Toolbox, a planar calibration object is needed. A structure similar to a chessboard
has to be printed onto the surface of that object (Figure 2.4).

Figure 2.4: Pattern of calibration object

It is assumed that the focus of the lens of the camera is fixed and is set to infinite.
Then the depth of sharpness is maximal but objects near to the camera are blurred in
the image. The actual amount of blurriness depends not only on the objects distance to
the camera but also on the diameter of the aperture and the focal distance too. Because
of that the calibration object has to be at a certain distance to the camera, so that the
corners of the chessboard pattern have a minimum sharpness and a minimum size to be
detectable by the method.
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Figure 2.5: Images from Sony Camera with different cell sizes and distances to camera

To estimate the minimum size of the squares with regards to the distance from the
camera different, values were tested. Figure 2.5 shows that a cell size of the chessboard
pattern of 0.7 cm is too small even at a low distance of 0.8 m because the corners are
blurred and cannot be detected with the Matlab Calibration Toolbox. The sharpest
results are given by the cell size of 10.0 cm. But even with a size of 4.9 cm the corners are
clearly distinguishable. From this it follows that the cell size can have a minimum size
of 4.9 cm in both width and height so as to be detectable even at a distance of 3 meters
from the camera.

For the setup a calibration object was constructed with a cell size of 5.0 cm of the
chessboard pattern. The marker contains 40 cells in width and height. Due to limitations
of available printers the final chessboard pattern has a width of 140 cm (28 Cells) and
200 cm height (40 Cells) (Figure 2.5).

To estimate the focal length, the principle point and the non linear lens distortion for
each of the four cameras 35 images of the calibration object from different angles were
taken. The stability of the resulting values estimated by the Toolbox is evaluated while
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Figure 2.6: Calibration object used to estimate the internal camera parameters

for each camera the 35 images are divided into three sets of 12, 12 and 11 unique images
and are processed separately.

2.3.2 Results

After reading all captured images for the calibration process from the memory, the corners
of the chessboard pattern are recognized. For more than 90% of the images all visible
corners were detected. The accuracy of all detections is similar to Figure 2.7 shown below.

Figure 2.7: Crop of chessboard pattern with one corner and its detected position (red
cross)

The resulting focal length in x and y direction is in the range of 685 and 692 pixels.
All cameras are equipped with the same sensor and have the same lens mounted. This
leads to the expectation of equal focal lengths and fits with the actual estimated variation
of 7 pixels. Apart from the fourth, for all cameras, each of its evaluated subset results
to a focal length in x and y with a maximal difference of 0.753 pixel (camera 1, all, focal
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length y) regarding to all images. The biggest difference of camera 4 is 2.094 pixel for its
focal length (camera 4, set 1, focal length x) (Table 2.2).

The variation of the focal length in x and y direction for all calculated values is less
than 1 pixel. For each camera there is a set which has a difference less than 0.1 pixels
(camera 1, set 3; camera 2, set 3; camera 3, set 3; camera 4, all). Therefore it is assumed
that the physical sensor elements of the cameras are squared (Table 2.2).

Similar to the estimated focal length the estimated principle point for each camera
varies in each subset in maximal 1.5 pixels (camera 4, set 2) and at least 0.008 pixels
(camera 1, set 2) regarding to all images of the respective cameras. Between each camera
the principle point varies 23 pixels in x and 7 pixels in y direction (Table 2.2).

For all four cameras the estimated coefficients of the radial distortion model are less
then |0.14| (2nd, 4th and 6th order) and not smaller than |0.11| (2nd and 4th order) and
|0.003| (6th order) (Table 2.2).

The standard deviation of the reprojection error in x and y direction, which is mini-
mized by the Calibration Toolbox, is in all cases less than 0.19 pixels. The only outlier is
test set 3 of camera 1 with about 0.27 pixels in y (Table 2.2). This slightly worse result
has no significant effect on the estimated parameters for this image set.

Focal Length Principle Point distortion Error (Std)
x y x y 2nd 4th 6th order x y

C
am

er
a
1 All 686.587 686.875 327.407 242.669 −0.119 0.155 0.024 0.188 0.155

Set 1 −0.500 −0.753 −0.966 −0.343 0.004 −0.038 0.099 0.142 0.149
Set 2 0.140 0.434 −0.008 0.194 −0.001 0.001 −0.005 0.140 0.157
Set 3 −0.063 −0.118 0.082 0.200 −0.003 0.041 −0.113 0.272 0.156

C
am

er
a
2 All 685.576 685.832 316.282 245.691 −0.119 0.158 0.033 0.157 0.168

Set 1 0.152 −0.001 −0.334 −0.852 0.000 −0.002 0.010 0.141 0.153
Set 2 0.263 −0.024 −0.278 −0.577 0.004 −0.034 0.073 0.155 0.224
Set 3 0.163 0.221 0.158 0.857 −0.004 0.035 −0.079 0.169 0.132

C
a
m
er
a
3 All 686.604 686.688 305.781 239.747 −0.121 0.166 −0.004 0.138 0.133

Set 1 −0.540 −0.403 0.083 0.086 0.002 −0.017 0.033 0.136 0.112
Set 2 0.194 −0.006 −0.259 −0.230 0.000 0.002 −0.015 0.143 0.140
Set 3 0.220 0.187 −0.031 −0.219 −0.003 0.023 −0.035 0.135 0.145

C
am

er
a
4 All 689.305 689.559 320.393 241.054 −0.122 0.177 −0.024 0.140 0.152

Set 1 2.094 2.031 −0.012 −1.348 −0.003 0.022 −0.055 0.127 0.133
Set 2 −0.137 0.802 1.462 −0.234 0.003 −0.036 0.085 0.118 0.167
Set 3 1.202 0.624 0.038 −0.470 0.003 −0.016 0.031 0.152 0.138

Table 2.2: Results of internal calibration with the Matlab Calibration Toolbox for all 4
Sony Cameras. The results of each set except the error are the absolute difference to the
result from the overall set (all).

2.3.3 Discussion

Assuming this approach is unbiased then the focal length is estimated with an accuracy
of ±2 pixel. This conclusion is made from the previous results because for independent
image sets of at least 11 images the calculated focal lengths never differ more than 2
pixels. Consequently the Matlab Calibration Toolbox has robust outcomes in calculating
the focal length in x and y direction.
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A similar statement can be made for the remaining parameters which are estimated
during the calibration process. For each camera the principle point varies for all indepen-
dent image sets less than 1.0 pixel except for two cases with 1.3 pixels and 1.4 pixels. For
the width of 640 pixels this is less than 0.15% and for the height of 480 pixels it is less than
0.21%. These values underline the previous concluded robustness of the implementation.

The assumed radial distortion model is stable in the results for the second order values
too. The deviation of each independent set compared to the overall set in each camera is
less than 3.4%. For the remaining higher order it increases to a maximum of 26.5%. Only
the difference of the sixth order is up to 470% (Camera 1 Set 1 and 3). This apparently
huge variance can be disregarded because the absolute difference is less than 0.12 pixels
for the sixth order and less than 0.038 pixels for the fourth order. The overall error of
maximal 0.28 is higher than the error in the distortion model.

2.4 Conclusion of internal calibration

Two different calibration methods for estimating internal camera parameters were pre-
sented. Each one was independently evaluated experimentally with the use of the same
cameras. Both methods require a calibration object which has to be captured from dif-
ferent positions and orientations. Results from the experiments show that the Matlab
Calibration Toolbox clearly outperforms the Svoboda Calibration Framework in terms of
robustness and the resulting accuracy. The former achieved a variation of 2 pixels for the
calculated focal length (Chapter 2.3.3), where the latter has a variation of 99 pixel for
the same cameras (Chapter 2.2.3). The results are reliable with regards to the estimated
reprojection error which is less than 1/4 pixel in each case. Similar numbers are given for
the principle point where the maximal variation is 1.4 pixels with the Matlab Calibration
Toolbox and 59 pixels with the Svoboda Calibration Framework. These relatively large
differences can result from the fact that the Svoboda Calibration Toolbox is primarily
calculating the camera matrix P which can be in general estimated only up to a projec-
tive ambiguity and only with special assumptions (Chapter 2.1.1) stratify to Euclidean
structure. Finally the matrix K with the internal parameters has to be extracted from P .
This process can introduce variant errors. In contrast the Matlab Calibration Toolbox es-
timates the internal parameters directly from a homography between a planar calibration
object and the image.

Concluded, in terms of accuracy and reliability the Matlab Calibration Toolbox is
preferable to the Svoboda Calibration Framework for estimating the internal camera pa-
rameters. The latter depicts its advantages if multiple cameras need to be calibrated and
the time factor is more important than the accuracy of the resulting parameters. If a
precision of only 20% percent is needed then Svoboda’s Calibration Framework will give
expected results.
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Chapter 3

External Camera Parameters

To complete the pinhole camera model of Chapter 2, 6 additional parameters are added.
Such parameters determine the relative position of several cameras to each other and are
called external or extrinsic parameters. Three values determine the translation in the x,
y and z direction and 3 parameters determine the orientation what is constituted of three
angles for each axis in the 3 dimensional spaces (see Figure 3.1).

X

Z

Y

R, t

Y

Xcam

cam

O

C Zcam

Figure 3.1: Transformation between two coordinate frames to describe external calibration
([2])

Regarding to the camera projection model x = PX with x ∈ P2 and X ∈ P3 the
camera projection matrix P ∈ R3×4 is extended with the translation vector t ∈ R3 and
rotation matrix R ∈ R3×3:

P = K[R | t] (3.1)

with the camera calibration matrix K ∈ R3×3.

15



3.1 Methodology

This chapter deals with the experimental evaluation of three different methods for external
camera calibration of multiple cameras. Two of these methods estimate the rotation
matrix and translation vector of several cameras from their images of a calibration target.
The third method does not require a calibration object and the images do not need to
olverlap. Using this latter method, only the rotation matrices are calculated.

3.1.1 Svoboda Framework

The camera matrix P is the central target of Svoboda’s Calibration Framework. It is
estimated through point projections on several camera images (see Figure 3.2). In addition
to the external parameters, the camers internal parameters are included in P with P =
K[R | t]. To extract the rotation matrix R and the translation vector t, P is transformed
from projective space to Euclidean space with stratification. For more details see Chapter
2.1.1 where the fundamentals of Svoboda’s Calibration Framework are explained.

Figure 3.2: Outline of 4 cameras with their centers, images and projected points ([8])

3.1.2 Inertial Sensor

With the use of an inertial sensor the intention is to estimate the orientation of each
camera within a global coordinate frame. In this way, information concerning the cameras
location or even its internal calibration is not a necessary predetermined parameter. In
comparison to image based techniques, here the cameras’ viewing volumes do not need to
overlap. The inertial sensor MTi Xsensor measures the 3 Euler angles specific to gravity
and the Earth’s magnetic pole.
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The top of the camera’s body consists of a plain surface. This is used to mount the
inertial sensor on top of the body of the cameras. Subsequently the camera’s outer body
orientation is measured with the inertial sensor.

3.1.3 Essential Matrix

The latter of the three methods suitable for estimating the external calibration based on
the calculation of the essential matrix which is a particular fundamental matrix [2]. In
principle this technique is similar in terms of the required calibration object to Svoboda’s
Calibration Framework. A free moveable bright spot is needed and its projections are
detected synchronously on two camera images. The results of the internal calibration
from Chapter 2 are used to improve the estimation of the external camera parameters
with the detected points. With the knowledge of the focal length, principle point and
radial distortion, the essential matrix can be calculated. From the essential matrix the
rotation and translation of the two related cameras can be reconstructed in Euclidean
space [2].

3.2 Experiments Svoboda Framework

Svoboda’s Calibration Framework estimates not only the internal camera parameters but
also the external parameters which are the orientation and translation of each camera
within a specific coordinate system.

Aside from the evaluation of internal calibration, a second experiment has been devel-
oped to estimate the robustness and thus the highest achievable accuracy of the Svoboda
Calibration Framework for external camera calibration.

Following the necessary initial setup, the results obtained from four different test
scenarios are here discussed.

3.2.1 Setup

To evaluate the performance of the Svoboda Calibration Framework of the resulting ex-
trinsic parameters, the same setup is used as for the evaluation of the internal parameters
(see Chapter 2.2.1). To give a brief reminder, four cameras capture simultaneously images
of the same scene from different positions and viewing angles. A bright spot is manually
moved through the working volume and the actual 3D positions are recovered from their
projected image locations. Finally the camera matrices P are estimated from the 3D and
2D positions of the points and then the internal and external parameters are extracted
from P. Given the projective invariance of P a Euclidean stratification has to be applied
before extracting the parameters [8].

3.2.2 Results

Using the above setup, four different test runs are evaluated and then compared. Each
case consisted of maximal 900 detectable points. After the Euclidean stratification (see
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Chapter 2.1.1) each test results in a different Euclidean frame. The origin is placed in the
center of the reconstructed points and the orientation and scale is arbitrary. To make the
results comparable normalization is applied to the estimated poses. Therefore the origin
is moved to the position of camera 1 and the orientation is changed to camera 1 as well.
That means C1 = (0, 0, 0)T and R1 is the 3×3 identity matrix. The overall scale can only
be approximated. Each test case is scaled to the unit of the mean Euclidean distance of
camera 2, 3 and 4 to camera 1. To improve the readability the position and orientation
of camera 1 is not included in the tables of the following evaluation.

Reconstructed points and camera poses are returned by the algorithm from Svoboda
et al. For all four test cases an image of this reconstruction is shown in Figure 3.3. The
3D position of each entity cannot be distinguished from that image, but from the specific
point of view the reader can see the general order of the camera setup which is correctly
related to the real setup.

Figure 3.3: Reconstructed points, camera positions and their principle axis from 4 different
test cases.

For a more detailed visual impression of the orientation of each camera in each test
case Figure 3.4 gives a deeper insight. From these results it is deduced that camera 2 and
3 have similar orientations in each test case in the sense that the different axis x, y and
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z are clustered. This means that the inner angle between the axis is lower than the angle
between two different axes. Only camera 4 plays an exceptional role. Here the y-axis of
test case 3 is closer to the cluster of the z-axes than it is to the cluster of the y-axes (see
Figure 3.4). From that figure the orientation of the x-axis is the most stable result.

(a) Camera 2 (b) Camera 3

(c) Camera 4

Figure 3.4: Results of the orientations of the cameras from different test cases.

After this qualitative evaluation from visual results of Svoboda’s Calibration Frame-
work a quantitative analysis is accomplished. To make the orientations comparable the
angle between each axis of the corresponding camera to the axis of the coordinate system
is shown. They are called α, β and γ for the x-, y- and z-axis.

The angles and camera positions of each test case for the cameras 2 to 4 with the
standard derivation of the reprojection error is given in Table 3.1. For all executed tests

19



the error in the x and y direction is less than 0.233 pixel and thus small enough to be
compared.

For the resulting angles α, β and γ the range for each camera is given in Table 3.1
which is the absolute value of the difference between the largest and smallest value of all
tests. Contrary to the previous conclusion from the qualitative analysis, the orientation of
the x-axis does not give the most stable results but instead the z-axis does which relates
to the γ angle lies in the smallest range of maximal 9.1 degrees for all cameras. The
largest range is formed by the results of camera 4 and the β angle which is 37.6 degrees.
The most stable results are camera 2 with 9.5 degrees for α, 8.9 for β and 6.3 for γ.

Given the normalization of the overall scale for each camera the absolute scale unit is
unknown. Thus the camera centers can be compared only in a relative fashion.

The smallest range is in the y-values of camera 2 which is 0.71 and the largest range is
in the x-values of camera 4 which is 2.19. The actual value of the former is between −0.4
and 0.3 and for the latter it is between −1.2 and 1.0. Therefore the range is about twice as
high as the actual position. The overall largest value of a coordinate from the estimated
camera centers is 1.0 (camera 4, test 1, x) and the smallest value is −1.2 (Camera 4, test
4, x). Camera 2 and camera 3 have similar ranges for the x and y values in comparison
to camera 4. The x-range has a difference of less than than 0.5% and the y-range has a
difference of less than 11%.

Angles Camera centers Error (Std)
α β γ x y z x y

C
am

er
a
2 Test 1 22.530 16.816 15.119 −0.497 −0.400 −0.246 0.147 0.168

Test 2 21.069 18.489 16.197 −0.681 −0.063 −0.065 0.140 0.206
Test 3 19.436 25.718 19.886 −0.154 0.312 0.586 0.140 0.184
Test 4 13.045 18.684 21.370 0.590 −0.295 −0.168 0.132 0.163

‖max - min‖ 9.485 8.902 6.251 1.271 0.712 0.832

C
am

er
a
3 Test 1 18.752 22.250 28.211 0.824 −0.139 −0.409 0.232 0.173

Test 2 28.156 13.399 26.776 0.474 −0.425 −0.675 0.160 0.165
Test 3 13.529 33.821 31.022 0.111 −0.938 0.090 0.161 0.175
Test 4 16.673 22.328 27.918 −0.453 −0.442 0.679 0.183 0.170

‖max - min‖ 14.627 20.422 4.246 1.277 0.799 1.354

C
am

er
a
4 Test 1 38.645 31.000 50.227 1.026 0.582 −0.727 0.171 0.158

Test 2 46.488 20.181 50.352 0.945 −0.966 −0.308 0.127 0.199
Test 3 8.632 57.746 57.350 −0.521 −1.201 −0.401 0.200 0.223
Test 4 18.870 45.843 48.243 −1.168 −0.656 0.378 0.144 0.185

‖max - min‖ 37.856 37.565 9.107 2.194 1.783 1.105

Table 3.1: Normalized results of external camera parameters from Svoboda’s Calibration
Framework. Each test case relates to the same camera configuration.

3.2.3 Discussion

The implemented experiment targets the estimation of the robustness of the calibration
method from Svoboda. The absolute accuracy is not determined because there is no
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ground truth available for the data, but the maximal precision of the algorithm is eval-
uated by re-running the algorithm with different data using the same setup. Therefore,
similarly to the previous sections the robustness is estimated.

Assuming Svoboda’s method is unbiased, the maximal accuracy for the estimated
orientation is not better than 37.9 degrees for the α angles (Section 3.2.2). This relatively
large variation of the resulted orientation indicates that the method is not robust due to
different image sets.

The estimated camera center in the coordinate frame is even less accurate. The error
is up to twice as high as the actual position (see Section 3.2.2). Despite the relatively
small reprojection error of less than 0.24 pixels, Svoboda’s Framework cannot estimate the
orientation or the center of four cameras in the given setup with a similar high accuracy.
One of the reasons is that the camera matrices P are optimized over the reprojection
error and not the rotation and translation itself. Not until the matrices P are factorized
with a Euclidean stratification of its components. This final step can lead to the large
uncertainty observed.

3.3 Experiments Inertial Sensor

One promising way to get the desirable accuracy is to use an external inertial sensor. The
Xsense MTi 3.5 has an accuracy of < 1 degrees in all 3 measured angles (yaw, roll and
pitch) according to the datasheet of the producer. These angles are referenced by both
gravity and the earth’s magnetic field. The device can only measure its rotation but not
the translation to any reference system.

Figure 3.5: Inertial sensor MTi from Xsense with its coordinate system

With the following experiment the general use of the Xsense MTi for determining
orientation of surveillance cameras will be evaluated. Due to several uncertainties (see
Chapter 3.3.1) a comparison to other image based techniques is not yet feasible.

3.3.1 Setup

To determine the rotation of the surveillance cameras with regards to the pinhole camera
model (see Chapter 3) the inertial sensor is mounted on top of each camera body and
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manually aligned. If each camera uses the same body and the inertial sensor is placed to it
relatively in the same position, then the rotation of each camera body can be determined
in the same reference system. One of the main disadvantages is that significant uncertainty
occurs by placing the inertial sensor manually on the camera body. Another uncertainty
is that the position of the camera sensor relative to the body can be arbitrary. Regarding
the pinhole model, the orientation of the camera is determined by the orientation of the
camera sensor and the lens and not by the camera body.

3.3.2 Results

Three different and independent experiments with the inertial sensor were carried out.
Each scene contains 4 cameras, the mean value and standard derivation of the estimated
3 Euler angles for each camera are shown below. During measurement the MTi Xsense
returns 100 values for each angle per second. Thus the mean and standard derivations
are calculated from at least 800 measurements (see Table 3.2).

For the Roll angle the standard derivation is always less than 0.3 degrees. The results
of the Pitch angle are less than 0.09 degrees and for the Yaw angle they are less than 1.02
degrees. The results of the mean values are shown in Table 3.2. The Roll mean is always
lower than the Pitch mean and the Pitch mean is always lower than the Yaw mean.

Mean Std
Roll Pitch Yaw Roll Pitch Yaw

S
ce
n
e
1 Camera 1 0.060 −10.154 −151.759 0.068 0.036 0.226

Camera 2 −0.692 −24.505 65.488 0.083 0.056 0.076
Camera 3 −0.224 −4.877 −159.632 0.058 0.037 0.210
Camera 4 1.516 −0.670 84.921 0.054 0.032 0.164

S
ce
n
e
2 Camera 1 −0.293 19.391 −98.882 0.110 0.035 0.071

Camera 2 1.257 17.696 135.803 0.098 0.035 0.083
Camera 3 0.385 14.915 112.277 0.102 0.039 1.017
Camera 4 0.915 19.212 156.423 0.201 0.056 0.576

S
ce
n
e
3 Camera 1 −1.483 18.802 166.392 0.181 0.036 0.237

Camera 2 −1.693 7.639 163.538 0.083 0.086 0.144
Camera 3 −0.656 −0.258 −170.325 0.040 0.073 0.037
Camera 4 0.706 −3.453 −153.053 0.064 0.030 0.056

Table 3.2: Results from three different scenes of external calibration with inertial sensor.

3.3.3 Discussion

The expected accuracy of a maximal error of 1 degree was not observed. The standard
derivation of the yaw angle of camera 3 in scene 2 is 1.017 degrees. In all other 35 cases
it is less than 1 degree. From these results it is followed that the MTi Xsense sensor
gives robust results. But regarding the orientation of the camera sensor and lens this
method is not unbiased because only the orientation of the camera body is measured.
The relationship between the sensor and the body is still unknown.
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In cases where cameras are reachable by humans, the use of the inertial sensor gives
robust results without the need of an external calibration object or access to the camera
image. But in any case only the orientation of the camera body is measured and not the
orientation of the sensor itself which is not equivalent. This method is also not suitable
for calibration of the entire external parameters. It is only suitable for the orientation,
but the position of the camera is never calculated. One advantage of using this method
is that the cameras do not have to have an overlapping viewing volume. The orientation
of each camera is determined independently.

3.4 Experiments Essential Matrix

For the last of the three methods for external calibration, one experiment is used which
allows two error measurements to be estimated using four different methods for estimating
the essential matrix, which has known calibration of the cameras’ internal parameters.
With a priori knowledge, no camera calibration from the projected points has to be
observed, which can be error-prone for the use of the Euclidean stratification. Without
any knowledge about the cameras, only the fundamental matrix can be calculated from
scene points and thus the camera positions and rotations can only be reconstructed in
projective space which is not satisfactory for the stated problem. Thus the essential
matrix is computed. From its values the camera matrices can be retrieved up to scale
and four-fold ambiguity in metric space [2]. The correct camera matrices can be chosen
from the ambiguity by reconstructing the measured points in 3D space. Only for one
configuration all points are lying in front of every camera.

To validate the reliability of the estimated essential matrices the mean reprojection
error is used which is defined as:

1

N

N∑
i

d(xi, x̂i) + d(x′i, x̂
′
i) (3.2)

where xi ↔ x′i are the measured correspondences, and x̂i and x̂′i are the estimated
correspondences that satisfy x̂′i K

′−TEK−1 x̂i = 0 and K and K ′ are the camera matrices
and E is the essential matrix. N is the number of measurements and d(x,y) is the
Euclidean distance between x and y.

As the second error measurement, the residual error is used and defined as:

1

N

N∑
i

d(x′i, Fxi) + d(xi, F
Tx′i) (3.3)

with F = K ′−TEK−1. It can be geometrically interpreted as the mean distance from
the measured points in the image to their epipolar lines of the corresponding points.
Similar to that the reprojection error has also a geometrically interpretation. It describes
the mean distance between the measured points and their reprojections from the estimated
3D positions.

The algorithms compared for estimating the essential matrix from measured image
points in two views are: first the normalized 8-point algorithm for the fundamental matrix,
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from Hartly and Zisserman [2], adapted to estimated the essential matrix, second the 5-
point algorithm from Nister [6] for solving the relative pose problem, third and fourth
the gold standard algorithm for estimating F which is the Maximum Likelihood Estimate
(MLE) for F, from Hartly and Zisserman [2] adopted to estimated E. The solutions of
the first two methods are used as initial values for the last method and the results are
compared separately.

3.4.1 Setup

This method requires an overlap of at least two cameras, that one point can be detected
in both views. The idea is that the cameras need to overlap only in a narrow space. In
total there are four cameras which are positions at the corners of a parallelogram from
top view. In each camera at least one other camera is visible in its upper right or upper
left corner (see Figure 3.6). This fact allows to compare the visible position of the epipole
later on, which is the camera center with the calculated epipole. The cameras are located
in an indoor environment and have a distance between 3 and 5 meters to each other.

To accomplish the experiment a LED-light is moved through the space visible by the
cameras. Similar to Svoboda’s Method (see Section 2.1.1) the light dots are captured
simultaneously with the cameras.

3.4.2 Results

The fundamental technique given the entire estimation of the essential matrix and the
methods used is the detection of the image points with sub-pixel precision. This can
be compared to the method in Section 2.2.2 where accuracy of at least half a pixel is
obtained, which can be concluded from the reprojection error (see Figure 3.6 and Table
3.3).

After applying an undistortion to the measured pixel, the coordinate positions of the
project light dots are significantly changed, especially any which are close to the border
of the image. Because of the slight overlap of the cameras the correction of the lens
distortion plays a significant role for the essential matrix E, estimated from image points,
because there is a shift of more than one pixel of the measured positions with the used
lenses and cameras (see Figure 3.6).

From the estimated essential matrix the epipoles can be extracted. They are the left
and the right null-space of the essential matrix [2]. For each image point in one camera
the corresponding epipolar line in the image of the other camera can be computed with E.
If E has rank 2 and the two singular values are identical, then all epipolar lines intersect
in the epipole [2]. For one calculated essential matrix of camera 1 and 2 all points and
their epipolar lines are shown in Figure 3.7. The covered area of the blue and red lines
correspondence to the overlapping field of view and also determine its border, because
epipolar lines from image points at the border are included. The overall area is relatively
small in respective of the entire image (see Figure 3.7 for verification).

The estimated essential matrices between the cameras from 1 to 4 all have a reprojec-
tion error of less than 0.7 pixels for all 4 methods. The lowest error has the 5 Point and
the MLE 5 algorithm with less than 0.099 pixels, which is a displacement of less than a
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Figure 3.6: Detected points in one camera (green dots), detected points in two cameras
(blue dots) and their distorted original position (red circles).

tenth of a pixel. Thus the Maximum Likelihood Estimate (MLE) has no significant change
over the 5 Point algorithm (see Table 3.3). If the result from the 8 Point algorithm is
used as an initial value for the MLE, then an improvement of more than half a pixel can
be obtained if the error from the 8 Point algorithm is not already less than 0.11 pixels
(Table 3.3).

The Residual Error mirrors a similar impression as the reprojection error. Here the
MLE 5 cannot improve the values returned by the 5 Point algorithm significantly (Table
3.3). The difference is that the error values of the camera 2 and 3 configuration are up
to 30 times larger, but the absolute value is still less than 0.13 pixels and for the other
2 camera configurations it is less than 0.004 which is smaller than the precision of the
original measured points which was up to 0.5 pixels.

8 Point 5 Point MLE 8 MLE 5

Residual Error
(Pixel)

Camera 1-2 0.0040 0.0005 0.0010 0.0005
Camera 2-3 0.1226 0.1166 0.1223 0.1165
Camera 3-4 0.0029 0.0004 0.0004 0.0004

Reprojection
Error (Pixel)

Camera 1-2 0.709 0.098 0.172 0.098
Camera 2-3 0.106 0.089 0.101 0.089
Camera 3-4 0.585 0.082 0.081 0.082

Table 3.3: Residual and Reprojection Errors of epipolar geometry from calibrated cameras
of different algorithms for estimating the essential matrix

Even a reprojection error in the value range of the measurement precision of the
projected points does not guarantee to have the same precision in the resulted camera
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Figure 3.7: Camera 1 (right) and camera 2 (left) with detected points (crosses) and their
corresponding epipolar line in the other image (same color).

matrices extracted from the essential matrix [2]. But in order to avoid having any further
steps to give more evidences of the correctness of E without a ground truth, the calculated
epipoles can be compared with the images of the camera where the true epipole is located.
For the image of camera 3 captured by camera 2 the epipoles are estimated from the 4
algorithm and plotted in Figure 3.8. All estimated epipoles are lying in a range of less
than half a pixel. From Figure 3.8 it can be concluded that the true epipole is located no
more than 3 pixels away from the estimated ones. For all other 3 cameras the estimated
epipoles are positioned always on the visible camera body.

Figure 3.8: Reprojected epipoles of camera 3, viewed from camera 2 (cropped image).
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3.4.3 Discussion

The given experiment showed that the Maximum Likelihood Estimate can improve the
results from the 8 Point algorithm significantly. But the residual error and reprojection
error from the 5 Point algorithm have no improvement in the tested range of 10−4 pixel.
That means that the time consuming MLE algorithm is not needed in the given setup
because the 5 Point algorithm from Nister [6] already has the same precision. The most
important statement which is followed from this experiment is that even with detected
points which are close to only one border of the image and with a covered area of no more
than 10% of the entire image, the camera matrices can be estimated in metric space with
calibrated cameras as foreknowledge and the obtained reprojection error is less than 0.2.
This is in the range of the precision of the measurements from the projected points. The
accuracy is confirmed by the projected epipole with an error of maximal 3 pixels.

3.5 Conclusion of external calibration

Three different methods for external camera calibration were presented. Two of them
estimate the rotation and translation of several cameras in metric space. The other one
can only be used for estimating the rotation of camera bodies, but the advantage of this
method is that the results are located in a world reference frame regarding to the gravity
and the magnetic field of the earth, also there is no need of overlapping field of views.
The other two methods require overlapping cameras. The first needs as much overlap as
possible with at least 3 cameras and the second can handle slight overlapping cameras but
it also needs pre-calibrated cameras. For both methods the reprojection error is in the
range of the detection accuracy of the projected points which is maximal half of a pixel.
In despite of this error the method from Svoboda [8] is not robust regarding different
calibration data point clouds. The experiments showed a variation up to 38 degrees of
the estimated rotation matrices. Also the estimated camera centers have a variation up
to factor 2 of their actual relative position. If it is assumed that Svoboda’s method is
unbiased, although the precision of the results are not better than the actual variation
from different input data with the same camera setup. More reliable results came from
the Essential Matrix method for which already calibrated cameras are used. Therefore
reconstruction can be realized in metric space directly without further assumptions. From
the results a reprojection error is obtained in the same range as the one from Svoboda’s
method but here also a second error measurement is evaluated which is the residual
error. This allows also for a geometrical interpretation and for all compared methods of
estimating the essential matrix, it is always lower than a ninth of a pixel, which is even
lower than the reprojection error. Further evidence that the essential matrix method
is more robust than Svoboda’s method, is that the error of the reprojected epipole is
maximal 3 pixels which is 0.5 percent of the image width of 640 pixels.
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