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Abstract

This thesis deals with the problem of automatically estimating the visual similarity of
two objects shown in an image pair. Visual image comparison is a challenging task
in the presence of appearance variations between objects, as the similarity estimation
has to be made insensitive to the variations without losing the essential information
necessary for differentiation. A common and effective methodology to handle appearance
variations is to exploit machine learning techniques where the intra-class variations are
learned by means of representative example images. However, this methodology relies
on large amounts of a-priori available image data which might be infeasible in practice.
Therefore, the work presented in this thesis aims at the robust classification with the
aid of an insensitive image-to-image similarity estimation. Consequently, an exemplar-
based classification pipeline is presented whose individual steps treat different aspects
of appearance variability. The task of recognizing ancient coins is used as motivating
example and main application area of the presented methods due to the challenging
nature of ancient coins in terms of illumination effects, non-rigid spatial deformations,
image clutter and inter-class similarity.

In the first part of the pipeline the segmentation of roughly circular objects like an-
cient coins is treated in order to make the visual comparison insensitive to object location
and scale as well as background clutter. The second part deals with the illumination-
insensitive extraction of image features, with a special focus on textureless objects like
coins. Textureless objects exhibit more complex appearance variations under illumination
changes than textured objects, which have been the main objects of interest in computer



vision research on illumination insensitivity so far. Thus, an exhaustive evaluation of low-
level image representations for recognizing textureless objects under illumination changes
is presented. The findings of this study are utilized to construct a local image descriptor
that outperforms state-of-the-art descriptors under illumination changes. Finally, in the
last part the insensitivity against non-rigid local deformations is addressed, as this type of
appearance variations typically occurs within instances of the same coin class. It is shown
that by imposing both appearance-based and geometric constraints on the optimization
framework for correspondence search one can use the matching costs for exemplar-based
coin classification in a coarse-to-fine manner. However, the classification performance of
this methodology suffers from the computational demands of using only weak geomet-
ric constraints. Appearance-driven feature matching followed by an evaluation of the
geometric plausibility of the detected correspondences allows to use stronger geometric
constraints and consequently leads to a faster and more reliable similarity estimation.
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Chapter 1

Introduction

In computer vision a central and recurrent problem is to determine the similarity of images
or parts of images. For instance, in face recognition [LJ11] a probe image needs to be
compared to gallery face images in order to find the most similar one and to consequently
identify a person. Object tracking in a video stream [YJS06] also requires a notion of
image similarity in order to detect the image part which looks most similar to the object
appearance defined in the previous frame. Another example is Content-Based Image
Retrieval (CBIR) [DJLW08] where an user might want to search for images with a color
layout similar to a query image. Image retrieval can be also based on higher-level semantics
[LZLM07] where image similarity is defined in terms of learned image categories like car,
plane, motorbike etc. These examples show that there is a broad spectrum of the meaning
of the term image similarity as well as of technical approaches needed to compute a both
robust and discriminative similarity measure for a given application domain.

Essential to the use of image similarity measures is the question which information has
to be extracted from the images and which information needs to be ignored, as the image
similarity measure should be based only on the necessary image information and not be
disturbed by other data inherent in the image. For instance, if image comparison is rather
focused on an object shown somewhere in the image than on the complete image, image
parts belonging to the background should not be considered, either implicitly within the
method or explicitly by rejecting background image parts in a preprocessing step. Ignoring
unnecessary, disturbing image information is also related to the concepts of invariance
and insensitivity. Invariance in computer vision is the property of a feature or outcome of
an operation to remain unaltered by a certain, defined set of image variations [FBDH+14].
Invariance can be proofed theoretically, whereas insensitivity is a looser constraint needed
in domains where true invariants do not exist (e.g. illumination, see Section 2.1.3). Thus,
in contrast to invariance, insensitivity can be defined only in a relative but not in an
absolute manner: it can be examined only if a method is more or less insensitive to a
given type of image transformation than another method and if a method is or is not
invariant to a given type of image transformation.

In the context of object-based image similarity the issues raised above mean that we
want to compare two images of objects in such a way that, on the one hand, the resulting
similarity measure is not affected by various appearance variations and, on the other
hand, the similarity measure is discriminative enough to be suitable for the given task.
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Figure 1.1: Causes of appearance variability, illustrated by example images for the ap-
plication scenarios of classifying ancient coins, identifying human faces and recognizing
tigers1.

As these two properties stand in a trade-off relationship with each other, we seek for
methods which optimally balance them [VR07]. Consequently, it is beneficial to identify
the types of possible image variations for a given application area, since each kind of
invariance or insensitivity might unnecessarily decrease the discriminative power of the
image similarity measure. In general, two main types of variations can be identified which
are also illustrated in Figure 1.1 for the object types of ancient coins, human faces and
tigers:

� Variations due to imaging conditions

Object scale and location, background clutter: Whenever imaging condi-
tions cannot be controlled, computer vision methods need to be made robust against
the resulting image appearance variations. Arbitrary camera viewpoints lead to an
unknown, arbitrary location and scale of the object to be recognized. The imaged
background is considered as image clutter which potentially disturbs the recogni-
tion process. As a solution, the object has to be detected in a preprocessing step or
feature extraction needs to be invariant to scale and location.

Illumination: Feature extraction is also required to ignore effects of illumi-
nation change like object brightness (e.g. day/night shot of tiger), highlights (e.g.

1Please note that the figure does not show a complete categorization of image variations (see [FS10]
for a comprehensive taxonomy).
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metallic surfaces like coins) or shading (e.g. different illumination directions during
face image acquisition).

� Variations due to alterations of the imaged object:

Non-rigid deformations: The object to be recognized may also have varying
physical shapes. For instance, the individual specimens of an ancient coin class can
be non-rigidly deformed due to the hand-made dies used in ancient times for coin
minting. However, non-rigid deformation does not only occur between different
instances of the same class, but also for the same “physical object” acquired at
different times, like the expressions on a human face. Also a tiger has a non-rigid
shape which means that the relative position of body parts may change from one
image to another. Consequently, the underlying recognition model needs a certain
spatial flexibility to be insensitive to deformations of the object.

Incomplete Data: Finally, as the imaged object might not be completely
visible, feature extraction and recognition has to be designed in such a way that
missing or disturbed data does not corrupt the recognition process. For example,
on ancient coins abrasions and fragmentation can possibly lead to missing data.
Missing data is also often related to occlusions which can be caused by uncontrolled
imaging conditions as well, e.g. a bush occluding parts of the tiger.

The research presented in this thesis aims at making visual object comparison in-
sensitive to the different types of appearance variabilities described above. In contrast
to the prevalent methodology of learning image variability by training a classifier with
image samples [DHS12], a direct way of comparing images without the need for an of-
fline training stage is followed. Consequently, individual methodologies are presented and
evaluated, each one treating certain aspects of appearance variability and insensitivity:

� Object segmentation is proposed to deal with varying object locations and scales
on different backgrounds.

� Illumination variations are intensively examined by means of synthetic and real
image data leading to a new illumination-insensitive image descriptor.

� Image similarity is estimated based on a local correspondence model which shows
high discriminative power while being robust against non-rigid deformations and
missing image data.

The methods can be used in conjunction to obtain a holistic image similarity framework
in the end. Besides the insensitivity concern, reducing the runtime of the image search is
treated as well.

1.1 Motivation and Scope of Work

Although coping with image variabilities is a major concern in computer vision research,
there are issues that have not been examined accordingly. The common methodology for
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treating image and object variation is using machine learning techniques [DHS12]. The
idea is to represent the overall set of variabilities in the training data set which is then
used to learn models able to capture the variability of a given class [VZ05, RTMF08,
WYG+09, XMS14]. The amount of training data needed depends on the difficulty and
degree of variability between images, but state-of-the-art image classification results are
based on training set sizes in the order of millions of images [TFF08, DDS+09]2. The
digital era and easy access to online images makes the collection of training data for
broad categories like tigers possible [CSG13], but this is a condition which cannot be
fulfilled in certain domains like ancient coin recognition or identification of (non-famous)
persons.

Due to this training data problem, in this thesis the insensitive comparison of images
without using a-priori knowledge in the form of learned recognition models is pursued. For
the problem of image classification this means that no discriminative or generative models
are learned in an offline training phase but a query image is compared to class-reference
images in a dataset and classified to the most similar class image. This exemplar-based
or nearest neighbor classification scheme is in line with recent works that show superior
results for scenarios with limited number of training samples per class [DSH+09, HA09,
PGDN12, YFF12]. The benefit of such a classification scheme is that the variability
can be treated during classification by means of insensitive image comparison, without
relying on a training dataset that includes the overall appearance variability of a class.
Moreover, there are additional advantages of exemplar-based classification compared to
learning-based classification [BSI08]: it can naturally handle a higher a number of classes,
it is non-parametric and therefore not subjected to over-fitting, and it needs no time-
consuming offline learning phase which is particularly beneficial for dynamic databases as
changing classes/training sets is instantaneous in exemplar-based classifiers.

The complexity of exemplar-based classification does not lie in the model used, but
rather in the image similarity metric which has to consider appearance variabilities as
shown in Figure 1.1. In the presence of image clutter and non-rigid deformations, es-
tablishing and assessing corresponding feature points between images has shown to be a
prominent approach for this task [BBM05, DJP11, JJT11, LYT11, KLSG13]. In this the-
sis, this line of research is further investigated in order to obtain a deeper understanding
how local correspondences can be exploited to estimate image similarity. In this context,
local image descriptors play an essential role as insensitive descriptions of the local image
structures are needed to establish reliable correspondences. However, although a vast
amount of descriptors have been proposed in the past (see Section 2.3 for an overview),
insensitivity to illumination conditions has been only marginally treated, dealing exclu-
sively with global brightness changes as common on textured surfaces. Nevertheless, as
can be seen in Figure 1.1, textureless surfaces like coins or parts of the human face exhibit
a higher degree of appearance variability under illumination changes. Therefore, in this
thesis illumination insensitivity on textureless surfaces is further examined, aiming for a
more robust local image descriptor in the presence of illumination changes.

Within a correspondence-based recognition framework, location and scale differences of
objects are commonly treated by detecting salient keypoints with a canonical scale [Low04,

2see for instance the results of the Large Scale Visual Recognition Challenge 2013 at http://www.

image-net.org/challenges/LSVRC/2013/index (accessed on June 8th, 2014).
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HMZM12]. However, due to the discriminative power-invariance trade-off and non-perfect
repeatability of keypoint detection, knowing the image region that contains the object
of interest before classification is conducive to a higher rate of correct correspondences
and thus for a more reliable image similarity metric. Therefore, object segmentation is
proposed as a first step for correspondence-based image classification in this thesis. For
objects like ancient coins keypoint detection is more error-prone than segmenting the coin
which can be achieved in a robust manner because of the known roughly circular shape
of the coins.

Throughout this thesis, the task of classifying ancient coins is used as motivating
example and main application area of the presented methods since the aforementioned
challenging problems are inherently present in this type of data, as can also be seen in
Figure 1.1:

� ancient coins can be imaged at different image locations, scales and on various
backgrounds.

� ancient coins are textureless objects with a 3D relief, and thus the appearance of
the coin surface in a 2D image is strongly influenced by the illumination conditions.

� ancient coins possibly show a high level of variability within a class due to their
non-industrial manufacturing and abrasions over the centuries.

� ancient coin classes are numerous and have different levels of rarity: for instance, in
the Museum of Fine Arts in Vienna around 3900 coins of the Roman Republican
age are available, but for only 237 of the 1900 classes (including the subclasses)
defined in [Cra74] more than three coins are available [ZK12]. Hence, the num-
ber of training samples is limited which heavily impedes the successful learning of
appearance variabilities by machine learning methods.

The manual classification of ancient coins is in general a time-consuming and difficult
task, even for trained experts [Gri75]. From a numismatic perspective, the motivation
for the research presented in this thesis is that an image-based analysis has the potential
to disburden the daily work of numismatists, but also to support more efficient research
procedures in the future, e.g. the automatic clustering of coin hoards [ZKV08]. Therefore,
the methods presented in this thesis allow to automatically assess the visual similarity of
coins, which in turn enables exemplar-based classification.

However, although the experiments in this thesis focus on ancient coin classification,
the proposed methods are not restricted to this specific task. Instead, they generally
treat objects with the appearance variabilities illustrated in Figure 1.1 and thus have the
potential to be used and adapted for a wider class of problems (see Chapter 6 for a more
detailed discussion of this issue).

1.2 Summary of Contributions

The general topic of this thesis is to automatically estimate the visual similarity of two
objects shown in an image pair, and particularly insensitivity to appearance variabilities
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as depicted in Figure 1.1 is examined. Insensitivity to the various types of image varia-
tions are treated as individual subproblems and thus contributions to different aspects of
insensitive image comparison are made:

1. Insensitivity to Object Scale, Location and Background

� A shape-controlled approach for object segmentation is proposed [ZK09] which
empirically proves to be robust and fast, in contrast to shape-unaware ap-
proaches. The method exploits known a-priori information about the shape of
the object to be segmented, e.g. the roughly circular shape of an ancient coin.
With the known location of the object, the image can be cut and normalized
to a specified standard size to achieve insensitivity to object location and scale.
This avoids using scale-invariant feature detection [Low04] where only a sparse
set of partially non-corresponding keypoints can be used for image comparison.
Instead, dense matching can be performed which uses the overall visual data
for comparison.

� The circular object segmentation method [ZK09] is successfully used as a pre-
processing step in various works on ancient coin recognition [ZK11, ZK12,
ZKK13, ZKK14, ZK14, KZK14]. Additionally, the resulting shape of the coin
border is used as a feature for coin identification [HMZZK11]. Due to wear-
ing the shape of the border is a characteristic feature of a coin specimen. In
[HMZZK11] this property is exploited to build a system for automatic coin
identification, motivated by the problem of illegal online coin trade which was
combatted by the EU-funded COINS project [ZKZ07b] by means of an auto-
matic retrieval of images of stolen coins in the internet.

2. Insensitivity to Illumination Conditions

� A comprehensive evaluation of pixel-wise low-level features proposed in liter-
ature is conducted [ZK13a]. Unlike previous studies [CBJ00, OJL07, MP07,
VDSGS10] the influence of material specularity, object texturedness and amount
of illumination direction change is investigated. The experiments reveal that
jets of oriented even Gabor filter responses are the features of choice for cap-
turing object characteristics in an illumination-insensitive way, and that the
single-scale representation can be extended towards multiple scales for im-
proved performance.

� The controlled evaluation is enabled by a new synthetic image dataset built
from 3D historical coin models. The dataset makes it possible to directly com-
pare the performance of the features under different conditions without intro-
ducing a bias due to different objects used between datasets. As a contribution
to other researchers in this field the dataset is made publicly available3.

� The findings of the study are used to develop a new illumination-insensitive
local image descriptor [ZK13b] which empirically shows to outperform state-of-
the-art descriptors such as SIFT [Low04], SURF [BETVG08], FREAK [AOV12],

3Synthetic Image Dataset for Illumination Robustness Evaluation (SIDIRE), http://www.caa.

tuwien.ac.at/cvl/people/zamba/sidire/
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DAISY [TLF10] or MROGH [FWH12] under illumination changes. The source
code of the descriptor is also made publicly available4.

3. Insensitivity to Non-Rigid Deformations and Incomplete Data

� In order to cope with the training data problem, an exemplar-based classifi-
cation method is proposed [ZK11]. It uses a dense grid of local image fea-
tures which are optimally matched by means of data-driven and geometric
constraints to infer about image similarity. Due to the local appearance de-
scription and geometric regularization the method allows for the flexible match-
ing needed in presence of non-rigid deformations. Because of the locality of
the similarity estimation the method is also not vulnerable to occlusions or
incomplete data.

� A coarse-to-fine hierarchical classification scheme [ZK12] is introduced to de-
crease runtime. The main drawback of exemplar-based classification is the
runtime which is theoretically linear to the number of classes in the dataset.
It is shown that the runtime can be reduced to approximately one seventh
without decreasing the classification rate.

� It is further shown that the similarity estimation can be improved by evaluat-
ing data-driven matchings for their geometric plausibility [ZKK14], instead of
regularizing the matching process by geometric constraints. As a consequence,
geometric constraints have to be evaluated only once in the similarity estima-
tion process, hence more complex constraints can be used which improves both
the runtime and the classification performance.

On the application side, the individual methods allow to build a complete pipeline
for classification of ancient coins, as depicted in Figure 1.2. This procedure is used in
[ZKK14] (described in Chapter 5) and shows to outperform existing ancient coin classi-
fication approaches [KZ08, Ara10]. The proposed methodology can be integrated into a
numismatic coin classification tool whose impact on the numismatic research community
would be versatile. First of all, it would help to save considerable amounts of time for
everyone dealing with historical coins, as classification needs no longer to be based on
printed reference books such as [Cra74] which might also be expensive and hardly avail-
able. The tool could be also filled with different sets of data and be used for various
purposes such as die analysis [How05] or pre-classification of hoard finds.

From a more general perspective, automatic image-based coin classification contributes
to the research field of ICT and cultural heritage which aims to capture, analyze, manage
and deliver cultural information [SBG11]. The importance of this field is indicated by its
inclusion in the activities of the EU Horizon 2020 research programme [H2013] as well as
by several periodic scientific conferences5 and journals6. The EU-funded COINS project

4Local Image Descriptor Robust to Illumination Changes (LIDRIC), http://www.caa.tuwien.ac.
at/cvl/people/zamba/lidric/LIDRIC_v1.02.rar

5For instance, the Computer Applications and Quantitative Methods in Archaeology Conference
(CAA), International Congress on Digital Heritage and EUROGRAPHICS Workshop on Graphics and
Cultural Heritage (GCH).

6For instance, the Elsevier Journal of Cultural Heritage and the ACM Journal on Computing and
Cultural Heritage.
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Figure 1.2: The coin classification pipeline that is provided by the methods presented in
this thesis, each one achieving insensitivity to different intra-class appearance variations.
Segmenting the coin and normalizing the coin region to a standard resolution achieves in-
sensitivity to location and scale, dense LIDRIC feature extraction achieves insensitivity to
illumination conditions and computing correspondence-based image similarities achieves
insensitivity to non-rigid deformations and incomplete data.

(2007-2009) [ZKZ07b] aimed at developing technologies to fight against illegal trade and
theft of coins by means of standardized inventories, data management tools and an image-
based web search. This thesis was embedded in the ILAC project (2010-2014) [KZK+13],
which was funded by the Austrian Science Fund (FWF) and aimed at the image-based
classification of ancient coins.

1.3 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2

gives an overview of the state-of-the-art in computer vision fields related to the methods
proposed in this thesis, namely invariance in visual object comparison, image segmenta-
tion, local image descriptors and correspondence-based image similarity. Additionally, an
outline of relevant numismatic knowledge and methods for image-based coin analysis is
provided.

Chapter 3

describes the method for achieving insensitivity to object scale and location by means of a
shape-controlled object segmentation approach. Since the object of interest is known to
have a specific shape (e.g. roughly circular for coins), a global threshold is optimized in
a way such that the resulting shape is most similar to a circle. Results of the developed
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algorithm are shown for an image database of ancient coins from various sources and
demonstrate the benefits of the approach in terms of robustness and speed.

Chapter 4

describes the method for achieving insensitivity to illumination conditions and starts
with a comprehensive evaluation of the discriminative power of various low-level image
features for a pixel-wise representation of the objects characteristics. For this purpose, a
new dataset with rendered images of 3D models is used which allows to directly compare
the influences of texture and material properties in an object recognition scenario. The
results are further validated on a dataset of real object images and finally reveal that
jets of single- and multi-scale even Gabor filter responses outperform other proposed
features in scenarios with textureless objects and strong variations of illumination. In the
second part of the chapter a new local image descriptor (LIDRIC) is proposed based on
these findings. The descriptor is computed from histograms of oriented filter responses
in various subcells of the local image region. For evaluation, a dataset of textured as
well as textureless objects is used which introduces a greater challenge towards evaluating
the robustness against illumination changes than conventional datasets used in the past.
The experiments finally show the superiority of LIDRIC compared to existing descriptors
under illumination changes.

Chapter 5

describes the method for achieving insensitivity to non-rigid deformations and incomplete
data. It is demonstrated that learning-based methods are not practical and effective for
the image classification problem in the case of a high number of classes with a limited
number of training samples and complex intra-class variations. As a solution, a similarity
metric based on feature correspondence is proposed which is designed to be robust against
the possible intra-class coin variations like degraded parts and non-rigid deformations.
The similarity metric is used in an exemplar-based ancient coin classification scheme
which shows to outperform previously proposed methods for ancient coin recognition.
Comparative experiments are conducted on a dataset of 60 Roman Republican coin classes
where the presented method achieves superior classification rates ranging from 72.7% for
the case of one training sample per class up to 97.2% when nine training samples per class
are used. Additionally, a coarse-to-fine classification scheme is introduced to decrease
runtime which would be otherwise linear to the number of classes in the training set.

Chapter 6

finally concludes the thesis by summarizing its main outcomes and implications for com-
puter vision research. The chapter also includes a discussion of the limitations of the
presented methods and highlights future research directions.

All the methods described in the chapters 3-5 have already been partially published
in conference proceedings and journal articles. At the beginning of each chapter the
corresponding publications are denoted.
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Chapter 2

Background and Related Work

In this chapter background information and related work within the scope of this thesis’
research is summarized. In Section 2.1, a general overview of methodologies for dealing
with different types of appearance variations is given. The subsequent sections describe
the state-of-the-art in the computer vision fields where the methods presented in this thesis
add a contribution: image segmentation (Section 2.2), local image descriptors (Section 2.3)
and correspondence-based image similarity (Section 2.4). Section 2.5 gives an overview
of relevant numismatic background knowledge and image-based coin analysis methods,
as this is the main practical focus of the thesis. The chapter is concluded by a summary
in Section 2.6 where the key points of the related literature are highlighted and the
consequential design choices and innovative aspects of the proposed object comparison
methodology are described.

2.1 Invariance in Visual Object Comparison

Invariance in visual object comparison means that we want to compare objects such that
non-informative variations of the images are not taken into account. This implies that
the outcome of feature extraction is not affected by any environmental or object-specific
conditions. This section gives an outline of existing methods for overcoming the kinds of
appearance variations that are also treated by the methods proposed in this thesis: object
location, object size, illumination conditions, non-rigid object deformations and missing
object data.

2.1.1 Translation Invariance

Translation invariance in visual object comparison means to obtain a similarity measure
that is unaffected by the location of the object in the images. Early recognition ap-
proaches in the computer vision field were dominated by simple global methods [SWS+00],
which extract a description from the entire image, commonly being inherently translation-
invariant. For instance, Swain and Ballard [SB91] proposed to use color histograms to
describe and compare images. Other features used for image similarity have been shape
[MKL97] and texture [MM96, OPH96].
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A problem with these methods is that all image data is equally considered for com-
parison which makes it vulnerable to background clutter. To locate the object as a whole
in the image, a general model of its appearance or shape can be used and searched for
via template matching [Bru09]. The idea is to compare every image position to the
model/template and locate the object at the image point with the highest correlation.
The methodology has been successfully applied to problems like face detection [VJ04] or
character recognition [DTJT96]. However, one of its disadvantages is speed, as the model
has to be tested for the complete parameter space of variations, i.e. for every image pixel,
but also for different window sizes and orientations if object scaling and rotation is en-
countered. Furthermore, if the object variability is to complex a general template of the
object class cannot be defined.

State-of-the-art algorithms for image description and comparison are based on interest
points and thus represent an image as a set of detected points with corresponding local
descriptors [NA12]. Hence, two parts are involved: a detector and a descriptor. Within
this feature extraction scheme translation invariance follows directly from the interest
point detection that aims to detect points with a high degree of saliency. An important
performance criterion of interest point detectors is the repeatability [SMB00] which is the
fraction of corresponding detected keypoints among all detected keypoints of two images.
An interest point that is not redetected in the other image hinders the image comparison
process and thus interest point detectors focus on well-defined shapes like corners [Mor80,
HS88]. Modern interest point detectors [MS04] provide not only invariance to translation
and rotation but also to scaling, as described in the next section.

2.1.2 Scale Invariance

Scale differences of objects are differences in their pixel dimensions, e.g. due to varying
object distances, camera focal length or image resolution. Whenever these differences
are unknown, feature extraction needs to be scale-invariant. As a solution, scale selec-
tion techniques have been proposed that seek for a characteristic scale of each feature
point. This procedure has been established mainly by the work of Lindeberg [Lin98] who
first proposed to use extrema in the Laplacian of Gaussian (LoG) function computed
over various image scales as interest point locations. Lowe [Low04] proposes to use the
Difference-of-Gaussians (DoG) operator as a more efficient approximation of LoG. The
3D scale space (2D image space plus scale) is then scanned for local maxima, followed by
subpixel refinement using a quadratic fit and rejection of unstable points in low contrast
areas or near edges. Another examples for interest point detectors with scale selection
are Harris-Laplace [MS04], SURF [BETVG08], MSER [MCUP04], principle curvature
[DZM+07] and SIFER [MLY+13].

The problem of feature extraction with scale selection is that stable scales can be
detected only for a sparse set of image points, typically on average on around 0.05-0.5% of
all image pixels [ADP12]. Furthermore, scale selection becomes more and more unreliable
with increasing scale differences. For instance, experiments in [Mik02] reveal that for
a scale change factor of 4.4 only 13.3% of the scales selected by LoG are correct. To
overcome these problems, local feature extraction methods have been proposed that are
inherently scale-invariant without requiring to normalize image patches by the selected
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scale [HMZM12, KY08], but apparently at the price of decreased discriminative power
due to the discriminative power/invariance trade-off [VR07].

The problem of interest point detection with scale selection is demonstrated in Figure
2.1 for comparing images of ancient coins with unknown scales. Two coin images of the
same class with a scale difference of 2 are compared by extracting DoG interest points
[Low04]. A manual inspection reveals that only ∼ 32% of the interest points in Figure 2.1b
have a corresponding interest point in Figure 2.1a at the same coin location and correct
scale difference (green circles), due to the image structure and scale changes between the
two images. Moreover, the repeatable interest points span only over certain subareas of
the coin which means that the other areas are excluded from comparison.

(a) (b)

Figure 2.1: Detected interest points with selected scale (radius of circles) for two coin
images of the same class. The coin image (b) has half the scale of the coin image (a) and
interest points with a correspondence in (a) are marked in green, while interest points
without a correspondence are marked in red.

To conclude, scale differences have to be mastered for application scenarios like coin
recognition, but scale selection has to be guaranteed to be robust. Therefore, instead of
selecting scales on a local level, in this thesis scale invariance is achieved on a global level
by segmenting the coin area and normalizing the images to the same scale (see Chapter
3). As an additional benefit, the segmented coin area provides the region of interest for
the further classification process and thus an elegant way to ignore background clutter is
given.
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(a) Flat, textured (b) Non-flat, textured (c) Textureless (d) Textureless, shiny

Figure 2.2: Four different kinds of objects from the ALOI dataset [GBS05]. The patches
at the bottom show the appearance variations under illumination changes.

2.1.3 Illumination Invariance

When an object is imaged by a camera, its properties are communicated by the light that
is reflected from the object’s surface and projected onto the camera’s image plane. Hence,
without light no information about the object can be gathered, but the information is
generally not unique, as an object can produce a variety of different images. The reason
is that the light spectrum which is reflected from an object point depends on the light
sources (i.e. the direction(s) and intensity of light that hits the object point) and is
not necessarily uniformly distributed for all outgoing directions. Therefore, the level of
difficulty to make feature extraction unaffected by the lighting conditions is influenced by
the possible amount of illumination change between images, but also by the constitution
of the objects. The influence of the object constitution is demonstrated in Figure 2.2
by means of different kinds of objects which exhibit an increasing degree of appearance
variations under illumination changes (from left to right). Issues to be considered are:

� Object Texturedness: Within this thesis, texture refers to changes in the re-
flectance properties of an object, i.e. changes in the intrinsic color (a.k.a. albedo) of
an object. Therefore, a textured object has a varying intrinsic color (Figure 2.2a-b),
whereas a textureless object has only one, constant intrinsic color (Figure 2.2c-d).
Obviously, texture is a rich source of information for recognition, e.g. considering
the eyes and lips of a face or the stripes of a tiger. It also has the advantage that it is
robust with respect to illumination changes. For instance, changing the illumination
conditions for the flat, textured object shown in Figure 2.2a induces only changes of
the global brightness and does not affect the discontinuities of the intrinsic object
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color. In contrast, a textureless object does not contain texture information and
thus information about its 3D shape becomes more important for recognition.

� Object Depth Discontinuities: Similar to texture discontinuities (edges), object
depth discontinuities can be exploited for recognition but these object properties
cannot be directly exploited in 2D images and have to be derived from the im-
age appearance. This is generally an ill-posed problem [BKY99] in unconstrained
conditions and the space of image appearance variation due to lighting changes is
much wider than for flat objects, as can be seen in Figure 2.2b-d. If the object is
non-flat and textured as the one shown in Figure 2.2b, also an increasing degree of
appearance variation can be spotted but texture information can still be extracted
robustly and used for recognition. In contrast, without texture additional effects of
illumination change have to be considered: for instance, opposite lighting directions
change the polarity of image edges at depth discontinuities like the ridges of the
cup in Figure 2.2c. Image contrast can also vary more locally than for flat, textured
objects due to shadows and the uneven intensity of light reflected by the surface
with varying surface normals.

� Object Material: The material an object is made of also influences its reflective
properties which are usually described by the Bidirectional Reflectance Distribution
Function (BRDF) [Koe10]. The BRDF defines for any incoming ray of light the
light intensity that is emitted in a particular direction. Matte objects with a con-
stant BRDF are called Lambertian, an assumption which is often made in computer
vision to simplify the computational model [BJ03, WLW04, DC05, OJL07, LD09].
However, objects with a shiny surface violate this assumption and exhibit an in-
creased variability under illumination changes owing to local highlights, as shown
in Figure 2.2d.

The examples in Figure 2.2 show that there are manifold ways how the appearance
of an object can change under illumination variations, which leads to the overall crux of
illumination invariance: it is generally impossible without any a-priori knowledge about
the objects. This is theoretically proven by [CBJ00], meaning there is no function that
maps every image to an illumination-invariant and object-specific representation. Even
for Lambertian surfaces and point light sources it is always possible for any two images to
find an object that produces these two images under different lighting directions, as shown
by the example in Figure 2.3. Therefore, the best one can do is to find representations that
are more insensitive than the pure gray values, that is representations whose likelihood of
variation under illumination change is minimal. [CBJ00] propose to use image gradient
directions and show that a simple recognition system that uses learned probabilities of
gradient angle differences as dissimilarity measure is effective on face recognition. In
general, image gradient directions are not affected by global brightness changes of the
image as occurring on flat, textured objects like the one shown in Figure 2.2a.

The Difference between Textured and Textureless Objects

Illumination insensitivity has been studied for various subfields of computer vision like
face recognition [GJ10], stereo vision [HS09] or object tracking [GCFMT12]. However,
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Same Surface Same Albedo 

Figure 2.3: Illustration of the prove for the non-existence of illumination invariants
[CBJ00]. The two different images on the right are produced by the same 3D object
illuminated from two different directions (figure adapted from CVPR slides of Hansen F.
Chen, 2000).

the research focuses on textured objects as texture is a common property of objects and
illumination-insensitive feature extraction is less complex, as demonstrated in Figure 2.2.
This goes back to the influential work of [BT78] who postulated to extract intrinsic
images of a scene - object-specific properties like depth, surface normals or color. More
recently the term intrinsic images is widely understood as the decomposition of an image
I(x, y) into a reflectance image R(x, y) of texture information and an image L(x, y) of the
illumination effects [Wei01, TAF06, XZL+11]. Therefore, the standard model used relates
these quantities by

I(x, y) = R(x, y) · L(x, y) (2.1)

as illustrated in Figure 2.4a. We can see that the reflectance image bears the texture
information without the illumination effects, hence an illumination-insensitive represen-
tation of the scene has been achieved. However, such a decomposition is of limited use
for textureless objects like coins, statues, building facades etc. For instance, decomposing
a coin image as in Figure 2.4b gives a representation which might be useful to segment
the image into coin and background region, but does not help to recover the relief-like
structures (i.e. object depth discontinuities) on the coin which are mandatory for classi-
fication.

Textured Objects

As the vast majority of papers dealing with illumination insensitivity follow the intrin-
sic image model, they attempt to extract the reflectance component from the image. A
reasonable way to do so is to extract the high-frequency parts of the image as on Lam-
bertian surfaces shading is smooth and thus contained in the low-frequency parts of the
image [SRR01]. Hence, the idea of self-quotient images is followed by various authors
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(a)

(b)

Figure 2.4: (a) Illustration of intrinsic image decomposition (figure taken from [Wei01]),
(b) theoretical solution of intrinsic image decomposition for an image of a textureless
ancient coin.

[WLW04, CYZ+06, Ara13] where the illumination is represented by a low-pass filtered
image version Î(x, y) and the intrinsic image can be obtained by simple image division:

R(x, y) =
I(x, y)

Î(x, y)
. (2.2)

In a similar direction lie frequency transformations which are used to obtain high-
frequency subbands for illumination-insensitive recognition, like wavelets [GZT98, LD09],
discrete cosine transform [HL01] or Fourier transform [LYF01]. The image gradient direc-
tions proposed by [CBJ00] are also regularly used as they are stable for the high-frequency
parts of an image, e.g. for illumination-insensitive face recognition [ZTF+09] or local im-
age descriptors [Low04, CSH+10, TLF10]. Some works deal with extracting color as
reflectance information rather than texture discontinuities. Such color invariants are pro-
posed for local image descriptors [VDSGS10], edge detection [GS03] or keypoint detection
[VDWGS06].

These general-purpose low-level methods have the advantage of simple closed-form
computation, but have a limited level of insensitivity due to their universal nature. Hence,
methods making use of different kinds of a-priori information about the objects of interest
or the scene conditions have been introduced to provide a more powerful image representa-
tion for specific domains. [DC05] exploit the known illumination direction of two images
to obtain a comparable image representation by means of derivative filters oriented in
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reciprocal directions. The ambiguity of illumination effects can also be dissolved by using
3D models of the objects to be recognized. [BJ03] show that the manifold of image ap-
pearance of Lambertian objects lies in a 9-parameter space of spherical harmonics which
can be derived from a 3D model. This model-based approach is also extended to handle
specular objects [SJ05, NO11]. Besides 3D models, the variability of image appearance
can also be learned from training images taken under different illumination conditions
[GBK01, LM01, CD04], but the real world practicability is equally limited due to this
requirement.

Textureless Objects

When it comes to textureless objects there is actually little research on efficient feature ex-
traction in general scenarios without using any a-priori available information like material
BRDF, illumination conditions, object shape in form of 3D models or illumination-induced
object variability in form of training images. As the main source of information on such
objects is the 3D shape (depth), shape from shading techniques [Hor89] can be consid-
ered which attempt to derive depth information from the shading pattern on the objects.
However, the shape from shading problem is generally ill-posed even for controlled imag-
ing conditions, as the higher number of variables than measurements precludes a unique
solution [PF06]. Still, different constraints like smoothness of the result can be used to
obtain reasonable results, but a high degree of computational effort is needed and the ro-
bustness of the result is limited for arbitrary, unknown conditions (e.g. unknown lighting
direction, unknown BRDF, unknown shape priors etc.) [For11].

[OJL07] investigate low-level illumination insensitive feature extraction in a general
sense. They do not explicitly differentiate between textured and textureless objects, but
rather between non-isotropic and isotropic surfaces. Non-isotropic surfaces are surfaces
whose characteristics change in one direction and less in another, i.e. surfaces with discon-
tinuities in depth or albedo. In contrast, isotropic surfaces are smooth in both directions,
i.e. textureless and with slow variation in depth. Isotropic surfaces are more challenging,
because in this case the gradients depend more on the illumination. The authors showed
that the main problem of these surfaces is their high correlation, hence a whitening filter
[Jai89] helps to decorrelate the image intensities and makes the result more discrimina-
tive. As an approximation for whitening, the LoG filter is suggested. To handle both
isotropic and non-isotropic surface types the orientational information of image gradients
and the whitening effects of the LoG can be effectively combined by a Jet of Oriented
Second Derivative filters (JOSD).

Although the problem of illumination-insensitive low-level feature extraction was stud-
ied by [CBJ00] and [OJL07], research on illumination invariance lacks a comprehensive
investigation and dataset of features for textureless objects. Both [CBJ00] and [OJL07]
do not explicitly separate the cases of textured and textureless objects and thus cannot
give a well-founded statement about the performance of the investigated representations
on textureless objects. It is also unclear how the performances of low-level features are
related to the material properties and the amount of illumination change. Therefore, a
comprehensive evaluation on synthetic datasets with varying degrees of specularity and
texturedness and on real images of textured and textureless objects is done in this thesis
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(see Section 4.1).

2.1.4 Invariance to Non-Rigid Deformations

Non-rigid deformations are spatial transformations between corresponding image features
that cannot be described by a single global transformation. This problem has to be
tackled whenever the shape of an object is not fixed and changes over time (e.g. a human,
a tiger,...) or the class of objects exhibits non-rigid deformations (e.g. an ancient coin
class, a person’s signature, object categories like chair etc.). Therefore, it is of interest
in areas like image registration [CHH04], object tracking [CRM00] or object detection
[FJS10].

The simplest way to handle non-rigid deformations is to completely neglect the loca-
tion of local parts in an image. The well-known Bag Of Visual Words (BOVW) model
[CDF+04] uses only the local image descriptions for recognition and is thus invariant to
non-rigid deformations as long as the keypoint detector and descriptor are not affected.
However, although the model is able to deal with large deformations between images, it
is too general for a fine-grained classification and needs to be equipped with additional
constraints considering the spatial locations of local parts. If local deformations can be
considered to be small, spatial pooling can be applied to summarize the local descriptions
over defined image regions, an operation that happens also in the visual cortex [HW62].
Spatial pooling schemes proposed in the past are for instance spatial pyramids [LSP06]
or object-centric spatial pooling [RLYFF12].

When harder constraints for object deformation are needed to obtain a more distinc-
tive similarity metric, as for instance for human pose recognition [MHK06], an object can
be regarded as a deformed version of a template. This way of modeling non-rigid defor-
mations goes back to the definition of pictorial structures [FE73, FH05], where “parts”
represent local visual properties and “springs” encode spatial relations. Matching the
model to an image involves the joint optimization of local appearance similarity as well
as the compatibility of the local parts with the spatial model. The object template can
also be a statistical model where the likelihoods of landmark deformations are learned
from training images, as done by active shape models [CTCG95] or their generalization -
active appearance models [CET+01] - which additionally model statistics of appearance.
These methods have in common that they search for the model parameters that provide
the best description of the given data by solving an optimization problem. A similar idea
is followed in the traditional graph matching problem [CFSV04]: the feature points of
an image are modeled as a graph and a cost function involving first-order (local feature
similarity) and higher-order (regularization) constraints is used to match graphs between
images. The output of this cost function can be used as a dissimilarity metric which is
discussed in detail in Section 2.4.

For image comparison non-rigid deformations happen to be an additional challenge
as recognition schemes using a global transformation model like the RANdom SAmple
Consensus (RANSAC) [FB81] are not applicable. Nonetheless, they occur frequently
in computer vision applications. For instance, in ancient coin classification intra-class
coin deformations originating from the non-industrial manufacturing of coins need to be
mastered (see Section 2.5). An appropriate way of handling non-rigid deformations in
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visual object comparison is proposed in Section 5.2.

2.1.5 Invariance to Incomplete Image Data

Incomplete image data in the context of recognition and image similarity means that
certain parts of the object/image are not visible. Obviously, a general invariant for missing
image data does not exist as in the worst case the whole object or the essential image
parts are missing. Hence, methods are aiming at being insensitive to missing image data
either by explicitly recovering it or by using image representations that are inherently
robust to missing image data.

Recovering the missing image regions involves to find the most likely completion of the
image data given its context. Image inpainting methods [BSCB00] estimate the content
of lost or deteriorated regions by means of the remaining image content, either locally
by continuing the image structures [TD03], non-locally by filling the regions with fitting
exemplars of the whole image area [CPT04] or by combinations thereof [AFCS11]. Context
information outside the given image has also been leveraged, e.g. nearby video frames
[LLS+11], multiple images of the same physical scene [ADA+04] or large (> 1 million)
image collections [HE08].

However, for the purpose of image-to-image similarity methods that recover the miss-
ing image data are barely helpful, as it is difficult to automatically identify the image
regions which demand completion. Therefore, researchers tend to use insensitive image
representations instead of explicitly detecting the missing parts. Schmid and Mohr’s sem-
inal work [SM97] stimulated the use of local features for recognition with partial visibility:
in contrast to a global image representation, which suffers proportionally from the missing
image regions, local representations are more stable as all features in the visible image re-
gions remain unaffected. This is another motivation for using local image representations,
in addition to the ones already given in Sections 2.1.1 and 2.1.4.

2.2 Image Segmentation

Image segmentation refers to the process of dividing an image into disjoint regions that
belong together based on color, texture or semantic properties [Sze10]. According to this
broad definition, this computer vision field has a wide area of applications with different
levels of complexity. Typically, image segmentation is a preprocessing step for image
analysis methods, for example the binarization of document scans for optical character
recognition [GPP06], the segmentation of melanoma for automated diagnosis [CKU+07]
ore more generally the oversegmentation of an image by means of so-called superpixels
[RM03] to ease further processing.

Segmentation methods can be classified according to the scope of data they rely on:
unsupervised methods use only the given input image for segmentation, whereas super-
vised methods include a-priori knowledge in form of segmented training images into the
segmentation process. From a methodological perspective, the categorization listed below
and exemplified in Figure 2.5 can be made.
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(a) Thresholding: binarization of document
scans (taken from [SRZ12])

(b) Edge-Based Segmenta-
tion: lip tracking (taken from
[ECC04])

(c) Region-Based Segmentation: color seg-
mentation by mean-shift (taken from [CM02])

(d) Graph-Based Segmentation: color seg-
mentation by graph-partitioning (taken from
[FH04])

(e) Semantic Segmentation: semantic pixel labelling using harmony potentials
(taken from [BGvdW+12])

Figure 2.5: Examples of applications and techniques in image segmentation.

Thresholding:

Thresholding methods belong to the earliest techniques for image segmentation [Ots75]
and automatically define a range of brightness values (the thresholds) in the original
image. The pixels within this range are selected as belonging to the foreground, whereas
the remaining pixels are rejected to the background. The basic assumption of thresholding
methods is that the gray levels of the object are significantly different from the gray
values of the background. Thresholding techniques can either work globally, where a
single threshold is applied to the whole image, or locally, where the image is divided
into regions and each region has its own threshold. Besides that, thresholding techniques
differ in the way of finding optimal threshold values for a given image, e.g. by the use
of histogram information [Gla93, DYOL08], entropy of gray level distribution [Sha94] or
shape information [SRZ12]. A survey is given in [SS04].
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Edge-Based Segmentation:

This category of segmentation methods partitions an image based on abrupt changes
in the intensity, i.e. edges found in an image by edge detectors [HSSB98]. For the
segmentation of parameterizable shapes like circles the Hough transform [Hou62] can be
applied. In edge relaxation a global relaxation process based on edge properties is used
to form continuous boundaries of objects [DB92]. Border tracing methods are used to
follow the object borders from known starting points [ZSM00]. Active contours [BI98]
like snakes or level sets are boundary detectors which iteratively move towards their final
solution, with applications like lip tracking [ECC04] or scene segmentation [AKR09].

Region-Based Segmentation:

Region-based segmentation methods partition or group regions according to common im-
age properties, like color or texture. Region growing techniques start with seed points
that are iteratively increased based on defined region homogeneity criteria [AB94, MH06].
Split-and-Merge [DSFM06, NZZW10] combines two operations to segment an image: split-
ting, where the image is divided into a set of regions which are coherent within themselves,
and merging, where adjacent split regions are merged together based on a similarity cri-
terion. In the watershed segmentation method [VS91] the image is considered as a to-
pographic surface. According to that analogy, the watershed transform finds “catchment
basins” and “watershed ridge lines” where the catchment basins theoretically correspond
to the homogeneous gray level regions of this image. Clustering-based methods such as
mean shift [CM02] transform the image pixels into a feature space (e.g., color and position)
to find clusters of the image data.

Graph-Based Segmentation:

Graph-based methods model the image as graph where the pixels are connected by the
graph edges. Every pixel and edge has a cost representing some measure of confidence
that the corresponding pixels belong to the same segment. The segmentation goal is
then to find an optimal partitioning of the graph. Graph partitioning methods exploited
for image segmentation include graph-cuts [SM00, PZZY11], shortest path [FSdAL04],
minimum spanning trees [FH04] and random walks [Gra06, CXGS12].

Semantic Segmentation:

Semantic segmentation aims not at the segmentation of image regions for any further pro-
cessing but rather at a holistic recognition and segmentation process [AHG+12]. Hence,
semantic labels are inferred for each image pixel by joining top-down object knowledge
and bottom-up segmentation cues. This line of research has been initialized by the works
of [KTZ05] and [BU08]. More recent methods model the problem as a conditional ran-
dom field [BGvdW+12], refine rectangular object detections [BBMM11] or classify region
proposals [AHG+12]. The accuracies (intersection vs. union score [EVGW+10]) of these
methods are in the order of 50 % for a 20-category-problem1.

The short review of segmentation methods given above shows the variety of applica-
tions and complexity of the problem, but also the historical evolution of image segmenta-

1see the results of the PASCAL VOC 2012 segmentation challenge (http://pascallin.ecs.soton.
ac.uk/challenges/VOC/voc2012/results/index.html).
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tion, from the simple thresholding into binary regions to holistic semantic segmentation.
Anyhow, which method should be chosen for a given problem should be answered in
application-specific manner regarding issues like robustness, accuracy and computational
time. Consequently, there is no single state-of-the-art segmentation algorithm which pro-
duces the best results for every application.

2.3 Local Image Descriptors

It has been argued in the previous sections that by relying on local parts of the image
various aspects of invariance can be handled in a straight-forward manner. However, this
requires to use local features which are able to describe the local image appearance in
such a way that both a high degree of distinctiveness and insensitivity to noise and other
imaging conditions is given. The success of local feature-based methods has been mainly
initialized and supported by the introduction of Lowe’s Scale Invariant Feature Transform
(SIFT) descriptor [Low99] which can be regarded as one of the most influential works in
computer vision2. Since its publication in 1999, SIFT influenced the development of many
other local image descriptor, as we see later in this section. Nevertheless, SIFT shows an
outstanding performance in comprehensive experimental evaluation papers [MS05, MP07]
and can still be seen as a powerful general-purpose descriptor which is constantly used in
current state-of-the-art work3.

The computation of image descriptors typically follows the workflow depicted in Fig-
ure 2.6. The input is an image patch whose location has been obtained by dense feature
sampling or sparse keypoint detection (see Section 2.4) and eventually normalized by the
detected scale, orientation or affine transformation [MS04]. The input image is first trans-
formed to a more appropriate feature representation where instead of the raw gray values
a stack of feature values is computed. For instance, SIFT uses the gradient direction
of each image pixel and determines its bilinearly weighted membership to eight equally
spaced directions. Next, the descriptor is enriched with spatial information by spatial
encoding, e.g. by pooling the features within each cell arranged in a 4×4 grid as in SIFT.
The output of this step is a feature vector of numerical values which is finally subject
to a set of postprocessing steps. For instance, in SIFT values above a certain threshold
are clipped and the feature vector is normalized to unit length to account for brightness
changes of the image patch. The final outcome of descriptor computation is a feature
vector which describes a point in the feature space and the similarity of descriptors is
defined by their proximity in this space.

A chronological overview of local image descriptors is given in Table 2.1. Typically,
these descriptors are hand-crafted, except for the descriptors BESTDAISY [BHW11] and
PR [SVZ12] which are the result of research aiming to automatically learn optimal pa-
rameters and building blocks of local image descriptors.

2according to http://academic.research.microsoft.com/RankList?entitytype=

1&topdomainid=2&subdomainid=11&last=0 (accessed on June 8th, 2014), SIFT is the mostly
cited computer vision publication of all time with 2229 citations of the original paper [Low99] and 7806
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Reference DescriptorLow-Level
Feature

Spatial Encoding Feature Vector
Postprocessing

[Low99] SIFT Binned gradient di-
rections

Spatial pooling (4×4 squared
grid cells)

Clipping and L2 nor-
malization

[BM01] Geometric
Blur

Oriented edge re-
sponses

Circularly arranged sam-
ple points with increasing
amount of smoothing

-

[BMP02] Shape
Context

Edge points Spatial pooling (log-polar
grid)

-

[LSP03] Spin Im-
age

Binned image in-
tensities

Spatial pooling (concentric
rings)

-

[KS04] PCA-
SIFT

Gradient vectors - Dimensionality re-
duction by Principal
Component Analy-

sis (PCA)
[MS05] GLOH Binned gradient di-

rections
Spatial pooling (log-polar
grid)

Dimensionality reduc-

tion by PCA
[BTVG06] SURF Haar wavelet re-

sponses
Spatial pooling (4×4 squared
grid cells)

L2 normalization

[SI07] SSDESC L*a*b* colors Similarity to center pixel on
log-polar grid

Transformation of val-
ues to range [0, 1]

[TVF08] DAISY Binned gradient di-
rections

Spatial pooling (circularly ar-
ranged cells)

L2 normalization

[KO08] GLAC Binned gradient di-
rections

Correlation of neighboring
histograms, spatial pooling
(4× 5 squared grid cells)

Clipping and L2 nor-
malization

[CSZ+08] WLD Binned differential
excitations and
gradient directions

- 2D to 1D histogram
transformation

[HPS09] CS-LBP Local Binary Pat-
tern

Spatial pooling (4×4 squared
grid cells)

Clipping and L2 nor-
malization

[TLCT09] OSID Ordinal labeling Spatial pooling (16 pie cells) Clipping and L2 nor-
malization

[GPM10] HRI-
CSLTP

Ordinal labeling
and local ternary
patterns

Spatial pooling (4×4 squared
grid cells)

-

[CLSF10] BRIEF Original image in-
tensities

Pairwise intensity compar-
isons between random pixel
locations

-

[BHW11] BEST-
DAISY

Steerable filter re-
sponses

Spatial pooling (circularly ar-
ranged cells)

Clipping and L2 nor-
malization

[LCS11] BRISK Gaussian
smoothed image
intensities

Pairwise intensity compar-
isons between circularly ar-
ranged pixel locations

-

[WFW11] LIOP Local intensity or-
der patterns

Spatial pooling (intensity or-
der regions)

-

[AOV12] FREAK Gaussian
smoothed image
intensities

Pairwise intensity compar-
isons on retinal sampling grid

-

[FWH12] MROGH Binned gradient di-
rections

Spatial pooling (intensity or-
der regions)

L2 normalization

[FWH12] MRRID Local Binary Pat-
tern

Spatial pooling (intensity or-
der regions)

L2 normalization

[LDDP12] JBLD Higher-order
derivative filter
responses

Spatial sampling (n × n
squared grid cells)

Whitening and L2 nor-
malization

[SVZ12] PR Binned gradient di-
rections

Spatial pooling (circularly ar-
ranged cells)

Dimensionality reduc-
tion by linear projec-
tion

[SSBDB14] P-SIFT Binned gradient di-
rections

Spatial pooling (multiple lay-
ers of squared grid cells with
increasing cell sizes)

Clipping and L2 nor-
malization

Table 2.1: Chronological overview of image descriptors proposed in literature.
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Figure 2.6: The image descriptor construction pipeline.

2.3.1 Low-Level Per-Pixel Feature Extraction

The first step of descriptor construction is to transform the pixel intensities to a more
robust representation of the image structure. Image gradient directions are a popular
low-level feature which are leveraged by means of histogram binning to describe their
distribution in the image patch, e.g. used by SIFT, DAISY, WLD, GLOH, or MROGH.
Another type of low-level features are filter bank responses, e.g. oriented edge filters
(Geometric Blur), Haar wavelets (SURF), higher-order derivatives (JBLD) or steerable
filters (BESTDAISY). Encoding the local image structures by means of a set of basic
patterns has also been proposed, e.g. local binary patterns (CS-LBP, MRRID), local
ternary patterns (HRI-CSLTP) or local intensity order patterns (LIOP). These patterns
are usually detected on a smaller scale than the overall image patch and the distribution
of patterns is encoded as local image descriptor. An ordinal labeling of image intensities
is used in the OSID descriptor and the HRI-part of the HRI-CSLTP descriptor.

2.3.2 Spatial Encoding

The role of the spatial encoding stage is to describe the spatial configuration of the per-
pixel features. For instance, instead of summarizing all features of the overall image patch
one can downscale this process to specific subregions in the image patch. This operation
is called spatial pooling as the features of one spatial subregion are pooled together,
for instance by summation or the max-operation. Similar to the decision of which low-
level features are used, the choice of the pooling scheme is application-dependent, as
the goal is to find an optimal trade-off between a maximal descriptor distinctiveness
and a maximal insensitivity to variations of the spatial distribution caused by inaccurate
keypoint detection, varying viewpoints and non-rigid deformations. In the past, several
pooling schemes have been proposed of which the most popular ones are depicted in Figure
2.7. For increased robustness, spatial pooling includes also a weighting of features where
the contribution of a feature near the region center is higher than the contribution of a
feature further away from the center.

The squared 4 × 4 grid used in SIFT (Figure 2.7a) is adopted by other descriptors
like SURF, OSID, GLAC, CSLBP, and HRI-CSLTP. Shape Context and GLOH use a

citations of the extended journal version [Low04].
3see for instance recent papers at the 2014 IEEE Conference on Computer Vision and Pattern Recog-

nition such as [JZ14, PRH+14, TTK+14].
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(a) Regular grid with squared
cells and bilinear weighting.

(b) Log-polar grid with bilinear
radial and angular weighting.

(c) Circularly arranged cells
with Gaussian weighting.

Figure 2.7: Examples of pooling schemes (adapted from [BHW11]). Green points depict
the centers of the spatial cells and weighting is illustrated in red.

log-polar grid for spatial pooling (Figure 2.7b). Similarly, the DAISY descriptor uses
circular cells of varying size arranged on concentric rings for spatial pooling (Figure 2.7c)
and [BHW11] propose a learning scheme to obtain optimal configurations of such cell
arrangements. MROGH, MRRID and LIOP do not use fixed spatial cells but define cell
locations by tiling the image patch based on pixel-intensity orders. This has the advantage
that the resulting descriptor is inherently invariant to image rotations.

Another way of encoding spatial information is to describe the spatial correlation
between defined image regions. Shechtman and Irani [SI07] pioneered this idea with the
Self-Similarity DESCriptor (SSDESC) in order to represent the structure of an image
patch independently from its color or texture. For this purpose, the color similarities
between the center region and the surrounding regions located on a log-polar grid are
measured. The GLAC descriptor also exploits correlation but uses gradient directions
instead of color values whose local correlation patterns are measured and histogrammed.
The concept of spatial correlation is also used by binary descriptors such as BRIEF,
BRISK or FREAK which describe an image patch by comparing its image intensities at
specified locations. Each comparison can be quantized to 1 bit which enables a compact
description for scenarios with limited hardware resources (e.g. a mobile phone), as binary
descriptors can be computed and matched faster and need less storage than traditional
descriptors [CLSF10].

2.3.3 Feature Vector Postprocessing

Postprocessing steps are applied to the feature vector in order to increase its robustness
and/or decrease its dimensionality. Histogram-based descriptors, which compute a joint
2D histogram of feature values and their locations, typically weight the histogram values
by their saliency in the image patch, e.g. gradient directions are weighted by the gradient
magnitude. In order to reduce the influence of relatively high saliency values and to
be invariant to contrast changes the feature vector values above a certain threshold are
clipped and the final feature vector is normalized to unit length (e.g. SIFT, GLAC, OSID,
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BESTDAISY). Dimensionality reduction techniques are applied to reduce the effects of
the “curse of dimensionality” [AHK01] and to save storage space, e.g. by PCA [KS04],
Linear Discriminant Analysis (LDA) [BHW11] or learned linear projections (PR) [SVZ12].

2.3.4 Illumination Insensitivity of Local Descriptors

Image descriptors are developed based on specific requirements, e.g. MROGH and MR-
RID were proposed for improved rotation insensitivity and binary descriptors for low
computational effort. However, when it comes to illumination insensitivity of local image
descriptors, there is a lack of research both on the methodological and the evaluation level.
The Oxford dataset presented in [MS05] covers illumination insensitivity by means of 6
images of one single scene taken with different camera apertures (see Figure 2.8a), and
this evaluation image data is also used by others to test the illumination insensitivity of
their descriptors (e.g. BRIEF, BRISK, FREAK, LIOP, MROGH, SURF, CSLBP, OSID,
HRI-CSLTP). However, changing the camera aperture leads only to global brightness
changes in the image and more complex local effects on 3D objects as shown in Figure
2.2b-d are not considered. Some evaluations are additionally conducted on more image
data (LIOP, MROGH, MRRID, CSLBP, OSID), but still only global brightness changes
are simulated. A more comprehensive evaluation of illumination insensitivity is given in
[MP07]. Their study uses images with three different lighting conditions (see Figure 2.8b)
from 100 objects. The experiments couple the descriptor performance evaluation with
the interest point detection step and reveal that the combination of Harris-affine detector
and SIFT descriptor performs best. However, the test data and evaluation protocol does
not allow to restrict the experiments of descriptor performance on textured/textureless
objects. Moreover, the study is from 2007 and modern descriptors are therefore not
included.

Due to the fixation of treating illumination insensitivity as a contrast normalization
problem induced by the commonly used Oxford dataset [MS05], current descriptors are
generally only invariant to illumination changes on flat, textured objects (see Figure
2.2). Hence, they assume that illumination changes have only a global linear effect on
the intensity values which can be compensated by feature vector normalization (SIFT,
SURF, DAISY, GLAC, CS-LBP, BESTDAISY, JBLD, P-SIFT). The descriptors OSID,
LIOP, MRRID and HRI-CSLTP use the relative order of pixel intensities to construct
descriptors invariant to the wider class of generally monotonic intensity changes, but still
complex illumination changes on 3D objects are not handled.

2.4 Correspondence-Based Image Similarity

Comparing images by means of sets of local features has benefits in terms of invari-
ance: translation invariance is inherently achieved and rotation-, scale- and illumination-
insensitivity can be obtained by using appropriate local detectors and descriptors. More-
over, the locality provides robustness to missing image data and background clutter, as
only the local features in the disturbing image regions are affected.

Therefore, modern approaches for complex real world recognition scenarios with a high
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(a) Oxford dataset [MS05]: 6 shots with different camera apertures.

(b) 3D object dataset [MP07]: 3 shots with different illumination conditions for
a given camera angle.

Figure 2.8: Previously used datasets for the evaluation of illumination insensitivity of
local image descriptors.

degree of variability (e.g. scene classification, object recognition) are commonly based on
local features4. However, describing an image by a set of features (i.e. a set of fixed-
size vectors) hinders direct image comparison, as images produce a variable number of
unordered features. Hence, establishing correspondences is the core step for revealing
similarities between images: if many parts in an image can be associated with similar-
looking parts in another image, they are likely to show similar content.

The output of local feature extraction are image coordinates pi describing the spatial
location of the features as well as a vector di for each feature location describing its local
appearance. The spatial locations are either determined by interest point detectors such
as DoG [Low04] or Harris-Laplace [MS04] to identify the most salient regions in an image
or by taking regular samples (this is often referred to dense vs. sparse sampling, as the
former typically produces fewer interest points and features [NJT06]). For determining the
correspondences and estimating image similarities the information about feature location
can either be ignored or used to guide this process by means of geometric constraints.

4see for instance recent papers on recognition presented at the 2014 IEEE Conference on Computer
Vision and Pattern Recognition such as [JZ14, LYCC14, XWG+14, YBSL14].
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2.4.1 Without Geometric Constraints

Ignoring the locations and geometric dependencies of the features has the advantage that
geometric deformations between images have not to be taken into account for comparison
and a wide range of geometric invariances is covered. Hence, the remaining questions
are how to detect the corresponding features and how can this information be used to
derive an image similarity measure? As the features themselves have a fixed size they can
easily be compared by vector distance metrics such as L2 [Low04] or χ2 [BMP02]. More
sophisticated metrics for non-aligned vector values such as the Earth Mover’s Distance
[RDG08, PW09] have also been proposed.

Given such a metric, correspondences can be established, either in a one-to-many
scheme, where a feature can have a correspondence with multiple other features, or in a
one-to-one scheme, where each feature is allowed only to have a correspondence with one
feature from the other set. The simplest one-to-many matching scheme is to assign each
feature to its nearest neighbor in the other feature set. However, [Low04] claims that this is
a error-prone procedure when similar features are present in the two images and suggests
to accept a correspondence only if the distance ratio from the nearest to the second
nearest neighbor is under a given threshold. The Hungarian algorithm [Kuh55] used in
[KSG01, BMP02] finds the optimal one-to-one correspondences between feature sets but
has the disadvantage that outliers are not rejected and interfere with the matching process.
Similar approaches with more robustness to outliers are proposed by [SLH91] and [GR96].
The one-to-one symmetric search proposed by [ZNTW07] accepts correspondences only
if a feature in the first image is the nearest neighbor of a feature in the second image and
vice versa.

Correspondences of local features are also used as similarity measures in the form
of kernel functions to make use of kernel-based classifiers like the Support Vector Ma-
chine (SVM) [CV95]. The match kernel [WCG03] uses the average vector distance of the
optimal one-to-many correspondences whereas the pyramid match kernel [GD05] uses an
approximation of the sum of vector distances of the optimal one-to-one correspondences.

A prominently used methodology to describe and compare images by local features
without considering their geometric arrangement is the BOVW model [CDF+04] which has
shown to achieve state of the art performance on benchmarks like the PASCAL Visual
Object Classes Challenge 20125 [DXC+13] or the ImageCLEF 2013 Photo Annotation
Task6 [GSM+13]. In this approach, correspondences are not established between images
but between images and a vocabulary of codewords for sparse feature coding: vector
distance metrics between local features of the image and codewords are computed to obtain
a coding vector for each local feature which indicates the active codewords. Statistics such
as the histogram of activated codewords are then used as the final image representation
and can be used for image comparison. The power of this methodology lies in the compact
description of images by means of the most relevant image structures and its invariance
to geometric variations, as feature locations are not considered. However, neglecting
spatial information also limits the discriminative power of the model as the appearance
of local parts alone might be ambiguous and does not give enough information about the

5http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/ (accessed on June 8th, 2014).
6http://www.imageclef.org/2013/photo (accessed on June 8th, 2014).
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object. Therefore, correspondence-based image similarity can be enriched with the spatial
information about the extracted local features, as discussed in the next section.

2.4.2 With Geometric Constraints

Adding geometric constraints helps to identify false correspondences and thus to make the
similarity measure more reliable. A possible constraint is to assume a rough alignment
of image structures and to compare features only for the same image region. In the
context of BOVW this concept is known as spatial pooling [BPL10] and shows to improve
the recognition rate of BOVW for scene categories [LSP06, JHD12], object categories
[ZYZH10] or characters [JHD12]. Other researchers pursue a more local encoding of
spatial information by means of co-occurrence statistics of visual words [AT06, SWC06,
Ara10].

Geometric constraints can also be applied to feature matching as a postprocessing step.
The task of this geometric verification step is to check the geometric consistency of the
initial correspondences which are determined from feature vector distances as described
in Section 2.4.1. A possible verification constraint is that the correspondences follow a
common global geometric transformation. The RANdom SAmple Consensus (RANSAC)
[FB81] scheme repeatedly takes random subselections of the feature correspondences and
checks how many correspondences support the global transformation estimated from the
chosen samples. The total number of these so-called inliers serves as a measure of trust if
the estimated image transformation represents the true transformation between the two
images. As the false matches (outliers) can be assumed to be randomly distributed and
do not follow a common global transformation, they are effectively ruled out. RANSAC
or weaker geometric verification constraints are widely used in the literature, e.g. by
[SZ03, Low04, PCI+07, JDS08, DSH+09, WKIS09, ZLL+10]. This shows that geometric
verification can be a strong tool in correspondence-based image similarity, and even simple
similarity measures like the number of matched features after geometric verification have
been effectively used for tasks like face recognition [DSH+09] or duplicate image search
[ZLL+10].

However, geometric verification cannot be easily adapted to non-rigid deformations, as
every corresponding feature pair is defined by its own local transformation and not by a
common global transformation. Hence, for non-rigid deformations only relative geometric
constraints can be used, such as that two neighboring points will likely have neighboring
correspondences in the other images. In computer vision such a constraint is typically cast
as a graph matching problem [CFSV04], as illustrated in Figure 2.9: a cost function con-
sisting of first-order (local feature similarity) and second-order (regularization) constraints
is defined and solved by numerical optimization [VCGdF11]. Graph matching can be used
to find correspondences between images (e.g. the frames of a video stream), but the output
of the cost function has also been used in the past as similarity metric for image com-
parison as it can be assumed that the costs of matching similar objects are higher than
that of matching dissimilar objects [BBM05, DJP11, JJT11, LYT11, KLSG13]. These
methods show superior performance in recognition scenarios with non-rigid intra-class
deformations and low number of training samples like face recognition [JJT11, LYT11].
The reason is that for low-number of training samples the variability is better handled
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Image 1 Image 2 

Figure 2.9: Using graph matching to determine the correspondences between the local
features extracted from two images. The detected feature points represent the vertices of
the graph connected by edges. Matching two point pairs, e.g. p1 with q1 and p2 with
q2, produces first-order costs (difference of the feature descriptions, dotted red lines) as
well as second-order regularization costs (difference of the vectors ~u and ~v). Higher-order
costs (e.g. the difference of the matched triangles p1p2p3 and q1q2q3) can also be used.
The overall matching costs are minimized to obtain the optimal correspondences.

“online” during image matching than “offline” by machine learning.
The second-order constraints of graph matching have the task of regularizing the

matching process by assessing the pairwise costs of matching two features in an images
connected by a edge of the graph. For instance, the matching schemes proposed in
[BBM05, LH05, TKR13] are regularized by a weighted sum of edge length difference
and edge angle difference. The dense matching schemes proposed by [LYT11, KLSG13]
penalize differences in neighboring pixel correspondences as well as global displacements.
The model of [DJP11] enforces smoothness as well as monotonicity of matched features.

Using such regularization constraints does not make the image comparison truly in-
variant to non-rigid deformations, as for instance the distance between two features can
vary in the two images. However, under the assumption that the deformation is smooth a
reasonable trade-off between insensitivity to non-rigid deformations and discriminability
can be achieved. For the case where global deformations have to be taken into account
also higher-order constraints can be used. For instance, [CK10, DBKP11, CCM+13] use
the inner angles of triples of feature points to obtain a regularization which is locally
invariant to a similarity transformation, i.e. rotation and scale. Projective invariance can
be achieved by using the cross-ratios of points along the edges of the triples [DBKP11].

2.5 Image-Based Coin Analysis

In this section an introduction to the field of image-based coin analysis is given. The prac-
tical focus of the image comparison research conducted in this thesis lies on ancient coins
and thus an overview of ancient coinage and a definition of the most relevant numismatic
terms is given in Section 2.5.1. In Section 2.5.2 the specific challenges of ancient coin
analysis compared to present-day coins are specified. Finally, related work in the fields
of coin image segmentation (Section 2.5.3) and coin image classification (Section 2.5.4) is
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reviewed.

2.5.1 Introduction to Ancient Coinage

The production of coins has begun in the 7th century BC in Greece and has become the
central embodiment of money in this as well as other ancient cultures like the Roman
empire, Byzantium, India or China [Gri75]. Like their present-day counterparts, ancient
coins have a front and back side, which are referred to as obverse and reverse side [Jon90].
The appearance of coins has been designed by artisans known as engravers who manufac-
tured the dies for the obverse and reverse coins sides. For coin production a metal flan
was placed between the two dies: the obverse die was held stationary on an anvil while
the reverse die was placed over the flan and struck with a hammer (see Figure 2.10).

Anvil 

Obverse die 

Reverse die 

Flan 

Hammer 

Figure 2.10: The striking of an ancient coin.

The basic elements of ancient coin design are type, inscription or legend, and accessory
symbols [Gri75], as depicted in Figure 2.11 for a Roman Republican coin. The type is the
central person, object or device represented on a coin. The legend is the writing placed
upon a coin in order to give information about the person(s) by whose authority the
coin was minted, to describe the shown type or to convey a general message. Accessory
symbols are smaller features like minting date or control marks. Anyhow, none of the
basic elements are necessarily present on an ancient coin.

Within this thesis the coin image datasets contain Roman Republican coins, as there
exists a clear definition of coin classes based on Crawford’s reference book [Cra74]. Hence,
the task of automatic classification is to assign a coin to the correct number in this
reference book. A coin class is basically defined as a distinct combination of coin type
and legend and Crawford defined classes as well as subclasses, i.e. a complete reference is
given by the class number and subclass number separated by a ’/’. For instance, the coins
shown in Figure 2.12a and 2.12b are from the same general class (344) but from different
subclasses (/1 and /3). The obverse of both coins shows the head of the moneyer Lucius
Titurius Sabinus while the reverse of 344/1 shows the abduction of the Sabine women
and the one of 344/3 the goddess Victory in a 2-horse chariot. The coin in Figure 2.12c
is from a different class and shows the diademed head of Apollo on the obverse and
a standing Hercules on the reverse. In total, Crawford defined 550 main classes and
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Type: 
Laureate 
head of 
Jupiter 

Accessory 
symbol: 
Control mark ●B 

Type: 
Jupiter in 
quadriga  

Legend:  
L●SCIP●ASIAG 

Figure 2.11: An example for the basic coin elements on the obverse (left) and reverse side
(right) of a Roman Republican Denarius.

(a) Cra 344/1 (b) Cra 344/3 (c) Cra 410/1

Figure 2.12: Three Roman Republican coin classes with Crawford number.

over 1900 subclasses. The examples of Figure 2.12 demonstrate the common design of
Roman Republican coin types [Jon90]: the obverse displays the portrait of a historical
or mythological person while the reverse depicts certain scenes or objects. Consequently,
the reverse side shows more variation between classes and thus gives more discriminative
information for classification.

2.5.2 The Challenges of Image-Based Ancient Coin Analysis

In contrast to present-day coins, ancient coins offer particular challenges to image-based
recognition, as shown in Figure 2.13a. For the automatic segmentation of coins, difficul-
ties are posed by the non-roundness of coins, shadows at the coin borders and background
clutter. These issues are demonstrated in Figure 2.13b: ancient coins are not necessar-
ily completely circular (shown by the red circle around the coin), thus simple geometric
structure detection methods like the Hough transform [Hou62] are not applicable. An
improper image acquisition setup can lead to shadow casts at coin borders which deteri-
orate their correct identification. And finally, background objects like a ruler complicate
the detection of the coin object in the image.

For the classification of ancient coins, the complexity of the problem is given by the
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(a) The difference
between modern (top)
and ancient coins
(bottom)

(b) Challenges for coin seg-
mentation

(c) Challenges for coin recognition:
illumination changes.

(d) Challenges for coin recognition: non-rigid
deformations.

(e) Challenges for coin recognition: abrasions.

Figure 2.13: The various challenges of image-based ancient coin recognition.
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high number of classes (e.g. over 1900 subclasses for the Roman Republican age [Cra74]).
Furthermore, all the kinds of variations illustrated in the introductory Figure 1.1 arise,
as described also in [ZK11]:

� Illumination: illumination variations significantly affect the surface appearance
and hence make coin comparison difficult. With reference to Figure 2.2, coins with
their metallic relief-like structures belong to the challenging group of shiny, texture-
less objects. An example for the illumination variation is given in Figure 2.13c,
where two images of the same coin specimen under different lighting conditions are
shown. A detailed look at the man’s upper body reveals how the local appearance
is affected by the lighting direction.

� Non-rigid deformations: Non-rigid deformations within a coin class result from
the manual manufacturing of the coins. In ancient times, the manually made coin
dies were used only for a limited amount of coins. Therefore, die variations and thus
finally coin variations as the ones shown in Figure 2.13d can occur. Here a detail of
two Roman coins from the same class depicting the goddess Roma is shown. The
green arrows illustrate that the facial features have a different arrangement due to
the different dies used for striking these coin specimens.

� Incomplete data. Parts of the visual information on a coin are possibly lost or
distorted due to abrasions, caused both by use and by exposure to environmental
influences like chemicals in the soil (see Figure 2.13e).

All these particular challenges sum up to a demanding relationship between intra-class
and inter-class variations, as demonstrated in Figure 2.14. One the one hand, inter-class
variations can be low: the coins of Figure 2.14a-b all show the goddess Calliope and the
two classes can only be differentiated by the coin legend. On the other hand, non-rigid
intra-class deformations due to the non-industrial manufacturing can be spotted within
the classes (e.g., Calliope’s hand and the legend structure in Figure 2.14b). The conditions
of the coins lead to further intra-class variations: missing and worn parts due to the coins’
age (Figure 2.14c) as well as appearance variations due to lighting variations (e.g., the
two coins in Figure 2.14d are illuminated from opposite directions).

2.5.3 Coin Image Segmentation

Separation of the coin from its background is done in any coin recognition system to
obtain a region-of-interest where the recognition procedure can be applied to. For systems
designed for the recognition of modern coins the problem is simplified by the circularity
of the coin and a controlled acquisition setup. For instance, the acquisition setup of
the Dagobert coin recognition and sorting system [NPR+03] ensures that the background
(conveyor belt) is darker than the photographed coin and thus simple global thresholding is
sufficient. Circularity of modern coins is exploited in [RRB06] by means of the Generalized
Hough Transform [Bal81]. The segmentation step of [VDMP06] uses a pipeline of global
thresholding, edge detection and morphological operations.
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(a) Cra 410/3 (b) Cra 442/1

(c) Cra 346/1 (d) Cra 393/1

Figure 2.14: Reverse side of Roman Republican coins from four different coin classes.

Due to the higher complexity of the segmentation problem on ancient coins (see
Figure 2.13b), researchers developed own segmentation strategies for ancient coin recog-
nition methods that are more appropriate for this kind of objects. The first recogni-
tion system dedicated exclusively to ancient coins is presented by [ZHMNK07] and uses
a modification of the adaptive thresholding approach originally proposed by [YB89] for
coin segmentation. The method uses variable thresholds which are computed by sampling
points at detected edges and interpolating them over the image. The modified version of
[ZHMNK07] uses zero crossings of the second image derivatives [MH80] instead of gradi-
ent magnitudes for edge detection. The coin classification method presented by [Ara10]
uses an improved circular Hough transform [AK99] for coarse coin location. Finally, the
accurate coin border is found by inferring the states of a hidden Markov chain [BKR11]
representing the radial distances at uniformly discretized directions.

The method proposed in Chapter 3 for ancient coin segmentation uses global thresh-
olding and exploits the approximately circular shape of coins as a cue to find an optimal
threshold. Hence, the method remains simple and fast to compute, as no costly boundary
tracing or optimization like in [Ara10] is needed. Still, the proposed method shows to be
insensitive to wide variations of coin images in the experiments.

2.5.4 Image-Based Coin Classification

The first methods for image-based coin classification have been developed for modern
coins, hence they all assume rigidity of objects and thus that an alignment of the coin
structures can be achieved by solving for the global translation and rotation differences
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between a query coin and reference coins. The Dagobert system [NPR+03] uses global
rotation-invariant features extracted from the detected coin to derive a list of subselected
candidate reference coins. The image similarity to the candidate coin images is then estab-
lished by finding the maximum correlation of the query edge image and reference images
under rotation. The method is evaluated on 913 coin classes from over 30 currencies and
achieves a classification rate of 99.24 %. Compared to this results, the multistage classifier
based on eigenspaces proposed in [HRM+05] shows a lower performance with a classifi-
cation rate of 92.23 % on a similar dataset. Motivated by the effectivity the Dagobert
system, [RRB06] propose to use the Fast Fourier Transform on binary images encoding
the pixels’ gradient directions to register coin images and estimate their similarity. The
method was the winner of the MUSCLE CIS Coin Competition 2006 [NRH06] with a
classification rate of 97.24 % on a dataset of 2270 modern coin classes. It outperformed
the COIN-O-MATIC system proposed by [VDMP06] which uses a global descriptor of
edge distributions on a log-polar grid (see Figure 2.7b). Since the descriptor summates
all edges in a spatial cell it does not make full use of the rigidity of modern coins. In
contrast, the method of [RRB06] assesses coin similarity on a per-pixel basis and is thus
more distinctive.

As described in Section 2.5.2, ancient coins show a higher intra-class variability than
modern coins, which permits the reverse conclusion that each specimen has its own in-
dividual characteristics that allow for coin identification. This task is important in the
context of finding stolen coins in the internet as highlighted by [HMZZK11]. Their exper-
iments reveal that the segmented coin border is a strong characteristic feature which can
be leveraged for identification by shape matching. In combination with type matching on
both coin sides 98.83 % of 2400 coin images representing 240 individual coin specimens
could be identified. However, evidently the coin border does not assist in classifying the
coin, hence it can be concluded that classification is a more difficult task than identifica-
tion on ancient coins. The level of object individuality is in general strongly correlated
with the complexity of classification, and consequently on modern coins the opposite case
is true: classification is less complex than identification.

It is experimentally shown by [ZKZ07a] that the success of classification methods for
modern coins cannot be transferred to the domain of ancient coins. While the method of
[VDMP06] achieves a classification rate of up to 76 % on their testset of 100 modern coin
classes, only 6 % of coins in a testset of 106 Roman Imperial coin classes can be correctly
classified. The first method exclusively dedicated to ancient coins is proposed by [KZ08].
The non-rigid deformations of ancient coins are handled by using detected local SIFT
features and a similarity measure is simply obtained by counting the number of features
that can be matched by means of Lowe’s distance-ratio rule (see Section 2.4.1). In their
experiments this similarity measure is used for exemplar-based classification and achieves
a classification rate of 90 %, but only on a very limited dataset of only three coin classes.

Learning-based methods for ancient coin classification are proposed by [AZK13] and
[Ara10]. Both methods also rely on local SIFT features which are quantized into a fixed
vocabulary of visual words. In [AZK13] the image is tiled into spatial regions and the
concatenated single histograms of visual words of each region are used as image feature.
This approach is rather used for a coarse classification of the types shown on the coin’s
reverse side than for a fine-grained classification based on reference numbers. The method
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achieves a classification rate of up to 90% for eight common Roman Republican types.
Arandjelović’s method [Ara10] exploits the spatial configuration of visual words in a
different way: Locally-Biased Directional Histograms (LBDH) are introduced for encoding
the distribution of visual words around a detected keypoint in eight directions relative
to its canonical orientation. The LBDH features are then again subject to vocabulary
creation and the histogram of LBDH words serves as final image feature. This method
achieves a classification rate of around 57% on 65 classes of the Roman Imperial age.

Learning-based methods are also exploited to support coin classification by means of
legend recognition. [Ara12] describes a system which subselects Roman Imperial coin
classes based on the recognized legends on the obverse sides. The system assumes that
the legend is arranged along the coin border and thus can be normalized for orientation
by means of a log-polar transformation. Obviously, known legend orientation eases the
problem and the author reports a correct legend recognition for 24 of 25 test coins with
a lexicon of 1478 known coin legends. This is achieved by encoding letter appearance by
single local image descriptors and casting the search for words in the lexicon as a weighted-
graph optimization problem which can be efficiently solved via dynamic programming
[Sze10]. The same approach is followed by Kavelar et al. [KZK12, KZK14], but on
Roman Republican coins which requires to make the local descriptors and word search
procedure orientation invariant. Consequently, the results are worse compared to [Ara12]
with a detection rate of 53 % among the top five words found for a 35-word-lexicon
[KZK14]. Nevertheless, it is shown in [ZKK13] that legend recognition is still able to
improve performance, as it exploits a different source of background information by means
of a known lexicon. In [ZKK13] the exemplar-based classification proposed in Section 5.1.3
is fused with legend recognition which improves the classification rate from 78.9% to 81.0%
for a dataset of 60 Roman Republican coin classes. Also the method of [Ara12] combines
legend recognition with exemplar-based matching: global translation differences between
the reverse coin types are first corrected by RANSAC-based registration of SIFT features.
The detected SIFT features are then checked for consistent location, orientation and scale
and the total number of verified correspondences is used as similarity measure.

2.6 Summary and Innovative Aspects of the Thesis

Invariance or insensitivity to certain conditions of the objects or the imaging procedure can
be treated in manifold ways. Leveraging a-priori information to handle variations has led
to successful methods, but with limited real world practicability due to their dependency
on a high amount of training data. Without using offline training, recognition is reduced to
an image similarity estimation problem, where the determination of local correspondences
has proven to be the common methodology, due to the beneficial properties of comparing
many local parts instead of the images in their entirety: translation, rotation and scale
invariance by means of interest point detection with rotation and scale selection, the
opportunity to flexibly match local parts in case of non-rigid deformations, and robustness
against image clutter and missing content. Nevertheless, there are aspects in this image-
to-image comparison problem which have not been tackled accordingly in existing works
and are treated in this thesis:
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� Shape-Controlled Object Segmentation: invariance to scale changes and image
background clutter can be achieved by interest point detection, but this is an error-
prone process, especially for textureless objects like ancient coins under illumination
changes. Segmentation of the object of interest does not only select a proper image
subregion for the visual comparison, but also allows for a scale normalization and
dense sampling of local descriptors in order to have a more robust correspondence-
based comparison. The manifold research in the wide area of image segmentation
shows that application-specific solutions work best and commonly dominate general-
purpose segmentation methods within a given field. Hence, in this thesis a method
is proposed which exploits the known nearly circular shape of coins to achieve a
fast, robust and accurate segmentation.

� Illumination-Insensitive Feature Extraction: Establishing correspondences
between images demands both distinctive and insensitive local descriptors, but
insensitivity to changes of the illumination conditions has only been marginally
treated. Existing descriptors do only handle monotonic brightness changes but not
the more complex effects on textureless and non-flat objects. Hence, there is a
need for robust image descriptors in scenarios where strong illumination changes
can be expected and texturedness as well as flatness of objects are not necessar-
ily given. This shortcoming is tackled in this thesis by means of a fundamental
evaluation of the illumination insensitivity of low-level per-pixel image features.
Based on the achieved results, a new descriptor (LIDRIC) with a higher degree of
illumination-insensitivity is proposed. The problem of unsatisfactory datasets and
evaluation protocols for this kind of problem is overcome by new datasets allowing
to intensively test the influence of textured/textureless 3D objects on descriptor
performance.

� Correspondence-Based Image Similarity: in the past, the correspondences of
local image parts have been exploited to derive similarity measures between images.
A contribution to this research is given by means of a coarse-to-fine classification
scheme which shows that a subselection of reference objects on coarser scales does
not decrease classification performance while substantially speeding up the overall
process. The method uses a dense correspondence search with spatial regularization
and stimulates the construction of a more powerful correspondence-based similarity.
Similar to geometric verification, the correspondences are checked for geometric
plausibility, but in this case not to discern true from false correspondences, but
rather to derive a similarity measure from it assuming a higher fraction of geometric
plausible correspondences between similar images than between dissimilar ones.

� Image-Based Coin Classification: ancient coins prove to be a challenging type
of objects for image classification and learning-based approaches [CDF+04, Ara10]
suffer from the training data problem given for this domain. Previously published
similarity measures that can be exploited for exemplar-based classification either
ignore spatial information and are thus not distinctive enough [KZ08] or are too
strict by assuming a rigid-body transformation between coins [Ara12]. Therefore,
it is first shown that a correspondence search with spatial optimization provides a
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better framework for similarity estimation for the non-rigid deformations of ancient
coins. On this basis, an improved similarity measure with lower computational com-
plexity is proposed which uses pairwise geometric consistency evaluation of matched
features and consequently outperforms the previously proposed methods.
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Chapter 3

Shape-Controlled Object
Segmentation

In this chapter the method for ancient coin segmentation originally published in [ZK09] is
described. Its goal is to segment the image in two areas: the area depicting the coin and the
area belonging to the background. Within the context of image-based coin analysis, such a
segmentation answers a twofold purpose: first, for coin classification, it provides a region-
of-interest and allows for scale normalization. The proposed segmentation procedure has
thus been applied as a preprocessing step in the coin recognition methods described in
[ZK11, ZK12, ZKK13, ZKK14, KZK14]. And second, it provides not only a region-of-
interest for coin identification but also the opportunity the leverage the coin border as a
characteristic coin-specific feature. Hence, the method is used to obtain the coin border
in the coin identification system presented in [HMZZK11].

The proposed coin segmentation strategy is described in Section 3.1. Results of em-
pirical evaluations are presented in Section 3.2. Section 3.2.1 reports experiments on a
set of 92 manually segmented ground truth images, whereas Section 3.2.2 reports results
on identification based on coin shape determined by the proposed segmentation method.

3.1 Methodology

An essential requirement for the usability of coin segmentation is to provide a ready-to-use
method without the need for parameter tuning. Therefore, the objective of the presented
methodology is a robust and fast segmentation for a large variety of coin image styles.
Coin images from different sources (e.g. museum collections or public online databases)
are photographed with different image acquisition setups. Therefore, no assumptions
about image quality can be made and major challenges to be faced in the segmentation
of coins are caused by an improper image acquisition procedure. Especially shadow casts
caused by an insufficient illumination setup impede the correct determination of the coin
border. Furthermore, tests have shown that image compression with chroma subsampling
(e.g. JPEG image compression [GW02]) is widely used when storing images of coins.
The resulting compression artifacts preclude the use of color information, thus only the
luminance can be used for a reliable segmentation of the coins.
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The method presented in this chapter is based on the assumption that the coin is
the most circular object in the image and possesses more local information content and
details than the rest of the image. Although this assumption can not be guaranteed to
hold in practice, it is reasonable from experience and also supported by the experiments.
Thus, the method consists of two steps:

1. Saliency Extraction: The image is filtered with a local entropy and range filter
in order to obtain a more meaningful image representation for thresholding. After
this operation each pixel’s value can be seen as the likelihood of belonging to the
coin region.

2. Shape-Controlled Thresholding: An optimal global threshold is found by max-
imizing an objective function describing the circularity of the resultant shape.

In the following the two steps are described in detail.

3.1.1 Saliency Extraction

Saliency extraction is done by two filters providing a local measurement of information
content in the image: the local entropy and the local range of gray values.

Local entropy filter:

entropy is the measure of the information content in a probability distribution. For
digital images, the probability distribution is represented by the histogram of gray values
[KSW85]. Given an image point p and its local neighborhood Ωp, all image intensity
values I(p), p ∈ Ωp, are transformed to normalized frequency values f1, f2, ..., fN , where

N is the number of different values and
∑N

i=1 fi = 1. Then, the local entropy of p is
defined as:

X(p) = −
N∑
i=1

fi · log2(fi). (3.1)

Local range filter:

the local range of gray values is defined as the difference of the maximum and minimum
gray value of a local neighborhood:

Y (p) = max
p∈Ωp

I(p)− min
p∈Ωp

I(p). (3.2)

For both filters a circular neighborhood with an empirically determined radius of 3
pixels is used. In order to bring both filter outputs to the same value range they are
normalized with respect to the maximum value in the image. The final saliency measure
is then given by the sum of both normalized filter outputs:

Z(p) =
X(p)

maxp∈I X(p)
+

Y (p)

maxp∈I Y (p)
. (3.3)
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For illustration on a simple example, in Figure 3.1 the particular results of the entropy
filter X, the range filter Y and their summation Z are shown. The output of both filters
is higher for the region of the coin than for the region of the background, especially at
the coin border.

(a) Original image. (b) Output of local en-
tropy filter X.

(c) Output of local
range filter Y .

(d) Final saliency mea-
sure Z.

Figure 3.1: Saliency extraction on a simple, illustrative example of a coin image.

3.1.2 Shape-Controlled Thresholding

In order to obtain the final coin segmentation from the saliency image shown in Figure
3.1d, a simple way would be to a apply a global threshold and close all holes in the binary
mask caused by homogeneous regions inside the coin. However, the optimal threshold has
to detected separately for each image. Defining the optimality of a threshold is in general
a difficult task due to the unknown correct result, but in the case of ancient coins we can
use the known approximately circular shape as strong constraint. Hence, what is needed
is a measure of confidence that estimates the closeness of the resulting binary mask to a
perfect circle. Consequently, the formfactor [Rus11] turns out to be a suitable choice for
this task, defined as follows for a binary connected component C:

FF(C) =
4πAC
P 2
C

(3.4)

where AC is the area of the shape and PC its perimeter. For a connected component
the area is typically computed by its number of pixels and the perimeter by tracing the
border pixels where vertical and horizontal steps have a length of 1 and diagonal steps a
length of

√
2 [SHB07]. The formfactor has adequate properties for measuring the closeness

to a circle. First of all, it is invariant to the rotation and size of the shape [Rus11]. And
second, the formfactor provides a measurement which is sensitive to both the elongation
of the shape and the jaggedness of its border. The higher the jaggedness or elongation
of a border, the less the formfactor, which is equal to 1 for a circle and close to 0 for a
straight line. The influence of the shape elongation and jaggedness to the formfactor is
also demonstrated in Figure 3.2. It can be seen that the formfactor decreases both with
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() FF=0.902 () FF=0.878 () FF=0.633

() FF=0.890 () FF=0.857 () FF=0.568

() FF=0.805 () FF=0.737 () FF=0.484

Figure 3.2: Formfactor (FF) of different synthetic shapes with varying elongation and
jaggedness. Elongation increases from left to right and jaggedness from top to bottom.

increasing elongation and jaggedness of the synthetic shapes1. Since the final shape of
the segmentation should be close to circle with a regular border, the formfactor provides
a convenient measure for the confidence of the segmentation.

As it is assumed that the coin is the most circular object in the image, in the presented

1Please note that the formfactor of the circle shape shown in Figure 3.2 is not 1 due to the approxi-
mative area and perimeter measurements on binary connected components.
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Figure 3.3: Plot of formfactors of three coin images when thresholded with t.

method the connected component Ct to be used for the confidence measurement is the
one with the highest formfactor in the binary image resulting from thresholding with t.
Additionally, it is expected that the size of the coin is between 5 % and 95 % of the overall
image area, hence objects above and below are rejected. The binary segmentation mask is
also shrunk by removing its 3-pixel-wide border in order to compensate for high saliency
values outside the actual coin boundary caused by the applied filter kernels with a radius
of 3 pixels.

However, as mentioned above, optimal thresholds have to be individually chosen for
each image. This is also illustrated in Figure 3.3 where the confidence measures (form-
factors) of three coin images are plotted as a function of the threshold t used to binarize
the saliency image. It can be seen that for all three images the confidence measures have
clear peaks that indicate an optimal threshold for this image, as the resulting binary
shape has the highest formfactor and thus shows the highest confidence that the shape
represents the actual coin region. However, these peaks are at different t and formfac-
tor values. Therefore, for the optimal threshold t∗ the maximum value of the objective
function FF(Ct) needs to be found, i.e.

t∗ = arg max
t

FF(Ct). (3.5)

Optimizing this function numerically is straightforward as it consists of only one vari-
able with a specified value range, hence the values of t must be just regularly sampled in
the search space [0, 1] and the maximum value obtained must be recorded. For the given
task, it has been empirically determined that seven thresholds t ∈ {0.3, 0.35, . . . , 0.6} are
sufficient and that a finer discretization does not improve the accuracy of the method. In
Figure 3.4 the segmentation masks along with their respective formfactors for the three
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() (a) Input image () t=0.35, FF=0.884 () t=0.45, FF=0.871 () t=0.55, FF=0.000

() (b) Input image () t=0.35, FF=0.525 () t=0.45, FF=0.851 () t=0.55, FF=0.050

() (c) Input image () t=0.35, FF=0.000 () t=0.45, FF=0.204 () t=0.55, FF=0.585

Figure 3.4: The three images of Figure 3.3 along with the segmentation masks obtained
by thresholding with t values of 0.35, 0.45 and 0.55. The input images and segmentation
masks are cropped for better visualization.

coin images depicted in Figure 3.3 and thresholds of 0.35, 0.45 and 0.55 are shown. It can
be seen that the confidence values of the images shown in Figure 3.3 are in accordance
with the obtained segmentation masks, i.e. the visually best segmentation correlates
with the maximum formfactor. The segmentation masks of Figure 3.4a for t = 0.35 and
t = 0.45 are very similar and t = 0.35 is chosen just due to a slightly more regular border.
Similarly, the mask of t = 0.45 is chosen over the mask of t = 0.35 for Figure 3.4b, but
the difference in border jaggedness is more pronounced. For Figure 3.4c, the mask of
t = 0.45 depicts the sheet of paper indicating the coin ID and the correct segmentation
with highest formfactor is obtained with t = 0.55.

3.2 Experiments

In this section the results of empirical evaluations of the presented method are reported.
In Section 3.2.1 a comparison to manual ground truth segmentations is done for 92 coin
images from different sources. The suitability of the method for extracting the exact coin
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border for shape-based coin identification is investigated in Section 3.2.2. The results of
Section 3.2.1 and Section 3.2.2 have been originally published in [ZK09] and [HMZZK11],
respectively.

3.2.1 Comparison with Manual Coin Segmentations

The proposed method is tested on a set of 92 images acquired at the Museum of Fine
Arts, Vienna, the Fitzwilliam Museum, Cambridge, and the Romanian National History
Museum, Bucharest, representing a wide range of different coin images. Six of the images
used for evaluation are shown in Figure 3.5. The images of the evaluation set differ in
various ways:

� Resolution: from 178× 184 up to 1154× 866.

� Background: images with uniform background (Figure 3.5a,b,e,f) and images with
less uniform background (Figure 3.5c-d).

� Image clutter: images where the coin is the only visible object (Figure 3.5b) and
images where other objects like rulers or signs are present (Figure 3.5a,c-f).

� Coin size relative to image size: images where the coin perfectly fits into the
image frame (Figure 3.5b) or images where the coin region makes only ∼ 15% of
the image (Figure 3.5c).

� Coin roundness: images with a nearly perfectly circular border (Figure 3.5a,f)
and images with a more irregular border due to fragmentation (Figure 3.5b-c)

� Illumination conditions: images with (Figure 3.5b-c) and without shadow casts
(Figure 3.5a,d-f).

For the experiments presented here, all color images were converted to gray-level
images. Compression artifacts due to chroma subsampling as done in JPEG compression
[GW02] are highly present in the image data and make the use of color information
infeasible.

Evaluation Procedure

For each image a ground truth segmentation was manually obtained by means of an
image editing software. For the evaluation of a single segmentation the dice coefficient
(DC) [Dic45], also known as mutual overlap, is measured:

DC =
2 · |Cs ∩ Cg|
|Cs|+ |Cg|

(3.6)

where Cs is the set of pixels in the segmented region and Cg the set of pixels in the
ground truth segmentation. The formula measures the set agreement by the size of the
union of two sets divided by the average size of the two sets. Hence, a dice coefficient of
0 indicates no overlap, whereas a dice coefficient of 1 indicates perfect agreement. The
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Six of the 92 coin images used for evaluation.

dice coefficient is a commonly used evaluation metric for image segmentation [CCH06,
SPM+09].

To demonstrate the appropriateness of the proposed method for the segmentation of
coin images, the results are compared to the outputs of other segmentation methods: (1)
the adaptive thresholding method used in [ZHMNK07] for the segmentation of ancient
coins (see Section 2.5.3), (2) the mean shift method proposed by [CM02] for a compar-
ison with a state-of-the-art method in image segmentation (see Section 2.2) and (3) the
presented method when the thresholding is directly applied to gray values instead of the
saliency values.

It must be noted that the output of the mean shift segmentation method is not implic-
itly a partition into foreground and background, as needed here. Mean shift is a general
unsupervised segmentation method and thus partitions the image in a set of disjoint
regions without labeling the foreground and background. For the given task, the segmen-
tation has to extract the single most salient object in the image, i.e. the coin. Therefore,
to make the mean shift segmentation results comparable, the parameter M for the mini-
mum allowable region area (see [CM02] for details) has to be manually adapted for each
image to produce a two-segment partition of the image. Evaluation was performed on the
mean shift implementation of the EDISON system2.

Results and Discussion

In Table 3.1 the average and median DC of the different methods are listed. The average
DC of 0.517 and median DC of 0.720 of the adaptive thresholding method indicate its

2http://coewww.rutgers.edu/riul/research/code/EDISON/ (accessed on June 8th, 2014).
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Average Median
Adaptive Thresholding [ZHMNK07] 0.517 0.720
Mean Shift [CM02] 0.983 0.988
Presented method on original gray values 0.923 0.980
Presented method 0.983 0.993

Table 3.1: Average and median DC achieved on the 92 test images.

low robustness. Although the parameters of the method can be adjusted to perform well
on a given type of coin image, it is not able to handle the wide range of different images
contained in the test set. A second conclusion of the results is that the local entropy and
range filtering is a reasonable preprocessing step to provide a more appropriate intensity
image for the thresholding. This can be seen by the lower average and median DC when
the original gray values are used. From the results in Table 3.1 it can also be seen that
the presented method achieves a similar performance than mean shift segmentation. The
average DC is equal (0.983) and the median DC of the presented method is even higher
(0.993 to 0.988 of the mean shift method). However, shape-controlled thresholding has two
advantages: firstly, in contrast to mean shift no parameter has to be adapted manually.
And secondly, the method is computationally faster: while written in MATLAB, it takes
0.11s for a 178 × 184 image and 1.46s for a 1154 × 866 image, whereas the mean shift
implementation (written in C++) takes 0.24s for the 178 × 184 image and 8.95s for the
1154× 866 image on the same machine.

Figure 3.6 shows results on selected images where the obtained coin border is outlined
by a black or white line. Figure 3.6a-c belong to the best segmentation results with a DC
of 0.9973, 0.9981 and 0.9970, respectively. Figure 3.6d-e show the two worst results with
a DC of 0.9441 and 0.9500, respectively. You see that shadows pose a problem to the
method since they produce a strong edge which does not belong to the actual coin border.
Nevertheless, although on these images the shadow prevents the correct detection of the
coin borders, the coin area is still correctly identified and a further classification of the
coin would be only marginally affected by the non-perfect segmentation. Anyhow, on the
image of Figure 3.6f the method correctly excludes the shadow from the segmentation,
producing a DC of 0.9904.

3.2.2 Evaluation for Shape-Based Coin Identification

The dataset used to evaluate coin identification consists of 2400 images of 240 different
coins from the same ancient Greek coin class, provided by the Fitzwilliam Museum, Cam-
bridge, UK. In Figure 3.7 four coins of the dataset are shown, where each row represents
the same coin specimen and each column represents a different sensor used for coin ac-
quisition and/or orientation of the coin. The two sensor types are a digital camera and
a flatbed scanner, which were used to acquire three and two different coin orientations,
respectively. By taking images of both coin sides, hence in summation 10 images are
available per coin specimen. It can be seen in Figure 3.7 that all images show the same
coin type: on the obverse side the head of Heracles in a lion skin in depicted. The reverse
side shows the God Zeus seated on a throne. However, each coin specimen’s border has
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((a)) DC = 0.9973 ((b)) DC = 0.9981 ((c)) DC = 0.9970

((d)) DC = 0.9441 ((e)) DC = 0.9500 ((f)) DC = 0.9904

((g)) DC = 0.9876 ((h)) DC = 0.9966 ((i)) DC = 0.9798

Figure 3.6: Results of the proposed segmentation method with respective dice coefficients
(DC).

its own individual shape, although differences can be subtle.
The coin identification dataset does not include manually annotated ground truth seg-

mentations which prohibits the direct evaluation of segmentation performance. Instead,
segmentation performance is indirectly measured by applying shape-based coin identifi-
cation, i.e. the accuracy is evaluated in the terms of the identification rate when the
segmented coin border is used to identify a coin. In [HMZZK11] the deviation from a
circular shape is used to describe the coin border in order to perform the shape match-
ing for coin identification. The shape descriptor samples the distances of border points
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Figure 3.7: Four examples of coin specimens used for shape-based identification. Images
with a white background have been acquired with a flatbed scanner and images with a
gray background with a digital camera.

to the center of gravity of the segmented coin region at equiangular intervals. For the
final shape matching a global and local dissimilarity is computed. The global metric uses
the minimum mean squared error of all shifts between two descriptors, whereas the local
metric uses the squared distance of their Fourier magnitude values.

Tests performed with various training set sizes reveal that the coin identification rates
are ranging from 90.3 %, when only one coin image per specimen is available, up to 99.0
%, when 9 images per class are available for comparison. Given the high number of classes
(240) and the low inter-class variations (all coins are roughly circular), these results show
the effectiveness of the shape-based coin identification method. As the shape matching
relies on the presented coin segmentation method, the high identification rates indicate
its suitability for obtaining an accurate description of the coin border.

3.3 Summary

In this chapter a shape-controlled segmentation method is described. The method ex-
ploits the approximately known shape of the target object and leverages a scalar shape
confidence measure to achieve a both robust and fast segmentation. The method starts
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with the transformation of the image to a saliency map by means of combining the outputs
of a local entropy and range filter. For approximately round objects like ancient coins,
the formfactor of the shape resulting from thresholding the saliency map is proposed as
confidence measure.

It is shown in the experiments that seven regularly sampled thresholds are sufficient to
find the best segmentation for images of ancient coins. Hence, although based on optimiza-
tion, the method is faster than general-purpose unsupervised segmentation methods like
mean shift which do not take a-priori knowledge of shape into account. Additionally, for
ancient coins the method shows higher segmentation accuracy than a previously proposed
adaptive thresholding approach. On the testset of 92 images representing a wide variety
of coin image conditions (resolution, relative coin size, illumination, background clutter
etc.), the method proves its robustness with dice coefficients of no less than 0.9441. The
highest errors are caused by shadow casts at the coin borders, but on the overall dataset
there are no substantially wrong segmentations which emphasizes the usefulness of the
method as a preprocessing step for coin classification. For coin classification, the purpose
of an initial segmentation is to provide a scale-normalized region-of-interest for the subse-
quent feature extraction step (see Chapter 4). This goal is highly fulfilled, as the possible
enlargement of the segmentation due to shadow casts is not more than 15% (see Figure
3.6). Hence, the scale difference is marginal and the introduced small image clutter is
weakened by the locality of the similarity metric (see Chapter 5).

If proper arrangements for coin image acquisition are made and no shadows are present
at the coin border (e.g. by placing the coin on a sheet of glass or by using an adequate
illumination setup), the method can be assumed to give a highly accurate segmentation.
This is shown by the experiments for shape-based coin identification, where with the
presented segmentation method an identification rate of up to 99% for a dataset of 240
coins can be achieved, despite the generally high shape similarity of the coins.

51



Chapter 4

Illumination-Insensitive Feature
Extraction

This chapter deals with illumination-insensitive extraction of image features. The feature
should be able to (1) identify the underlying surface characteristics within the shading
pattern on the one hand and (2) ignore effects resulting from unknown illumination and
material conditions on the other hand. As there exists no fully invariant and distinctive
representation for this kind of problem (see Section 2.1.3), it rather has to be aimed to
maximize insensitivity and distinctiveness in a joint fashion. This is especially challenging
for textureless objects, but this type of objects is widely ignored in existing research and
thus the focus of the presented work.

In Section 4.1, first a general evaluation of low-level features is conducted. The ob-
jective is to comparatively investigate image representations with respect to their ability
for illumination-insensitive recognition. The presented evaluation is comprehensive in
the sense that object texturedness, material and the amount of light source change are
manipulated by means of a synthetic dataset. Parts of Section 4.1 have been originally
published in [ZK13a].

In Section 4.2, the new local image descriptor LIDRIC is presented. This descriptor
is the result of the insights provided by previous feature evaluation and hence shows to
outperform existing descriptors on real-world image data with illumination changes. This
work has been originally published in [ZK13b].

4.1 Evaluation of Low-Level Image Representations

The purpose of the presented evaluation is illustrated in Figure 4.1. Given an image patch
and a particular representation (i.e. a value or a set of values for each image pixel), it
is evaluated how distinctive and insensitive to illumination changes the representation is.
The less the distance between two representations of a the same imaged object under
illumination changes, the more insensitivity is given. On the contrary, the more the
distance between representation of two different imaged objects, the more distinctiveness
is given.

The remainder of this section is organized as follows. The various image representa-
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Figure 4.1: The scope of the presented evaluation. An image representation R is evalu-
ated in terms of its distances to same object patches (left, green arrows) under different
illumination conditions as well as to other object patches (right, red arrows). The green
distances should be low, whereas the red distances should be high.

tions used for this evaluation are described in Subsection 4.1.1. In Section 4.1.2 the test
data and evaluation scheme is described and the final results are reported and discussed.

4.1.1 Low-Level Image Representations

In this study eight representations are compared. These representations are chosen since
they have proposed as being insensitive to illumination changes in the past and are con-
stantly used for illumination-insensitive feature extraction in computer vision. In the
following, all representations are described in detail. Additionally, a visualization of the
representations is exemplarily shown for the four object types shown in Figure 2.2, i.e.
flat and textured, non-flat and textured, textureless as well as textureless and shiny. The
patches shown for each object type are again depicted in Figure 4.2.

Gradient Direction (GD)

Image gradient directions have been identified by [CBJ00] as an illumination-insensitive
image feature. The direction GD(p) of the gradient at the image point p = (x, y) in the
image I is defined as

GD(p) = arg

(
∂I

∂x
,
∂I

∂y

)
(4.1)

where arg(x, y) is the angle (in radians) from the x-axis to the point (x, y). In the cir-
cular domain, the distance dGD(GD′(p),GD′′(p)) between two gradient directions GD′(p)
and GD′′(p) is then computed as

dGD(GD′(p),GD′′(p)) = min(|GD′(p)−GD′′(p)| , 2π − |GD′(p)−GD′′(p)|) (4.2)
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((a)) Flat, textured ((b)) Non-flat, textured

((c)) Textureless ((d)) Textureless, shiny

Figure 4.2: The image patches used for illustrating the representations used in this eval-
uation.

Using this distance metric for the individual pixels, the Sum of Squared Distances
(SSD) is taken to compare two images,

SSD(GD′,GD′′) =
∑
p∈I

(dGD(GD′(p),GD′′(p)))2. (4.3)

Gradient Orientation (GO)

Instead of representing image gradients in a signed version (directions between 0-360
degrees), an unsigned version (orientations between 0-180 degrees) of gradients can also
be used. In the following, the term direction is used for signed gradients and the term
orientation for unsigned gradients. Gradient orientations are in theory less sensitive to the
lighting directions than gradient directions, as opposite lighting directions tend to produce
opposite gradient directions at depth discontinuities on the surface [OJL07]. From the
gradient direction GD(p) the gradient orientation GO(p) can be simply computed as

GO(p) = mod(GD(p), π). (4.4)

To compare two images, the SSD is used where the pixel difference dGO(GO′(p),GO′′(p))
is defined as

dGO(GO′(p),GO′′(p)) = min(|GO′(p)−GO′′(p)| , π − |GO′(p)−GO′′(p)|). (4.5)
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Figure 4.3 shows both the representations GD and GO. One can see that GD is very
stable for textured objects, but is affected by edge polarity changes (Figure 4.3c), in
contrast to GO.

((a)) Flat, textured ((b)) Non-flat, textured ((c)) Textureless ((d)) Textureless, shiny

Figure 4.3: Output of GD (top row) and GO (bottom row).

Laplacian of Gaussian (LOG)

The Laplacian of Gaussian is an approximation of the whitening filter tending to decor-
relate the images which makes the filter appropriate for isotropic surfaces [OJL07]. The
LOG filter kernel is computed by applying the Laplacian operator to a Gaussian function
with standard deviation σ,

LOG(x, y) = − 1

πσ4
e−

x2+y2

2σ2

(
1− x2 + y2

2σ2

)
. (4.6)

An example of the filter is shown in Figure 4.4. The LOG filter is used by convolving
the image and normalizing the absolute responses to unit length (see Figure 4.5). The
distance between two images is then again determined by the SSD.

Figure 4.4: A Laplacian of Gaussian filter.

Jets of Gabor Filter Responses (JG)

Gabor filters refer to the work of Dennis Gabor [Gab46] in which he proposes to repre-
sent a signal as a combination of elementary functions. Daugman [Dau80] extended his
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((a)) Flat, textured ((b)) Non-flat, textured ((c)) Textureless ((d)) Textureless, shiny

Figure 4.5: Output of LOG.

theory to two dimensions and proposed to use Gabor filters for image feature extraction
[Dau88]. Gabor filters are widely mentioned to be insensitive against illumination condi-
tions [AMU97, KKK06, OJL07] due to their invariance against additive and multiplicative
intensity changes, which makes them a popular low-level feature for applications like face
recognition [AMU97, TT10]. A Gabor filter G has complex coefficients and can thus be
defined in terms of a real/even part Ge and an imaginary/odd part Go,

Ge(x, y) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

ω

)
, (4.7)

Go(x, y) = exp

(
−x

′2 + γ2y′2

2σ2

)
sin

(
2π
x′

ω

)
, (4.8)

with x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ. The parameter σ defines the
standard deviation of the Gaussian envelope whereas ω represents the wavelength of the
sinusoidal plane wave. To construct Gabor filters of different sizes but equal shapes, one
can define σ as a linear function of ω, σ = c ·ω. The parameter θ defines the orientation of
the filter and γ is the spatial aspect ratio. Gabor filters can be thought of as quadrature
bandpass filters where the combination of a real and imaginary component allows for the
phase-invariant detection of oriented frequencies in the image. Figure 4.6 demonstrates
the influence of the parameters c and γ for a filter with horizontal orientation.

To construct a Gabor filter bank, the parameters σ, c and γ are kept fixed, N equally
spaced orientations θ1 . . . θN are used and the image is filtered with the corresponding N
Gabor filters Gθi

e and Gθi
o . The jet J̃G(p) is a vector of the magnitude responses of the

filtered images Iθie = I ? Gθi
e and Iθio = I ? Gθi

o ,

J̃G(p) = [

√
(Iθ1e (p))2 + (Iθ1o (p))2, . . . ,

√
(IθNe (p))2 + (IθNo (p))2] (4.9)

In addition to complex shading patterns, illumination variations can also induce simple
multiplicative changes of image intensities which can be compensated by normalizing the
jet to unit length [KKK06, OJL07]. The final feature is thus given by the normalized
jet JG(p). Figure 4.7 shows the elements of JG that correspond to the Gabor filter with
θ = 0. The distance between two jets JG′(p) and JG′′(p) is computed as the L2-norm of
their vector difference. Image distances are computed by taking the SSD of JG′(p) and
JG′′(p) for all image points p.
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(a)

c=0.3 c=0.6 c=0.9

γ=0.8

γ=1.0

γ=1.2

(b)

c=0.3 c=0.6 c=0.9

γ=0.8

γ=1.0

γ=1.2

Figure 4.6: The influence of the parameters c and γ on the shape of the (a) even Gabor
filter Ge and (b) odd Gabor filter Go.

Jets of Even Gabor Filter Responses (JEG)

Besides Gabor jets, jets of oriented second derivatives of Gaussians [FA91] have also been
proposed as an effective way of combining LOG and GO to produce a representation
which is appropriate for both isotropic and anisotropic surfaces [OJL07]. Even Gabor
filters have a very similar shape to oriented second derivatives of Gaussians if the cosine
bandwidth is chosen such that the Gaussian envelope roughly covers the cosine range of
[−1.5π, 1.5π] (i.e., c ≈ 0.4) [KKK06, OJL07]. This similarity is depicted in Figure 4.8.
Figure 4.8a shows an even Gabor filter with parameters c = 0.4 and γ = 1.0 and Figure
4.8b a second derivative of Gaussian with reversed sign.

In this study, even Gabor filters are used as they provide a higher flexibility in the
definition of the filter shape, due to a more general set of parameters. However, it is
clear from the high similarity of the filters that substantially the same performance can
be achieved by the use of second derivatives of Gaussians. In contrast to JG, the jet J̃EG
is formed only from the absolute values of Iθie ,

J̃EG(p) = [
∣∣Iθ1e (p)

∣∣ , . . . , ∣∣IθNe (p)
∣∣] (4.10)

The final feature is again given by the normalized jet JEG(p) (see Figure 4.7).

Jets of Multi-Scale Even Gabor Filter Responses (JMSEG)

The optimal size of the filters depends on the surface characteristics, as for smoother
surface parts a wider filter is needed than for less smooth surface parts [OJL07]. One
can learn the optimal filter size for a given application domain by means of training data
as done in [OJL07], but nonetheless the variation of surface smoothness is disregarded if
only one single filter size is used. As in a general scenario the surface characteristics are
usually unknown and varying, it is beneficial to extend the single-scale jet JEG towards
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((a)) Flat, textured ((b)) Non-flat, textured ((c)) Textureless ((d)) Textureless, shiny

Figure 4.7: Output of the jet element corresponding to a filter orientation of θ = 0 for
JG (top row) and JEG (middle row). The bottom row shows the jet element of JMSEG
with the same orientation but a higher filter scale ω.

(a) (b)

Figure 4.8: (a) Even Gabor filter and (b) second derivative of a Gaussian with reversed
sign.

a multi-scale representation JMSEG. For this jet the single-scale jets JEGωi , obtained by
filtering with Gabor filters of scales ω1 . . . ωM , are simply concatenated,

JMSEG(p) = [JEGω1 , . . . , JEGωM ] (4.11)

The output of a larger scale filter is shown in Figure 4.7. In the presented experiments,
the multi-scale representation is only used for even Gabor filter responses due to the higher
performance of JEG compared to JG on single scales (see Section 4.1.2).

Self-Quotient Image (SQI)

The SQI was introduced by Wang et al. [WLW04] as a method to separate the albedo
information R(x, y) from images. Similar to other works in this area (see Section 2.1.3),
the idea is - based on the Lambertian assumption - that the illumination effects mainly
appear in the low-frequency components of the image and that they can therefore be
eliminated by dividing the image by a smoothed version of it. For increased robustness,
several anisotropic smoothing kernels with different scales are used and integrated to
the final self-quotient image. In Figure 4.9 the illumination normalization effect of SQI
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is shown. It can be seen that the low-frequency parts of the image originating from
Lambertian shading (e.g. Figure 4.9b) are suppressed while the high-frequency parts
originating from texture are preserved.

((a)) Flat, textured ((b)) Non-flat, textured ((c)) Textureless ((d)) Textureless, shiny

Figure 4.9: Output for SQI.

The method is intentionally designed for textured objects, but also showed superior
performance in a study of illumination invariance for face recognition [GJ10] on the nearly
textureless face parts cheek, chin and nose. Another motivation for including SQI in
the evaluation is to assess the performance of the vast amount of methods dedicated
to textured objects by evaluating one representative method. For the experiments, the
implementation of SQI provided by the INFace1 toolbox is used and the SSD of the SQIs
is taken as distance measure.

Gray Value (GV)

In order to have a baseline performance, results for simple image differencing are also
reported. In other words, the SSD between the original gray values of the two images is
taken as image distance.

4.1.2 Experiments

Experiments are conducted on synthetic image datasets built from 3D historical coin
models as well as on real datasets of textureless and textured objects. Synthetic images
are used because this way the parameters of image formation can be freely changed to
produce images with different illumination conditions and material properties with or
without texture. In this manner, it is possible to directly compare the performance of the
features under different conditions without introducing a bias due to different objects used
between datasets. The real dataset is used to validate the results for various real-world
material properties and illumination conditions. Both datasets are specifically described
in Section 4.1.2. Section 4.1.2 details the general evaluation procedure. Various aspects of
the evaluation like parameter selection, influence of object texturedness and specularity,
influence of amount of light source change as well as real data performance are treated in
the Sections 4.1.2-4.1.2.

1http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/INFace/ (accessed on June 8th,
2014).
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Datasets

Synthetic Datasets

The synthetic datasets consist of images of 14 coin models which were rendered using
the open-source graphics software Blender 2. For each model, twelve sets of 500 × 500
images with 65 illumination directions were rendered where each set represents one out
of four material BRDFs and one out of three texture density levels. Material BRDFs are
intended to represent different levels of specularity starting from a Lambertian material
with zero specularity up to specular intensity values of 0.25, 0.50 and 1.00. Three texture
levels were chosen to show the correlation of the features’ performances to the amount
of texture on the objects. The first level shows no texture and thus represents the set
of textureless objects. For the remaining two levels synthetically generated textures were
used. For each coin such a texture was generated by placing random characters from
different fonts at positions described by a quasi-random spatial distribution. Texture
density was measured by computing the mean gradient magnitude in the texture images
(for texture density level 1 and texture density level 2 the threshold was set to 0.04 and
0.08, respectively).

For each model and dataset, 65 images with varying illumination directions were ren-
dered. The camera image plane was placed parallel to the coin and light source positions
were defined by their azimuth angleϕ and elevation angle λ, as illustrated in Figure 4.10.
Eight levels of λ ∈ {10◦, 20◦, . . . , 80◦} with eight levels of ϕ ∈ {0◦, 45◦, . . . , 315◦} each were
used to produce 64 images. The 65th image was rendered with the light placed at the
camera position (i.e. λ = 90◦). Figure 4.11 shows images of one model rendered with the
same illumination parameters of ϕ = 315◦ and λ = 60◦ for the twelve synthetic datasets.
Figure 4.12 shows the appearance variation induced by changing the light sources on the
same textureless model and a specular intensity of 0.50.

In Figure 4.13 all coin models are shown. It can be recognized that the coin models
exhibit, on a local level, smooth isotropic as well as non-isotropic surface parts and thus
cover the wide range of surface characteristics desired for the purpose of this evaluation.
As a contribution to other researchers in this field, the overall dataset is available for
download3.

Amsterdam Library of Object Images

The Amsterdam Library of Object Images4 (ALOI) [GBS05] is an image database of
1 000 objects that were photographed from three viewpoints and with eight illumination
configurations each. The database contains a wide variety of textureless objects (e.g., a
nut, a sponge, white cotton, a metal elephant, a plastic cup...) as well as textured objects
(e.g., labeled boxes, an alarm clock, a calendar, a cream tube, a shoe ...), as shown in
Figure 4.14. Therefore, the ALOI images provide a realistic and challenging database due
to the high variation of material BRDF and surface smoothness among the objects.

2http://www.blender.org/ (accessed on June 8th, 2014).
3http://www.caa.tuwien.ac.at/cvl/people/zamba/sidire/ (accessed on June 8th, 2014).
4http://staff.science.uva.nl/~aloi/ (accessed on June 8th, 2014).
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Figure 4.10: Camera and illumination setup for the synthetic datasets.

Texture-
less 

Texture 
Density 
Level 1 

Texture 
Density 
Level 2 

Spec. Intensity=0.00 Spec. Intensity=0.25 Spec. Intensity=0.50 Spec. Intensity=1.00 

Figure 4.11: Coin model rendered with different material properties and texture densities.
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Figure 4.12: All 65 images of the coin model shown in Figure 4.11 rendered without
texture and specular intensity of 0.50.

.

Figure 4.13: All 14 coin models used for creating the synthetic datasets. For this figure
all models were rendered without texture, specular intensity of 0.25, light source azimuth
angle ϕ = 135◦ and elevation angle λ = 50◦.

Evaluation Procedure

For evaluation an empirical performance measure is needed in order to assess the quality
of a image representation by means of its distances to true and false images, as depicted
in Figure 4.1: a “good” feature will minimize the distance between image patches showing
the same object part and maximize the distance between image patches showing different
object parts. Hence, inspired by the evaluation scheme presented in [BHW11], these
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(a)

(b)

Figure 4.14: Examples of (a) textureless and (b) textured objects in the ALOI dataset.

two groups of distances are measured for a given feature by sets of true and false image
patch pairs. True patch pairs show the same object patch but with different illumination
conditions, whereas false patch pairs show different object patches. Figure 4.15a-c shows
examples of true patch pairs from the synthetic datasets, the ALOI textureless dataset
and the ALOI textured dataset, respectively.

For a given representation and set of true and false pairs, the distances form two
histograms, as depicted in Figure 4.16. These two histograms of distances are integrated
to build a Receiver Operating Characteristic (ROC) curve [Faw06] of which the Area
Under Curve (AUC) is computed as performance measure. The ROC analysis allows
to investigate how reliably one can discern true pairs from false pairs by evaluating the
relationship between the True Positive Rate (TPR) and False Positive Rate (FPR), defined
as

TPR =
number of true positives

number of positives
,FPR =

number of false positives

number of negatives
. (4.12)

Here, the number of true positives is the number of true patch pairs whose distance
is below a given threshold and the number of positives is the total number of true patch
pairs in the dataset. Likewise, the number of false positives is the number of false patch
pairs whose distance is below the same threshold and the number of negatives is the total
number of false patch pairs in the dataset. The ROC curve is then formed by varying
the threshold from zero up to the maximum distance occurring in the overall set and
measuring the corresponding TPRs and FPRs. The AUC is a simple scalar measure
allowing to compare the performance of ROCs and their underlying classifiers, with 1.0
being a perfect result and 0.5 being the statistical outcome of random guessing. Intuitively,
a highly illumination-insensitive feature will have less overlap between the two histograms
shown in Figure 4.16, and thus will produce values nearer to the top left corner of the
ROC space and a higher AUC than a less illumination-insensitive feature.

For generating the patch pairs, the same number of true patch pairs and false patch
pairs were randomly extracted from the images of a dataset. A patch size of 16 × 16
pixels was used, but in general the patch size has no significant impact on the results, as
has been observed in initial tests. To generate patch pairs from the ALOI datasets, 80
textureless objects and 80 textured objects were manually identified in the dataset and

63



((a)) Synthetic Datasets

((b)) ALOI textureless dataset

((c)) ALOI textured dataset

Figure 4.15: True patch pairs used for evaluating the image representations (of size 64×64
for better illustration).

AUC of ROC curve

Distances of 
 true patch pairs

Distances of 
     false patch pairs

TP
R

FPR

Figure 4.16: Histograms of distances between true and false patch pairs and derived ROC
curve with measured AUC.

non-overlapping true and false patch pairs were randomly picked from images taken from
the same viewpoint (12 000 from the textureless objects and 18 000 from the textured
objects).
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Parameter Selection

As the main purpose is the study of the features’ behavior on textureless objects with
varying material properties, tests for parameter selection were conducted on a mixed
patch pair set extracted from the four synthetic datasets of textureless objects. More
particularly, for the true patch pairs 50 000 pairs were randomly extracted, each showing
a 16 × 16 region from the same object and at the same image position, but illuminated
from different directions. For the false patch pairs, 50 000 pairs were randomly extracted,
each showing a 16 × 16 region from different objects at different positions. Parameter
selection was then achieved by an exhaustive search over the parameter space.

For GD and GO, it was tested if a presmoothing of the patches or a larger Sobel filter
than the standard 3×3 one are beneficial in terms of recognition performance, but no im-
provement could be detected. For LOG an exhaustive search was done to find an optimal
standard deviation of 1.5 of the Gaussian. For SQI, no exhaustive parameter selection
was conducted as this method is intended for textured objects and initial tests with sev-
eral parameter settings were not successful in substantially improving the generally bad
performance of SQI. Therefore, the standard settings defined in the INFace Toolbox were
used.

For the features JG and JEG, the parameters defining the shape of the Gabor filters (c
and γ) as well as the number N of orientations are of interest. Hence, a parameter space
of c ∈ {0.30, 0.35, . . . , 1.00}, γ ∈ {0.50, 0.60, . . . , 1.50} and N ∈ {2, 3, . . . 12} was defined.
Figure 4.17 shows the maximum AUC achieved over the parameter space for various fixed
values of c, γ and N . It can be derived from these results that the best performance is
achieved when c is set in a range of 0.45−0.50, i.e. the filters have a shape close to second
derivatives of Gaussians (see also Figure 4.8). The optimal value for the aspect ratio of
the filters defined by the parameter γ is around 0.9. The experiments also reveal that the
number of orientations has only a minor influence on the overall performance for N ≥ 6.
Based on these results, for the further experiments parameter values of γ = 0.9 and N = 6
for JG, JEG and JMSEG are used, as well as c = 0.50 for JEG and JMSEG and c = 0.45
for JG. The resulting shape of the JEG and JMSEG filters is shown in Figure 4.18, whose
similarity to second derivative of Gaussian filters becomes apparent by comparison with
Figure 4.8. Optimal filter sizes ω1 . . . ωM for JMSEG were identified as ωj = ω12(j−1)/2

with ω1 = 1 and M = 8.

Recognition Performance Depending on Object Specularity and Texturedness

To evaluate the recognition performance of the features for the twelve synthetic datasets,
50 000 true and false patch pairs were randomly extracted from each dataset. Patch
pairs contained in the mixed set for parameter selection were not included into the four
textureless datasets used for this evaluation. The results are plotted in Figure 4.19a-c. It
can be clearly seen that on textureless objects the representations based on even Gabor
responses (JEG and JMSEG) perform best. The multi-scale representation of JMSEG is
beneficial especially on Lambertian surfaces where it shows a significant improvement of
recognition performance over JEG (AUC of 0.933 against 0.899). Complex Gabor filter
responses (JG) are better than the other remaining features but it can be concluded from
the worse performance compared to JEG that the phase invariance of the complex filter
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Figure 4.17: Recognition performance of JEG and JG dependent on parameters c, γ and
N .

Figure 4.18: The even Gabor filter with c = 0.5 and γ = 0.9 used for JEG and JMSEG.

decreases its recognition power. For image gradients, there is a large discrepancy between
the use of gradient orientations (GO) and gradient directions (GD). GD is much less stable
than GO as it is highly vulnerable to edge polarity changes induced by opposite lighting
directions between true patch pairs. SQI is only slightly better and performs substantially
worse than the top-performing features, as this representation is designed for textured
objects and is thus highly affected by changes of the shading patterns on textureless
objects. Therefore, the method achieves its best results on Lambertian objects with a high
texture density (Figure 4.19c). Another conclusion from the results on textureless objects
is that more specularity of the objects’ material increases the performance. Although
a specular BRDF causes more appearance variations from light source variations than
a Lambertian BRDF, surface characteristics are also more accentuated by a specular
surface, which in turn supports its recognition. The only exception of this effect is LOG
which has been especially proposed for smooth, Lambertian objects [OJL07].

The results on textured objects shown in Figure 4.19a-b show that texture increases the
recognition performance of all features and in general that their performance is correlated
to the degree of texture variation. Naturally, since changes of albedo are less affected
by lighting variations than changes of object depth, the recognition of objects is more
robust the more albedo changes occur (i.e. a higher texture density). However, the
representations based on Gabor filters are the best performing features for all scenarios,
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((a)) Textureless objects.
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sity level 1.
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Figure 4.19: Comparison of recognition performance for different levels of texturedness
and material specularity.

regardless of the texture density of the objects.

Influence of the Amount of Light Source Change

An interesting question in the context of this evaluation is how the amount of light source
difference between the images to be compared has an influence on the discriminative power
of the features. If one examines the ROC curves obtained from all textureless patch pairs
shown in Figure 4.20a, it is evident that some curves cross with each other. This indicates
that the relative orderings of recognition performance among the features are dependent
on the amount of light source difference. The representations GD, SQI and GV, which
generally perform badly due to their non-invariance to the polarity of image edges, have
a lower false positive rate in a true positive range of around 0.0− 0.4 than the generally
top-performing feature JEG. On the other hand, for higher false positive rates they have
true positive rates below the line of no-discrimination. This effect is caused by the strong
impact that opposite lighting directions between patch pairs of textureless objects have
on the computed distance, as in such cases the polarity change makes the distance become
larger than the distances between random false patch pairs. Albedo changes usually do
not cause edge polarity changes for opposite lighting directions, and thus this effect is far
less pronounced for textured objects (see Figure 4.20b)

To evaluate the features’ performances with respect to the amount of light source dif-
ferences, this issue is taken into account for the ROC curve generation by subselecting
patch pairs from the textureless objects with a given difference of light source azimuth
or elevation. Hence, only true patch pairs with a specified azimuth difference and no
elevation difference, and vice versa, are considered. The results of these tests are shown
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Figure 4.20: ROC curves for textureless and textured objects. The values in brackets are
the AUCs of the features. The black solid line depicts the line of no-discrimination.

in Figure 4.21. The plotted curves demonstrate that for smaller light source changes the
performances of the features are close together whereas for stronger changes there is also
a higher difference in performance. GD is a competitive feature for small light source
changes of 45◦ azimuth and 10◦ − 20◦ elevation, but its performance decreases stronger
than that of other features for larger light source changes. GD, SQI and GV are espe-
cially vulnerable to changes of the light azimuth, in contrast to representations which are
invariant to edge polarity. For these features azimuth changes of 90◦ represent the worst
case scenario, whereas the recognition performance at changes of 180◦ lies in the same
range as the performance at changes of 45◦. An important aspect of these experiments
is that JMSEG shows the top performance for all levels of light source changes, but its
dominance is more pronounced for higher levels of change. Therefore, for scenarios where
only little variations of illumination conditions are expected, GD can still be considered
as a powerful low-level representation, whereas for more extensive variations single- or
multi-scale Gabor filter responses work remarkably better than all other representations.

Recognition Performance on Real Datasets

As can be seen in Figure 4.22, the results on the real datasets widely reflect the findings
of the experiments on the synthetic datasets. JMSEG is again the best performing fea-
ture for textureless and textured objects, followed by JEG and JG. The generally lower
performance on the real datasets is explained by image noise on the images as well as
the acquisition setup used. There are more underexposed (i.e. completely black) and
overexposed (i.e. completely white) objects parts which evidently hinders recognition.
Nonetheless, the results show that the insights gained from the experiments on synthetic
datasets can be transferred to the real world.
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Figure 4.21: Recognition performance in relation to the amount of light source difference.
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Figure 4.22: Recognition performance on the real ALOI datasets of textureless and tex-
tured objects.

4.2 LIDRIC: A Local Image Descriptor Robust to

Illumination Changes

Due to the demonstrated superiority of the JMSEG feature transformation for illumina-
tion
changes, in this section this low-level feature is used as a basis for image descriptor
construction. It has been argued in Section 2.3.4 that typical effects of illumination vari-
ations like changes of edge polarity or spatially varying brightness changes are not taken
into account by current descriptors. Gradient directions, which are a commonly used low-
level feature for descriptor construction [Low99, KS04, MS05, TVF08, CSZ+08, SVZ12,
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SSBDB14], are not well-suited to handle these variations, as shown in Section 4.1.2. The
same applies to other low-level features used like Haar wavelets [BTVG06] or pairwise
image intensity comparisons [CLSF10, LCS11, AOV12]. Hence, by relying on a more
suitable low-level feature, a more illumination-insensitive image description is achieved.
This description is enriched with spatial statistics in a spatial coding stage.

In Section 4.2.1 the methodology for constructing the LIDRIC descriptor is described
in detail. In Section 4.2.2 the descriptor is empirically compared to existing local image
descriptors. In this evaluation the shortcomings of past evaluations are omitted by us-
ing a more challenging dataset for testing insensitivity to illumination conditions. Past
evaluations [MS05, MP07, VDSGS10] have the problem of only marginally considering
illumination changes (see also Section 2.3.4): [MS05] and [VDSGS10] only test image
brightness changes and ignore changes of the light source direction. Moreels and Perona
[MP07] use only three different lighting configurations and couple the descriptor perfor-
mance evaluation with the interest point detection step. The experiments presented in
this thesis aim at a broader evaluation: testing the robustness of the small image patch
descriptions against changes of the light source direction for textured as well as textureless
objects, the latter being the more challenging type of objects.

4.2.1 LIDRIC Descriptor Construction

The LIDRIC descriptor is based on JMSEG described in Section 4.1.1, as this low-level
feature showed the top-performance in the illumination insensitivity evaluation. There-
fore, for given values of the filter shape parameters c and γ, N filters with equally spaced
orientations θ1 . . . θN , where θi ∈ [0, π[ and θ1 = 0, are constructed. The M scales
ω1 . . . ωM are exponentially sampled to achieve homogeneous intervals, i.e. ωj = kj−1ω1.

In order to build the LIDRIC descriptor, the absolute filter responses Iθi,ωj are com-
puted by convolving the image patch I with the N ·M filters G

θi,ωj
e ,

Iθi,ωj =
∣∣I ? Gθi,ωj

e

∣∣ . (4.13)

These output images are arranged to a feature map F that contains for every image
point p and discrete filter parameters θi and ωj the absolute filter responses,

F (p, θi, ωj) = Iθi,ωj(p). (4.14)

Obviously, the filter outputs Iθi,ωj depend on the image contrast, e.g., stronger ridges
produce higher values in F (p). This gives a natural weighting of the local low-level
features, in the same manner as, for instance, the gradient magnitude is used to weight
the histogram inputs in the SIFT descriptor [Low04]. Global linear brightness changes
on the image patch can then be compensated by normalizing the final histogram vector
to unit length. However, different light source directions can lead to brightness changes
that vary locally, as demonstrated in Figure 4.2b-d. Therefore, similar to JMSEG, F is
normalized on a per-pixel level,

F̃ (p, θi, ωj) =
F (p, θi, ωj)√∑N

i=1

∑M
j=1 F (p, θi, ωj)2

. (4.15)
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An option would also be to normalize only over the responses of different orientations,
as done for JMSEG, but normalizing over all responses is more robust when parts of the
image region are over- or undersaturated. On discrete images linear brightness changes
lead to a clipping of values which are outside the dynamic range of the sensor. The
normalized feature map F̃ is not invariant to brightness changes when such effects occur,
but normalizing over all orientation and scale responses is more robust in presence of
partial over- and undersaturation as wider filters and thus more data samples are included.
For illustration, the feature maps obtained for the right textureless image of Figure 4.2c
are shown in Figure 4.23 for N = 6, ω1 = 4 and k = 2.

Figure 4.23: Feature maps for the right textureless image of Figure 4.2 with size 128×128.
Filter orientations of {0, 1

6
π, 2

6
π, 3

6
π, 4

6
π, 5

6
π} are shown from left to right and scales of

{4, 8, 16} from top to bottom.

The last step of the descriptor construction is to perform a spatial pooling on F̃ to
increase the descriptor’s discriminative power by adding spatial information. Formally, L
cells Cl(p), l = 1 . . . L are defined that represent the weighting of the spatial location p
for the cell’s local sub-histogram. The final descriptor is a 3D joint histogram H(θi, ωj, l)

of the values in F̃ ,

H(θi, ωj, l) =
∑
p∈F̃

Cl(p) · F̃ (p, θi, ωj). (4.16)

The cells Cl can be, for instance, of Gaussian shape to achieve a DAISY-like pooling
[TLF10, BHW11] or perform the bilinear weighting between squared cells as in the SIFT
descriptor [Low04]. However, in general the optimal pooling scheme depends on the
application scenario, and a finer pooling increases the distinctiveness of the descriptor
while decreasing its robustness to deformations of the underlying image structure and
vice versa. Thus, for object matching between viewpoints one can use smaller cells the
less viewpoint differences are expected. In the presented experiments, the standard SIFT
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4×4 squared cells with bilinear weighting [Low04] for spatial pooling is used as it achieves
reasonably good results on all datasets. The corresponding cells C1, . . . , C16 are visualized
in Figure 4.24. Please note that the cells are weighted with a Gaussian window with a
standard deviation of half of the window size to make the descriptor less dependent on
the exact keypoint positioning [Low04].

Figure 4.24: The 16 cells for the SIFT-like 4× 4 pooling with bilinear weighting.

Although Gabor filters are well known and often used [KKK06], to the best of the
author’s knowledge they have never been used before in this manner for local image
descriptors. Multi-scale and/or multi-oriented filter banks are used by others for image
recognition tasks, e.g. by [KKK04, AP09] with Gabor filters and by [BHW11] with
their single-scale Gaussian derivative counterparts, but the filters are usually used in
quadrature, whereas in this work only their real part is used. It is shown in the general
evaluation (see Section 4.1.2) that combining even and odd outputs has no positive effect
on recognition performance. Additionally, it is shown in the LIDRIC experiments (see
Section 4.2.2) that using only the real part for feature map construction achieves similar
results under strong illumination variations while saving computation time. Larsen et al.
[LDDP12] also use filter bank responses to build a local descriptor, but they rely on higher-
order derivative filters which are applied to single positions on the patch. In contrast,
in this work statistics of the filter responses are established at all pixel positions. The
statistics are well-founded for an illumination-insensitive descriptor by means of measuring
the spatially varying frequency of occurrence of locally normalized responses.

4.2.2 Experiments

For the experiments the same evaluation procedure as described in the general evaluation
(see Section 4.1.2) is applied, instead of combining the evaluation with interest point de-
tection as done in [MS05, MP07]. However, in lieu of the synthetic coin model datasets
two additional data sets are used which are more appropriate for descriptor evaluation.
All datasets consist of non-aligned image data for true patch pairs and thus simulate the
common situation of inexact keypoint positioning and local deformations due to view-
point differences when matching local image structures. The datasets are described in
Section 4.2.2. Gabor filter parameter selection for LIDRIC construction is handled in
Section 4.2.2 and its performance compared to other descriptors is reported and discussed
in Section 4.2.2.

Three configurations of the LIDRIC descriptor are used for evaluation: one that uses
only single-scale even Gabor filters (SSEG) with dimensionality N , one that uses multi-
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scale even Gabor filters (MSEG) with dimensionality N ·M and the full descriptor which
uses a 4× 4 grid for spatial pooling (MSEG4x4) with dimensionality N ·M ·L. These de-
scriptors are compared to several descriptors proposed in literature where implementations
are provided for download: SIFT [Low04], SURF [BETVG08], DAISY [TLF10], MROGH,
MRRID [FWH12], LIOP [WFW11], FREAK [AOV12] and GLAC [KO08]. Additionally,
the best DAISY descriptor reported in [BHW11] (BESTDAISY) was implemented which
uses second order steerable quadrature pair filters, a DAISY-like spatial pooling and a
final vector normalization with range clipping. A modified version of the SIFT descriptor
is also tested which uses unsigned gradients in the range [0, π[ to handle the polarity
changes of edges on textureless surfaces under opposite lighting directions (UGSIFT).

Datasets

Experiments are conducted on four datasets of true and false image patch pairs. The
ALOI datasets described in Section 4.1.2 are again used. To test the descriptors on
scenarios with less lighting variations the existing image patch pair databases Liberty and
Virtual World are also used for evaluation.

ALOI Textureless and ALOI Textured

The same 80 textureless objects as already selected for the patch pair generation described
in Section 4.1.2 are used, but with larger patch sizes of 64× 64. Correspondences for the
true patch pairs were identified by manually estimating the homography between images
from the three viewpoints. The viewpoint changes are small enough to describe the
image correspondences by a homography and thus errors are also considered as being
small enough to just simulate the uncertainty of interest point detection. In total, 60 000
true and 60 000 false patch pairs were extracted. Likewise, the same 80 textured objects
were selected resulting in a set of 120 000 true and false patch pairs.

Liberty Dataset

The Liberty dataset5 consists of true and false patches sampled from 3D reconstructions
of the Statue of Liberty. This dataset has been used for descriptor learning [BHW11]
and represents an appropriate descriptor evaluation dataset for the scenario of multi-view
reconstruction of large-scale outdoor objects. Hence, it also includes realistic outdoor
lighting variations, although their amount and frequency is unknown. 50 000 patch pairs
of the dataset are used for evaluation.

Virtual World Dataset

This dataset6 contains 3 000 photorealistic images of a virtual city model and has been
used by [KTF11] for image descriptor evaluation in the same manner as the real image
patches in [BHW11]. Likewise to [KTF11], 120 000 true patch pairs were extracted by

5http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html (accessed on June 8th, 2014).
6http://people.csail.mit.edu/biliana/projects/iccv2011/ (accessed on June 8th, 2014).
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identifying corresponding Difference-of-Gaussians keypoints between viewpoints and dif-
ferent times of the day to introduce changing lighting conditions. Finally, the patches
were resized to the standard size of 64 × 64 based on the detected scale. The advantage
of this dataset over the Liberty dataset is that it exhibits a more controlled and evenly
distributed variation of the lighting conditions, as each scene was rendered under five
different lighting conditions (different times of the day), as shown in Figure 4.25.

Examples of true patch pairs contained in the datasets are shown in Figure 4.26.
Please notice that, in contrast to the patches of the general evaluation (see Figure 4.15),
the image structures of the patch pairs are not perfectly aligned. It also has to be noted
that the correct patch pairs of all datasets show no rotation differences. Hence, to allow
for a fair comparison, in the presented evaluation the rotation-variant versions of the de-
scriptors are used, except for MROGH, MRRID and LIOP which are inherently rotation
invariant. The other descriptors can be made rotation invariant by determining a canon-
ical orientation per patch and describing the per-pixel features and cells relative to this
orientation [Low04]. The same principle can be used to make LIDRIC rotation-invariant,
although it is not treated in this work.

Parameter Selection

In order to investigate the relation of the LIDRIC parameters to the recognition perfor-
mance, parameter selections were defined in discrete intervals and the AUC of all param-
eter combinations on a selected training set was determined. As the main goal of the
LIDRIC descriptor is to achieve an optimal performance under strong lighting variations,
a mixed dataset was built by randomly extracting 25 000 patches from the representative
datasets ALOI Textureless and ALOI Textured. MSEG4x4 was then modified according

() 9 a.m. () 11 a.m. () 1 p.m. () 3 p.m. () 5 p.m.

Figure 4.25: Examples of scene renderings contained in the Virtual World dataset simu-
lating five different times of the day.
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((a)) ALOI Textureless

((b)) ALOI Textured

((c)) Liberty

((d)) Virtual World

Figure 4.26: Examples of true patch pairs in the datasets.

to the filter shape parameters c and γ as well as the number of orientations N and tested
on the mixed dataset.

Figure 4.27a shows the influence of the number of orientations by plotting the best
AUC for a given value of N and all values of c and γ. It can be seen that for N > 6 no
substantial improvement can be achieved. Therefore, a value of N = 6 is chosen for all
further experiments. In Figure 4.27b the AUC values for the filter parameters c and γ
are shown. It is evident that the best performance is not achieved for filter parameters
that make the Gabor filter similar to the second derivative of Gaussian used in [OJL07]
(c ≈ 0.4), but for values of c close to 0.6 where the Gaussian envelope is wider and
thus a higher frequency and orientation resolution is provided [KKK06]. Compared to
the second derivative of Gaussian as well as the even Gabor filter used in the general
evaluation with c = 0.5 (see Figure 4.18), this comes at the price of an increased spatial
uncertainty of the filter. However, this seems not to be critical due to the subsequent
pooling step. For values of c in this range the aspect ratio γ has only a minor influence on
the performance. Based on these results, parameter values of c = 0.6 and γ = 1 are used
for the experiments. Figure 4.28 shows the shape of the filter used. Optimal parameters
for the multi-scale spacing have been determined on this dataset as ω1 = 2, k =

√
2 and

M = 8.
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Results and Discussion

At first, the illumination-insensitivity of the proposed descriptor is qualitatively demon-
strated by analyzing the descriptor differences on the image pairs shown in Figure 4.2.
In Figure 4.29 the LIDRIC descriptors using SSEG are shown on the left along with
the absolute distances of vector values, whereas the SIFT equivalents are shown on the
right. It can be seen that the LIDRIC descriptor is highly insensitive to the illumination
variation effects on all object types, indicated by low difference values of corresponding
descriptor vector elements depicted in red. In contrast, SIFT is only robust against the
global brightness changes on flat, textured objects.

Results on the four datasets were achieved by applying the descriptors to all patch
pairs but excluding the patches used for parameter selection from the ALOI Textureless
and ALOI Textured datasets. The obtained ROC plots are shown in Figure 4.30. The
corresponding legends list the descriptors sorted by their achieved AUC given in brackets.

For the datasets representing strong illumination variations between patches (ALOI
Textureless and ALOI Textured), all versions of the LIDRIC descriptor outperform the
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Figure 4.27: Performance of descriptor MSEG4x4 for different values of N , c and γ.

Figure 4.28: The even Gabor filter with c = 0.6 and γ = 1.0 used for LIDRIC.

76



LIDRIC descriptors SIFT descriptors

((a)) Flat, textured

LIDRIC descriptors SIFT descriptors

((b)) Non-flat, textured

LIDRIC descriptors SIFT descriptors

((c)) Textureless

LIDRIC descriptors SIFT descriptors

((d)) Textureless, shiny

Figure 4.29: Comparison of the LIDRIC descriptor using SSEG4x4 and the SIFT descrip-
tor on the image pairs of Figure 4.2. The red bar plots show the absolute differences of
respective descriptor vector elements.
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other descriptors, with a larger advance in performance for the more challenging texture-
less objects. On both ALOI datasets even the descriptor SSEG with a dimensionality
of 6 achieves a better recognition performance than the remaining high-dimensional de-
scriptors with dimensionalities of ≥ 64. MSEG4x4 clearly shows the best performance
on these datasets as well as on the Virtual World dataset which is assumed to repre-
sent more lighting variations than the Liberty dataset. On the Liberty dataset MSEG4x4
is outperformed by BESTDAISY but shows nearly the same performance as SIFT and
DAISY. However, BESTDAISY has been especially optimized for this dataset. It is worth
noting that the best parameters for the LIDRIC descriptor were selected according to the
datasets ALOI Textureless and ALOI Textured, but parameter tuning can also be used
to improve the results of LIDRIC on the Liberty dataset. By using Gabor filters with
a shape more similar to a second Gaussian derivative (c = 0.4) and N = 8, MSEG4x4
is competitive to BESTDAISY on the Liberty dataset (AUC=0.9582), while still achiev-
ing the best performance on ALOI Textureless and ALOI Textured (AUC of 0.9563 and
0.9807, respectively). In general, it can be concluded that MSEG4x4 shows the best per-
formance under strong illumination changes for a wide range of filter shapes. Even the
worst parameter combination with c = 0.3 and γ = 0.5 (see Figure 4.27b) achieves a
better performance than the other descriptors on ALOI Textureless (AUC=0.9054, not
shown in Figure 4.30).

Among the remaining descriptors, the gradient-based descriptors SIFT and DAISY
show the best performance under illumination changes. It is also shown that using un-
signed gradients (UGSIFT) is beneficial for the SIFT descriptor by making it invulnerable
to edge polarity changes. However, this lowers also the discriminability of the SIFT de-
scriptor and thus its recognition performance is decreased when less illumination changes
are present in the data (AUC of 0.9301 compared to 0.9498 on the Liberty dataset). Image
gradients have previously been mentioned to exhibit illumination-insensitivity properties
[CBJ00, OJL07] and thus descriptors, which rely on per-pixel features that are not well
adapted to the problem of changing lighting conditions (GLAC, MROGH, MRRID, LIOP,
SURF, FREAK), have a worse performance compared to SIFT and DAISY.

It has been shown in Section 4.1.2 that complex Gabor filters are less distinctive than
just using the even filter part for aligned image data. In order to investigate this issue for
the non-aligned image data used in this evaluation, the results achieved by either using
the even Gabor filters or the entire complex filters for LIDRIC are compared in Table 4.1.
It is shown that using the magnitude of both the even and odd filter as feature map does
not contribute to considerably better results, while consuming twice the computational
power. The advantage of the complex filters is in general that the response is invariant
to the phase of the signal, but this does not help to improve illumination insensitivity, as
has also been noted by Osadchy et al. [OJL07].

4.3 Summary

In this chapter the problem of illumination-insensitive recognition of objects in uncon-
strained conditions is investigated. Therefore, in a preliminary study the discriminative
power of various low-level image features for a pixel-wise representation of the underlying
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Figure 4.30: ROC curves of the descriptors on the datasets.

ALOI
Texture-
less

ALOI
Textured

Liberty Virtual
World

Even Gabor Filters 0.9674 0.9854 0.9392 0.9663
Complex Gabor Fil-
ters

0.9666 0.9855 0.9397 0.9656

Table 4.1: Comparison of AUC values achieved when using even or complex Gabor filter
responses for the LIDRIC descriptor.

surface characteristics of the object. The emphasis of this study is on textureless objects,
as this kind of objects is an under-researched topic in existing literature, although they
regularly occur in image data for computer vision tasks (e.g., the classification of coins
or the matching of building facades). Hence, a new dataset with rendered images of 3D
models is used which allows to directly compare the influences of texture and material
properties in an object recognition scenario. The results are further validated on a dataset
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of real object images and finally reveal that jets of single- and multi-scale even Gabor fil-
ter responses are the most powerful low-level representation among the investigated ones.
They outperform all other features regardless of object material conditions, levels of tex-
turedness or amount of illumination change, but their superiority is more prominent for
the textureless objects which naturally show a higher degree of variation under illumina-
tion changes. It is demonstrated that features claimed to be insensitive to illumination
conditions based on previous studies, like gradient direction or the self-quotient image,
perform substantially worse on textureless surfaces than on textured surfaces.

As a consequence, since popular image descriptors are based on such low-level features,
they are likewise affected by illumination effects that are more complex than the simple
monotonic brightness changes on textured, flat objects. It is demonstrated that exist-
ing descriptors, while performing reasonably well in scenarios with textured objects and
only low changes of illumination conditions, show a tremendous decrease of performance
in scenarios with strong changes of illumination conditions, especially when textureless
objects are involved. The absence of texture on objects as well as strong illumination
variations makes the recognition more challenging and this scenario has been neglected
in descriptor design and evaluation in the past. Therefore, grounded on the findings of
the preliminary study, the LIDRIC descriptor based on even Gabor filter responses is
proposed. The descriptor shows to be more robust against the effects caused by changing
lighting conditions on non-flat surfaces and thus a recognition performance boost in such
scenarios is gained.
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Chapter 5

Correspondence-Based Image
Similarity

This chapter deals with the determination of image similarities based on local correspon-
dences. Therefore, given two images, we want to derive an image similarity measure
that tells us how “similar” the objects in the image are. In analogy to Figure 4.1, this
means that the similarity metric should be minimized for similar objects and maximized
for dissimilar objects. In the presented methods, similarity is defined in terms of class
memberships of ancient coins, i.e. two images of coins are said to be similar if they show
a coin specimen from the same class.

It has been argued in Sections 2.1.4 and 2.1.5 that the use of local features is subsidiary
to overcome image clutter and non-rigid object deformations. However, it remains unclear
how geometric constraints can be optimally incorporated for robust similarity measure-
ments. The method presented in Section 5.1 proposes to use the minimal costs from
a locally regularized dense correspondence method [LYT11] as similarity. The method
serves as a proof-of-concept that geometric constraints substantially improve the perfor-
mance of the coin similarity metric. Consequently, it can be used in an exemplar-based
classification framework that is not subject to the limitations of learning-based methods
described in Section 1.1. Additionally, a hierarchical subselection scheme is proposed
to reduce the classification runtime. This methodology has been originally published in
[ZK11] and [ZK12].

In Section 5.2, image comparison based on location-aware correspondences is enhanced
to an improved similarity measure with lower computational complexity. In this metric the
correspondence search is not guided by the feature locations, which are instead utilized for
the metric by means of evaluating the geometric plausibility of the matched features. This
method has been originally published in [ZKK14], with an extended large-scale evaluation
in [ZK14]. Experimental results for both methods are reported in Section 5.3.
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5.1 Dense Feature Matching for Hierarchical Coarse-

to-Fine Exemplar-Based Classification

In this section a method for automatically estimating the visual similarity between two
coin images is presented and it is shown how this visual similarity can be used in a
coarse-to-fine scheme for the ancient coin classification task. In Section 5.1.1 the SIFT
flow method is described and the way of using it for ancient coin classification is presented.
In Section 5.1.2 an adaptation of the SIFT flow algorithm for handling coin rotations is
described. Section 5.1.3 presents the extension of hierarchical coarse-to-fine matching for
classification speed-up.

5.1.1 Image Similarity from SIFT Flow

The measurement for coin image similarity is derived from a SIFT flow based image
matching [LYT11]. SIFT flow aligns images by minimizing an energy function defined over
a dense grid of SIFT features. The main application field of this technique highlighted by
the authors is scene image retrieval and alignment, i.e. for a given image similar scenes are
found and densely aligned. Based on the specific challenges of ancient coin classification
described in Section 2.5.2, it is argued that this method is also well suited for coin images
as it allows a spatially coherent matching with local variations that is robust to image
clutter. As coins from the same class show a similar spatial arrangement of local features,
matching these images is assumed to produce a lower energy than matching images from
two different classes.

SIFT flow is based on the SIFT descriptor [Low04]. The descriptor is computed with
a fixed scale and densely over the image, generating a 128-dimensional vector for every
pixel, the so called SIFT image S. The SIFT images of two coins from the same class
are shown in Figure 5.1. It can be seen that the shared image structures are also encoded
in the local pixel-wise SIFT features. In order to find an image matching, corresponding
SIFT features between two SIFT images S ′ and S ′′ have to be determined for each pixel
location, represented as a field of flow vectors w(p) = (u(p), v(p)) at grid coordinates
p = (x, y). This is achieved by minimizing the following energy function on w:

E(w) =
∑
p

min(||S ′(p)− S ′′(p + w(p))||1, q) (5.1)

+
∑
p

κ(|u(p)|+ |v(p)|) (5.2)

+
∑

(p,q)∈Φ

min(β|u(p)− u(q)|, d) + min(β|v(p)− v(q)|, d) (5.3)

where Φ contains all four-connected pixel pairs. The energy function is composed of three
terms. The data term (5.1) computes the L1-distances of all corresponding descriptors
and thus measures how similar the local image structures are. The small displacement
term (5.2) penalizes correspondences that are in different absolute image regions, as it is
assumed to be more likely that corresponding image parts share the same image region
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Figure 5.1: SIFT images of two coin images from the same class. The color values are ob-
tained by projecting the 128-dimensional descriptors onto the three principal components
with largest eigenvalues, previously determined from SIFT descriptors of a set of images
[LYT11].

p3 

p2 
p1 

S1 
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w(p3) 
w(p2) 

w(p1) 

Figure 5.2: Illustration of the coarse-to-fine scheme for finding SIFT flow correspondences.

and thus the flow vectors are small. And finally, the smoothness term (5.3) forces the
algorithm to produce smooth alignments, i.e. flow vectors of adjacent pixels are similar.
The parameters q and d are thresholds for clipping the distances in order to reduce the
influence of matched outliers. The parameters κ and β control the relative influences of
the individual constraints.

In order to minimize the energy function and to obtain an optimal image matching,
a dual-layer belief propagation [SKH08] is used. Additionally, a coarse-to-fine matching
scheme is applied for speed-up and better matching results. This is needed due to the
large number of variables and states to be optimized, as correspondences are searched for
all image pixels and a pixel of one image can be possibly matched to all pixels of the other
image. Therefore, a coarse-to-fine search is applied on a pyramid of SIFT images: initial
correspondences are first searched on a coarse resolution and this information is iteratively
propagated to the finer resolution layers of the pyramid where the flow vectors are only
refined locally. The SIFT image pyramid is generated by consecutively smoothing and
downsampling the SIFT images SK to S1, where Sk−1 has half the size in pixel dimensions
than Sk. This coarse-to-fine scheme for finding correspondences is illustrated in Figure
5.2. For a given point p to be matched at each pyramid level k, the best match is found
by minimizing E(w) and the found flow vector is used to center the search window for
the level k + 1. At the coarsest level the search window has the same size as the SIFT
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image of this level, while for the remaining levels the window size is fixed to 11× 11. The
authors describe that by this scheme the complexity is reduced from O(h4) to O(h2 log h),
where h is the width/height of the images.

The adoption of the SIFT flow algorithm for coin classification relies on the following
idea: matching two coin images of the same class will likely produce a lower energy E(w)
than matching coin images from different classes, since a smooth matching can be more
likely found in the former case. An example for this is shown in Figure 5.3. Matching the
test coin image with a coin image from the same class produces a reasonable result, as
can be seen in Figure 5.3c, where the result of warping the image back to the test image
using the SIFT flow vectors is shown. In contrast, matching the test coin image with a
coin image of a different class produces an unsuitable result and thus a higher energy.
As a consequence, coin classification can be achieved by matching the coin image with
all coin images in the database and finally choosing the class of the image with lowest
energy. Note that the images have to be normalized with respect to the size of the coin,
as the SIFT features are not extracted sparsely with scale detection, but densely with a
fixed scale. This is accomplished by the segmentation method proposed in Chapter 3.

((a)) Test image ((b)) Image of same class ((c)) Image (b) warped
onto test image (energy:
∼ 4.98 · 107)

((d)) Test image ((e)) Image of different
class

((f)) Image (e) warped
onto test image (energy:
∼ 6.35 · 107)

Figure 5.3: SIFT flow applied to coin images of the same class (top) and images of different
classes (bottom).
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5.1.2 Insensitivity to Coin Rotations

Although different coin rotations are a rare occasion (see Section 5.3.2), it is worthwhile
noting that SIFT flow can be made insensitive to rotations with little adaptation. As
coin rotations demand to allow large pixel displacements in the correspondence search,
the small displacement term regulated by the parameter κ needs to be ignored. Therefore,
by setting κ to 0 a rotation between image pairs only affects the correspondence search by
producing a slightly larger energy in the smoothness term. It is quantitatively proofed in
the experiments in Section 5.3.4 that the influence of the smoothness term in such cases is
negligible and that classification performance is not affected by coin rotation differences.

Examples of correspondences found by using the energy function E(w) with κ = 0 on
coin images with rotation differences can be seen in Figure 5.4. Here the query image of
Figure 5.4a is matched with an image of a coin from the same class (Figure 5.4b), which
produces the correspondences visualized in Figure 5.4c. It can be seen that reasonable
correspondences have been found despite the variations between the two coins. If SIFT
flow is computed for a rotated version of the coin (Figure 5.4d), the result is almost
identical (Figure 5.4e).

((a)) Query image ((b)) Image of same class ((c)) Image b warped back
to query image

((d)) Image b rotated by
90 degree

((e)) Image d warped back
to query image

Figure 5.4: Comparison of SIFT flow for coin images with and without rotation differences.
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5.1.3 Hierarchical Coarse-To-Fine Classification

A disadvantage of using SIFT flow for example-based classification is that the runtime is
linear to the amount of images in the database. However, the coarse-to-fine scheme for
correspondence search described in Section 5.1.1 can be utilized by selecting only the most
similar coin classes at each level for further processing and thus subsequently reducing the
amount of possible target coin classes. This way, the computational effort of the whole
classification process is reduced as the more costly computations at finer levels have to
be conducted only on a subset of coin classes. An illustration of the proposed method is
shown in Figure 5.5.

Input Image

Dense SIFT 
Feature Extraction

Level 1

Subselection

Dense Matching

Database

Level 2

Subselection

Dense Matching

Database

......

......
Subselection

Level K

Dense Matching

Database

Final Classi�cation

Figure 5.5: Schematic illustrating the proposed coarse-to-fine coin classification procedure.
Given an input image, a dense set of SIFT features is extracted and matched against the
database at the coarsest level. A defined amount of most similar coin images is selected
and forwarded to the matching step of the next finer level. This process is continued until
the finest level K is reached where the final classification decision is made.

More formally, a subselection scheme is applied within the SIFT pyramid consisting
of K layers {S1, . . . , SK}. If the set of coin target classes is denoted by Z and the SIFT
flow energy obtained at level k by Ek, classification of a query SIFT image S is achieved
in the following manner:

1. For all levels k, k = 1...K

(a) Compute SIFT flow energies Ek between Sk and all SIFT images of level k of
classes Z.

(b) For each class in Z, compute the average energy Ēk for all its SIFT images in
the database.

(c) Sort all energies Ēk and reduce Z by selecting only a percentage ξk of Z with
lowest energy.

2. Finally, take the class with lowest energy.
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5.2 Improved Similarity from Feature Correspondences

by Evaluating Geometric Plausibility (GP)

SIFT flow offers a straightforward way of establishing a dense correspondence field be-
tween coin images, and the energy term composed of the feature similarities and their
geometric likelihood provides an appropriate dissimilarity metric as non-rigid deforma-
tions are dissolved. This shows that it is beneficial to consider the location of features
to increase the discriminative power of correspondence-based image similarity. However,
SIFT flow enforces dense correspondences (i.e. every single pixel has to be matched to a
pixel in the other image) and is thus vulnerable to outliers (non-matchable parts) due to
abrasions, although their influence is diminished by the truncation of the energy terms.
Additionally, in order to keep the computational complexity of the optimization process
low, it only uses weak geometric constraints (i.e. the L1-norm of the 4-connected neigh-
boring flow vectors and absolute displacements). Therefore, in the presented method a
similarity metric is established in a different way: instead of regularizing the matching
process by geometric constraints, a data-driven first-order matching is performed and
constraints are used afterwards to reason about the geometric plausibility (GP) of the
most stable correspondences found. This method implicitly excludes outliers and im-
proves the discriminative power of the similarity measure while reducing the computation
time. The higher discriminative power comes from the introduced potential of using
stronger constraints with higher computational complexity, as the constraints have to be
evaluated only once for the given correspondence configuration. Moreover, in contrast
to optimization-based approaches like SIFT flow, the “freedom” of data-driven matching
contributes to a statistically more meaningful way of using the matching costs as dis-
similarity measure: the geometric plausibility of the matched features will be higher for
similar coins than for dissimilar coins, as statistically more correspondences are correct.
In contrast, in optimization-based approaches the correspondence search is highly forced
by the geometric constraints in case of local appearance ambiguities, which consequently
reduces the similarity metric’s gap between similar and dissimilar image pairs, and hence
the discriminative power.

The goal of the proposed exemplar-based coin classification methodology is to esti-
mate the similarity of two coin images robustly against scale differences, illumination
conditions, image background and non-rigid deformations. Therefore, it utilizes the pre-
vious achievements of this thesis and thus represents the coin classification pipeline shown
in Figure 1.2. Robustness against scale differences and image background is achieved by
segmenting the coin region in the image (see Chapter 3). Robustness against illumina-
tion conditions is accomplished by extracting illumination-insensitive LIDRIC features for
matching (Section 5.2.1). Coin similarity insensitive to non-rigid deformations is finally
enabled by first-order matching followed by an evaluation of the geometric consistency of
the correspondences (Section 5.2.2).
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5.2.1 Feature Extraction and First-Order Matching

Similar to SIFT flow, in the proposed method local features are regularly extracted from
the image. However, the feature sampling is not done for every pixel but at positions
pi = (xi, yi) on a regular grid with pixel interval ∆p = (∆x,∆y). Dense sampling is fun-
damental for the effectivity of the method, as more features and thus a statistically more
valuable estimation of the quality of feature correspondences is provided. In contrast to
the SIFT flow method presented in Section 5.1 and other works [KZ08, Ara12, AZK13], the
method does not rely on SIFT features and uses the LIDRIC features instead. However,
the original descriptor described in Section 4.2 has to be adapted to be more appropriate
for the problem at hand. In contrast to the datasets used for the LIDRIC experiments
presented in Section 4.2.2, matching is not done for identical objects under changing light-
ing conditions but rather similar objects, i.e. the underlying local object characteristics
are not the same. Consequently, the use of multi-scale responses turned out to be not
necessary anymore. In lieu thereof, responses are computed for only one single scale but
for 8 orientations. Additionally, instead of dividing each filter response by the pure L2-
norm of all 8 responses (denoted as ‖F‖) for normalization, the power ‖F‖r with r > 1 is
taken of it before division. This reduces the relative influence of the highest responses in
the image which likely arise from highlights on the metallic surface of the coin. Reducing
the relative influences of the highest descriptor values has frequently been reported to be
beneficial for performance, e.g. by clipping values above a threshold [Low04] or by taking
the square root of the descriptor values [AZ12]. Finally, by performing a 4 × 4 spatial
pooling, a 128-dimensional descriptor di for an image point pi is obtained.

After the local descriptors d′i ∈ D′ and d′′j ∈ D′′ have been extracted from the two
images I ′ and I ′′, it is aimed to find robust matchings between them. An option would be
to accept only nearest neighbors with a certain distance to their second nearest neighbors
as proposed in [Low04], but a one-to-one symmetric search [ZNTW07] turned out to be
the better choice. Two features d′i and d′′j are matched only if d′′j is the nearest neighbor of
d′i in D′′ and d′i is in turn the nearest neighbor of d′′j in D′. The indices of the descriptors
in D′ with a match in D′′ are stored in the setM and the function φ(i) relates the indices
of D′ to the corresponding indices of D′′, i.e. φ(i) = j if d′i corresponds to d′′j . Figure 5.6
shows the result of the one-to-one symmetric correspondence search for two coins from
the same class and two coins from different classes.

5.2.2 Similarity Estimation from First-Order Correspondences

The basic assumption of the presented approach is that by first-order matching more
correct correspondences can be found for coins from the same class than for coins from
different classes. By examining the matching results of similar and dissimilar coins as
shown in Figure 5.6 we are able to identify three key observations that lead to the definition
of the final similarity measure:
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1. Number of Correspondences

The number of matched features is likely to be higher for similar coins than for dissimilar
ones. This property is used for a similarity score by

Θn =
|M|

min(|D′| , |D′′|)
. (5.4)

2. Displacement of Corresponding Feature Points

The displacement of correct correspondences is low which can be used as a dissimilarity
score by

Θd =
1

|M|
∑
i∈M

‖p′i − p′′φ(i)‖2 (5.5)

with ‖·‖2 being the L2-norm.

3. Geometrical Consistency of Correspondences

Pairs of correct correspondences do not drastically change their relative position to each
other. Hence, given two points p′i and p′j and their corresponding points p′′φ(i) and p′′φ(j),

the vector ~u = p′ip
′
j will be similar to the vector ~v = p′′φ(i)p

′′
φ(j), as illustrated in Figure

5.7. Their difference is computed by

Φ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) = η · ψ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) + (1− η) · α(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) (5.6)

ψ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) =

∣∣∣‖p′i − p′j‖2 − ‖p′′φ(i) − p′′φ(j)‖2

∣∣∣
‖p′i − p′j‖2 + ‖p′′φ(i) − p′′φ(j)‖2

(5.7)

α(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) =
1

π
arccos

(
p′i − p′j
‖p′i − p′j‖2

·
p′′φ(i) − p′′φ(j)

‖p′′φ(i) − p′′φ(j)‖2

)
(5.8)

((a)) Matching with an image from the same class.((b)) Matching with an image from a different
class.

Figure 5.6: Results of one-to-one symmetric matching. Only random 10% of the overall
correspondences are shown for better illustration.
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Figure 5.7: The geometric plausibility of the correspondences of the points p′i and p′j in
I ′ with the points p′′φ(i) and p′′φ(j) in I ′′ is assessed by the comparing the vectors ~u and ~v

in terms of length (Eq. 5.7) and orientation (Eq. 5.8).

Intuitively, the terms ψ and α measure the vector difference in terms of length and
orientation, respectively, where η serves as weighting parameter. This or a similar vec-
tor difference metric is typically used for regularization in optimization-based matching
approaches [BBM05, DJP11, JJT11, KLSG13, LYT11] in order to penalize matching dis-
continuities and prefer smooth results. However, for computational reasons only small
neighborhoods can be considered (e.g., SIFT flow uses the L1-norm of the 4-connected
neighboring flow vectors). In the given case, these metrics have to evaluated only once
for the given first order matching, which allows to use a larger neighborhood system N
for the geometric dissimilarity score:

Θg =
1

|M|
∑
i∈M

1

|Ni|
∑
j∈Ni

Φ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

). (5.9)

In general, one can define all other feature points as the neighborhood Ni of a given
feature point, but this unnecessarily increases the computational burden without substan-
tially improving the quality of this similarity metric. Hence, in practice it turns out to
be sufficient to compare every feature point to only a small subset of feature points. In
this work it has been empirically chosen to compare every feature point to its neighboring
features at the six distances 1∆p, 2∆p, 4∆p, 8∆p, 12∆p and 16∆p, which on average
leads to a comparison of a feature point with around 7.5% of the remaining feature points.

The final overall similarity score is computed from the three individual scores by

Θ = (1− g(Θn;σn)) + g(Θd;σd) + g(Θg;σg) (5.10)

where g(x;σ) = exp(−x2/(2σ2)) is a Gaussian membership function that transforms
the individual scores to the same value range.

5.3 Experiments

Empirical evaluation is conducted for coins of the Roman Republican age. Different
datasets are used to serve the different requirements for the respective sub-experiments,
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which are described in Section 5.3.1. In Section 5.3.2 the SIFT flow-based method is com-
pared to a simpler coin matching method that involves no geometric constraints [KZ08] in
order to demonstrate the usefulness of incorporating geometric constraints into the match-
ing process. In Section 5.3.3 both the classification and runtime performances for various
subselection values ξk of the coarse-to-fine SIFT flow classification method are reported.
In Section 5.3.4 the SIFT flow method is applied to artificially rotated images to show the
low vulnerability of the method to this kind of image variation. A comparison of the SIFT
flow method and the improved GP metric as well as of previously proposed learning-based
methods is conducted in Section 5.3.5 on a challenging multi-source dataset. Finally, the
GP similarity metric is tested for its behavior on a large scale dataset in Section 5.3.6.

5.3.1 Roman Republican Coin Datasets

In total, four coin datasets are used for the experiments which are listed in Table 5.1.
All images in the datasets have been successfully scale-normalized in an automated fash-
ion with the help of the proposed shape-controlled segmentation method by means of
cropping the images at the coin borders and resizing the resulting region-of-interest to a
standard size of 150× 150. The Single-Source Small-Scale dataset acts as a small, initial
demonstrator for the superiority of using geometric constraints for matching instead of
feature similarity alone. The Single-Source Medium-Scale dataset consists of 60 classes
where each class is represented by three coin images of the reverse side. It is used for
testing the coarse-to-fine SIFT flow classification as well as for rotation insensitivity tests.
Although only a small fraction of the theoretically over 1900 classes are contained in this
test dataset, a wide period of minting dates from 199 to 39 B.C. is covered. Sample images
of all classes’ reverse sides are shown in Figure 5.8.

For the comparison with other methods the Multi-Source Medium-Scale dataset of 60
Roman Republican coin classes is used. For each class 10 images were collected from
different image sources to increase the diversity among the images and to mimic a more
realistic scenario of coin classification under uncontrolled image acquisition conditions.
Three images of each class were taken from the coin collection of the Museum of Fine
Arts, Vienna (as for the other datasets), another three images from the collection of the
British Museum, London1, and the remaining four from free online ancient coin search
engines2. An example image of each class is shown in Figure 5.9.

The Multi-Source Medium-Scale dataset is well suited to comparatively evaluate the
performance of coin classification methods for strong intra-class variations, but covers only
on a small subset of coinage. Therefore, the real world practicability of the top-performing
GP method is additionally investigated by means of the Single-Source Large-Scale dataset
consisting of 418 classes. This dataset covers a much wider range of coinage from the
Roman Republican era and thus allows to give a more qualified statement of achievable
classification rates in practice. For this dataset two coin specimens are available per class.
The images were gathered from the coin collection of the Museum of Fine Arts, Vienna,
and all classes of the collections with at least two available coins have been included.

1www.britishmuseum.org/research/publications/online_research_catalogues/rrc.aspx (ac-
cessed on June 8th, 2014).

2www.acsearch.info and www.coinarchives.com (accessed on June 8th, 2014).
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Figure 5.8: Reverse side sample images of all 60 classes of the Single-Source Medium-Scale
dataset.
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Dataset Classes Images
/class

Coin
sides

Sources Purpose Sections

Single-
Source
Small-Scale

24 3 obv.
&
rev.

Museum of
Fine Arts
Vienna

Proof-of-concept for useful-
ness of geometric match-
ing constraints; comparison
of classification performance
w.r.t. coin side.

5.3.2

Single-
Source
Medium-
Scale

60 3 rev. Museum of
Fine Arts
Vienna

Test of SIFT flow classifica-
tion performance and run-
time analysis with hierarchi-
cal sub-selection; rotation in-
sensitivity test.

5.3.3
5.3.4

Multi-
Source
Medium-
Scale

60 10 rev. Museum of
Fine Arts
Vienna,
British
Museum
London,
web re-
sources

Comparison of proposed
methods (SIFT flow and GP)
and previously published
learning-based methods for
challenging real-world intra-
class variations (abrasions,
non-rigid deformations,
illumination changes).

5.3.5

Single-
Source
Large-Scale

418 2 obv.
&
rev.

Museum of
Fine Arts
Vienna

Analysis of the scalability of
the proposed GP coin classi-
fication method.

5.3.6

Table 5.1: Overview of the four datasets used for the evaluation of the coin classification
methods.

This Museum collection belongs to the five largest collections in the world and hence
the 418 classes can be seen as a cross section of the most common classes of the over
1900 (including all subclasses) defined in [Cra74]. Figure 5.10 shows the coin images of
30 classes in the dataset, which demonstrate the challenging nature of this image data
for exemplar-based classification. Apart from the intra-class variations, which stem from
variations in the manual manufacturing process and abrasions, the variety of the types
shown on the coins is narrow due to the strong presence of popular coin themes. For
instance, heads of mythological or historical persons are typically shown on the obverse
sides [Jon90], and also on the reverse sides motives are shared by multiple classes (e.g.
horse teams, standing persons, jugs, animals etc.).

5.3.2 Comparison of Coin Matching with and without Geomet-
ric Constraints

In this section the SIFT flow method is compared to the correspondence-based method
proposed by [KZ08]. In their method, similarity between coins is measured by the number
of matched interest points, extracted at Difference-of-Gaussians extrema and described
by SIFT.

For this experiment the following empirically determined parameters for SIFT flow
matching were used: dense SIFT features were computed for a local neighborhood of
12× 12 pixels on the 150× 150 images, the number K of pyramid levels was set to 4, and
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Figure 5.9: An exemplar image for each of the 60 classes in the Multi-Source Medium-Scale
dataset.

the parameters controlling the influence of the smoothness term were set to β = 12 and
d = 1200. The small displacement term was ignored in order to make the similarity metric
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Figure 5.10: Example images from 30 classes of the overall 418 classes in the Single-Source
Large-Scale dataset. Each image quadruple shows the obverse (left) and reverse (right)
of the two coins of a class.

insensitive to coin rotations. However, it has to be noted that in the provided dataset only
marginal rotation differences of less than 20◦ occur. Generally speaking, strong rotation
differences between ancient coin images were found to be an uncommon situation, which
has also not been encountered in gathering of coin images from the internet for the Multi-
Source Medium-Scale dataset. The reason is that coins are typically imaged at a canonical
orientation based on their type. Nevertheless, the issue of stronger coin rotations of more
than 90◦ is treated in 5.3.4 on artificially rotated images to show the low vulnerability of
the method to this kind of image variation.

The comparison was performed on the Single-Source Small-Scale dataset where either
the proposed SIFT flow energy or the number of matched features defined the coin-to-
coin similarity. As three images are available per coin class, a 3-fold cross validation
was used to test classification performance. The dataset was divided into three subsets,
each set containing one image from each class. Three classification runs were executed
whereas in each run one subset served as testset and the remaining two served as training
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set. An image from the testset was then matched with all images from the training
set. The average of the similarity values of the two images of a class defined the class-
similarity, and thus finally the image was assigned to the class with minimum class-
similarity. Classification performance was tested on the obverse as well as the reverse
sides.

The overall results are listed in Table 5.2. The SIFT flow method clearly outperforms
the method of [KZ08]. As the SIFT descriptor itself is potentially noisy on ancient coins
due to their challenging conditions, the simple matching of SIFT interest points is more
vulnerable than SIFT flow matching. SIFT flow introduces an additional constraint for
a spatially meaningful matching with local variations. Therefore, SIFT flow provides a
more robust matching and coin similarity measure.

SIFT Flow Matching SIFT Matching
Obverse side 63.9% 25.0%
Reverse side 73.6% 33.3%
Total 68.8% 29.2%

Table 5.2: Classification rates of the proposed SIFT flow matching and standard SIFT
matching [KZ08] on the Single-Source Small-Scale dataset.

Another observation from the results is that classification rates are higher on the
reverse sides of the coin. This is caused by the typical composition of Roman coins from
the investigated period. Customarily, obverse sides show the heads of gods or historical
persons. For instance, in the given evaluation dataset the obverse side of 15 of the 24
classes depicts the goddess Roma. Reverse sides depict certain scenes and thus have a
higher inter-class variability.

5.3.3 Hierarchical Classification Performance and Runtime Anal-
ysis of SIFT Flow Method

For this experiment the Single-Source Medium-Scale dataset consisting of reverse side coin
images was used. In each classification run one of the 180 coin images served as query
image and one or two of the remaining images per class served as training images. This
led to 180 (two training images per class) or 360 classification runs (one training image per
class). For runtime evaluation, the average runtime of computing the SIFT flow between
two coin images was measured by using the C++ implementation provided by the authors3

on a standard machine with a quad-core 2.70 GHz processor. The resulting average SIFT
flow matching time was 3.93s, where around 3%, 6%, 21% and 70% are needed for the
first, second, third and fourth level, respectively. In Table 5.3 classification results for the
two training set sizes as well as various values of ξk are shown. Runtimes are indicated
as the time for classifying one coin against the dataset of 60 classes, without considering
feature extraction of the query image. Subselection parameters of ξ1 = ξ2 = ξ3 = 100%
mean that no subselection was performed. Subselection parameters of ξ1 = 1%, ξ2 = 1%

3http://people.csail.mit.edu/celiu/SIFTflow/ (accessed on June 8th, 2014).
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Training
set size

ξ1 ξ2 ξ3 Correct
classifica-
tions

Classification
rate

Average
classifi-
cation
time

1 100% 100% 100% 257/360 71.4% 235.8s
1 1% 100% 100% 220/360 61.1% 7.1s
1 100% 1% 100% 234/360 65.0% 21.2s
1 100% 100% 1% 257/360 71.4% 70.7s
1 30% 50% 50% 258/360 71.7% 32.5s
1 10% 50% 50% 249/360 69.2% 16.5s
2 100% 100% 100% 150/180 83.3% 471.6s
2 1% 100% 100% 127/180 70.6% 14.1s
2 100% 1% 100% 133/180 73.9% 42.4s
2 100% 100% 1% 141/180 78.3% 141.5
2 30% 50% 50% 150/180 83.3% 65.0s
2 10% 50% 50% 149/180 82.8% 32.9s

Table 5.3: Classification results for training set sizes of 1 and 2 and various subselection
values ξk on the Single-Source Medium-Scale dataset.

and ξ3 = 1% mean that only the energies of the first, second or third level, respectively,
were used for classification.

One can see that, without subselection, over 70% of the images can be classified
correctly with only one training image per class available. Adding a second training image
brings a performance improvement of about 7−12%. Based on the results on this dataset,
a reasonable choice for the subselection parameters is ξ1 = 10% and ξ2 = ξ3 = 50%. The
classification rate is very close to the case without subselection (−2.2% for a training
set size of 1 and −0.5% for a training set size of 2, respectively), whereas the runtime
improvement is around 93%.

In Figure 5.11 some of the classification results are shown where Figure 5.11a-c depict
incorrect classifications and Figure 5.11d-f depict correct classifications. It is obvious
that strong abrasions, like in Figure 5.11a, as well as the low inter-class variability, like
in Figure 5.11b, pose a problem to the method, since the SIFT flow energy becomes less
reliable under such conditions. However, also the examples shown in Figure 5.11d-f exhibit
strong abrasions and variations between the images which can be dissolved by SIFT flow.
Figure 5.11c demonstrates the general limits of image-based ancient coin classification.
The query image represents a misprint, which makes it impossible even for human experts
to accurately classify the coin if only this coin side is available for examination.

5.3.4 Analysis of Coin Rotation Insensitivity of SIFT Flow Method

In order to assess the sensitivity of the SIFT flow matching to coin rotation differences, a
random selection of a query and a training image from 20 coin classes of the Single-Source
Medium-Scale dataset was done and different coin rotations were simulated by rotating
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(a)

(b)

(c)

(d)

(e)

(f)
() Query image. () Most simi-

lar image found
warped back using
the SIFT flow
correspondences.

() Original most
similar image
found.

() Correct most
similar image de-
picting a coin of the
same class.

Figure 5.11: Six classification results on the Single-Source Medium-Scale dataset.
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Figure 5.12: Results of evaluating sensitivity to coin rotations.

the query image in 90 degree steps. Figure 5.12a shows the classification results of all four
runs for the four pyramid levels of SIFT flow matching. In Figure 5.12b the average and
maximum increase of energy due to the additional costs in the smoothness term is plotted.
It is seen that at a coarser level the energy values are more sensitive to coin rotations,
thus producing a decrease of classification performance and a higher relative increase of
the energy value. Nevertheless, by using a coarse-to-fine classification with subselection
parameters ξ1 = 10%, ξ2 = ξ3 = 50%, 18 out of 20 classes can be classified correctly for all
coin rotation differences. This shows that, although the method is in theory not invariant
to coin rotation differences, a high degree of insensitivity is given.

5.3.5 Comparison of Coin Classification Methods on Multi-Source
Dataset

In this section, the GP similarity method is compared to the previous SIFT flow-based
method as well as to the learning-based methods using locally biased directional his-
tograms (LBDH) [Ara10] and bag of visual words (BOVW) [CDF+04] on the Multi-Source
Medium-Scale dataset.

For all methods compared suitable parameter choices were empirically determined.
Local feature extraction is the first step of all methods and was accomplished either by
using SIFT or LIDRIC features with r = 1.3 and ω = 5. Dense sampling with ∆p = 3
for the proposed method and ∆p = 1 for SIFT flow was performed at a feature scale
of 24 × 24 pixels. For LBDH and BOVW the standard Difference-of-Gaussian interest
point detection [Low04] was used. Features were only extracted from the coin region in
the image provided by the initial coin segmentation step. As no rotation differences are
present in the image dataset, for a fair comparison all features were extracted without
rotation invariance, i.e. the canonical orientation of all features was automatically set to
the same fixed value. Accordingly, the displacement term of SIFT flow controlled by the
parameter κ was not set to 0 for these experiments.

For the presented coin similarity algorithm from one-to-one symmetric correspon-
dences parameter values of η = 0.7, σn = 0.1, σd = 50 and σg = 0.25 were used. For SIFT

99



flow parameter values of β = 200, d = 20 000 and κ = 12 were used. For BOVW the
descriptors were quantized to 100 visual words and the visual word histogram was com-
puted as image feature. As in the original experiments [Ara10], a vocabulary size of 500
was used for the implementation of LBDH. However, the bandwidth R of the directional
kernels was set to 200 instead of 1 000, as this showed superior results on the dataset.

For the final class decision a 5-nearest neighbors classifier was used for all methods
compared. The distance of test and training samples was thereby determined by the
proposed class similarity or the SIFT flow energy. For BOVW and LBDH the Euclidean
distance of the visual word or LBDH histograms was used.

The intention of the proposed exemplar-based coin classification methodology is to
achieve coin classification in scenarios with low number of training samples. Therefore,
the influence of the number of training samples per class to the methods’ classification
performances is analyzed. For this purpose, multiple classification runs were conducted
for each image in the dataset with increasing number of training samples N per class, i.e.
N = 1 . . . 9. In each run, N randomly chosen images per class served as training set. This
process was again repeated 10 times for each value of N and the overall classification rate
out of the 60 · 10 · 10 = 6 000 classifications was recorded.

Comparison of Classification Rates

The classification results for the different training set sizes are shown in Figure 5.13 for
all methods with LIDRIC feature extraction. Additionally, in Table 5.4 the numerical
classification results of all methods with SIFT or LIDRIC feature extraction are listed.
It can be seen that the correspondence-based methods dominate the learning-based ones
and that the GP method outperforms all other methods for all training set sizes with
classification rates from 72.7% (N = 1) to 97.2% (N = 9). The inclusion of spatial
information provided by LBDH gives only a slight improvement over the general BOVW
model and does not contribute to a performance comparable to the ones achieved by the
correspondence-based methods. Due to the low number of training samples the learning-
based methods are not able to sufficiently generalize over the intra-class variation. In
the experiments presented in [Ara10] LBDH achieved a classification rate of 57.2% on a
65-class problem. However, the dataset used in Arandjelović’s work shows a very uneven
distribution of training samples among the classes which are represented by 10 up to
160 exemplars. It can be conjectured that the classification performance of LBDH on
this dataset is mainly supported by the classes with a high number of training samples.
Another reason for the low classification rate of LBDH is the erroneous interest point
detection.

From the results shown in Table 5.4 it can also be concluded that LIDRIC represents
a more powerful local descriptor for coin classification under uncontrolled conditions as
its use improves the performance of each individual method. For the proposed method
the performance is increased from 68.0% to 72.7% due to LIDRIC’s lower sensitivity to
illumination changes.
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Figure 5.13: Bar plot of the classification results of all methods using LIDRIC feature
extraction and training set sizes of 1 to 9 on the Multi-Source Medium-Scale dataset.

Training images per class

1 5 9

BOVW [CDF+04] - SIFT 6.3% 11.2% 13.2%

BOVW [CDF+04] - LIDRIC 7.6% 12.3% 14.8%

LBDH [Ara10] - SIFT 6.2% 11.9% 14.3%

LBDH [Ara10] - LIDRIC 8.8% 13.1% 16.8%

SIFT flow - SIFT 48.9% 81.0% 90.5%

SIFT flow - LIDRIC 68.6% 90.2% 95.8%

Proposed method - SIFT 68.0% 93.7% 97.1%

Proposed method - LIDRIC (full) 72.7% 94.1% 97.2%

Proposed method - LIDRIC (Θn + Θg) 70.5% 93.8% 97.2%

Proposed method - LIDRIC (Θn + Θd) 69.4% 92.9% 97.0%

Proposed method - LIDRIC (Θn) 56.0% 84.5% 91.1%

Table 5.4: Numerical classification results of all methods using SIFT/LIDRIC feature
extraction on the Multi-Source Medium-Scale dataset.

Influence of Individual Similarity Scores

As three single scores are combined for the overall similarity score, it is also of interest to
assess their individual influence to the classification performance. It is evidently shown
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in Table 5.4 that all three scores have a contribution to the classification power of the
method. By using only data-driven matching as similarity measure (Θn) and ignoring
the geometric ones (Θd and Θg) only 56.0% correct classifications are achieved for n = 1,
less than the SIFT flow method which also uses geometric information for finding the
optimal correspondences (68.6%). Adding geometric information to the model either by
the displacement similarity Θd or neighboring vector consistency Θg leads to classification
rates that are higher than that of SIFT flow. The full model with all three terms achieves
the highest classification rate of 72.7%.

Runtime Analysis

An important issue of exemplar-based classification is the time it takes to compare two
image samples. Without feature extraction, which takes around 1s, the MATLAB imple-
mentation of the proposed method needs around 0.35s to compare two images whereas
the C-implementation of SIFT flow takes around 2.2s. In practice, this means that it
takes around 22s to classify a query image for this 60-class problem. However, it has
been shown in Section 5.3.3 that the classification time of exemplar-based coin classifica-
tion in conjunction with feature correspondence can be reduced to one-seventh without a
loss of classification accuracy by applying a hierarchical subselection scheme. Generally,
the same principle can be applied to the presented similarity metric for speeding up the
classification process.

5.3.6 Classification Performance on Large-Scale Single-Source
Dataset

The classification rates achieved by the GP similarity method on the large-scale single-
source dataset are plotted in Figure 5.14a. The plot shows the respective percentage
of coins where the correct class is within the top N similarities. First of all, like in a
previous experiment (see Section 5.3.2), it can be observed that a classification based on
the coins’ reverse side has a better performance than a classification based on the obverse
sides. This is caused by the higher variation of reverse side motives and leads to a ∼ 10%
higher performance (73.0% vs. 62.6% for N = 1). Combining the obverse and reverse
side similarities boosts the classification rate by another ∼ 10% (84.3% for N = 1). It can
also be spotted in Figure 5.14a that there is a comparatively high increase in classification
rates from N = 1 to N = 5: for the combined method the correct class is among the top 5
similarities in 93.5% of the cases. This shows that due to the high number of classes with
low inter-class distances an exact classification is challenging, but the ranking is sensitive
to the relevant class. The high discriminative power of the coin similarity metric is also
demonstrated by the ROC curves shown in Figure 5.14b. These curves are obtained by
applying increasing thresholds to the similarities as described in Section 4.1.2.

Nevertheless, the curve of 5.14a is flattened more and more for higher values of N
which indicates that there are particular coins where the classification goes completely
wrong and the correct class is not ranked properly. For such cases the similarity to
the correct class is not considerably higher or even lower than the mean similarity to
all incorrect classes. For instance, even with the combined method for 15 out of the 836
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Figure 5.14: Classification results on the Single-Source Large-Scale dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.15: (a)-(e) Examples for misclassifications where the correct class is not ranked
among the top 50 similarities, (f)-(j) examples for correct classifications.

coins (i.e. 1.8%) the correct class is not contained in the top 50 similarities. Some of these
substantial misclassifications are shown in Figure 5.15a-e to exemplify their diverse causes.
One source of error are scale differences between coin motives which are not sufficiently
compensated by the scale normalization induced by the segmentation step. As the local
features are extracted with a fixed scale, the correspondence search is disturbed by scale
changes which is most evidently seen in the obverse side heads shown in Figure 5.15a-b.
Strong changes in type appearance (e.g. the chariot of Figure 5.15c) and abrasions (Figure
5.15d-e) are further causes for misclassifications. Nevertheless, the correctly classified coin
classes shown in Figure 5.15f-j also exhibit abrasions and motive variations which show
that the method is generally able to cope with these types of image variations.

Compared to the results on the multi-source dataset presented in Section 5.3.5, on
the large-scale dataset a similar classification rate is achieved (73.0% vs. 72.7% on the
multi-source dataset), although seven times as many classes are considered. In contrast
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to the multi-source dataset, all images of the large-scale dataset come from one single
source. This facilitates the classification process, as illumination changes between coin
images can be assumed to be much less due to the invariable image acquisition setup.
The particular challenge of this dataset is the high number of classes and it is shown that
increasing the number of classes has no drastic effect on classification performance.

5.4 Summary

In this chapter the problem of assessing image-to-image similarities from local correspon-
dences is treated. The proposed metrics are included in a exemplar-based coin classifi-
cation framework to account for the limited availability of training data, which makes
standard procedures based on an offline training phase inappropriate. Instead, it is aimed
to make the similarity metrics robust against the intra-class variations to handle them
directly in the image comparison.

In the first method proposed SIFT flow is exploited for robust dense correspondence
between coin images. It is demonstrated that the matching costs are a powerful dissim-
ilarity metric to establish coin classification for training set sizes of one or two images
per class. This is shown by a higher classification rate when compared to a previously
proposed correspondence-based method which does not include geometric constraints in
the similarity metric. Additionally, a coarse-to-fine classification scheme is introduced to
decrease runtime which would be otherwise linear to the number of classes in the dataset.
It is shown in the experiments that this way the average classification time can be reduced
from 471.6s to 32.9s, which is a reduction to 7% of the time needed without hierarchical
classification. By using this subselection scheme, the method achieves a classification rate
of 83.3% on a dataset of 60 Roman Republican coin classes.

The second method extends the idea of using geometric constraints due to the suc-
cess of the SIFT flow and uses a new local correspondence-based image similarity metric
that is both accurate and fast to compute. The method is designed to be robust against
the possible intra-class coin variations like degraded parts, non-rigid deformations and
illumination-induced appearance changes. It derives a similarity score by analyzing es-
tablished data-driven correspondences for their geometric plausibility. Experiments are
conducted on a dataset of 60 Roman Republican coin classes from various sources where
the presented method achieves classification rates ranging from 72.7% for the case of one
training sample per class up to 97.2% when nine training samples per class are used.
Consequently, the method shows to deliver a less complex but more distinctive similar-
ity measure than the SIFT flow-based method and outperforms also previously proposed
learning-based methods for ancient coin classification. The method is further reviewed for
its real-world applicability by evaluation on a large-scale dataset of 418 Roman Republi-
can coin classes. As a result, the method achieves a classification rate of 84.3% when the
information from the coins’ obverse and reverse side is combined and the correct class is
shown to be among the top 5 similarities in 93.5% of the cases. The superior classification
performance of the presented method results also from the illumination-insensitive feature
extraction by means of the LIDRIC descriptor. The descriptor provides the needed ro-
bustness against uncontrolled image acquisition conditions, but at the same time ensures
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enough discriminative power to establish correct correspondences between coins without
needing to guide the correspondence search by regularization.
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Chapter 6

Conclusions

In this chapter the thesis is concluded by highlighting its main achievements. Additionally,
the limitations of the presented methods in their current form are reviewed in Section 6.1.
Future work and possible implications for computer vision research and other application
areas are discussed in Section 6.2.

The main motivation for the research conducted in this thesis stems from practical
considerations with respect to available training data. Modelling image variabilities is
a major issue for image recognition that has to be addressed for successful algorithms,
and learning from large collections of training images is the widely followed paradigm.
This trend has arisen from the increasingly eased access to - probably annotated - image
data and the development of sophisticated machine learning methods to handle such
large datasets, e.g. deep learning methods [Ben09]. However, for certain domains with a
high number of classes and relatively low number of examples per class this approach is
infeasible. In this thesis ancient coin recognition is identified as such a domain where the
combined diversity and rarity of classes prevent the successful use of learning methods. As
a consequence, in this thesis various aspects of handling image variability are addressed
in an exemplar-based classification framework where a query image is compared to class
reference images without the need for an offline training phase. This approach has also
benefits from a practical point of view: the gathering of large datasets of annotated
training images is not needed and class extensions are straightforward by just adding new
reference images. In learning-based systems training can take days or weeks and must be
repeated from scratch any time new training images or classes are added.

The purpose of the segmentation method presented in Chapter 3 is to be insensitive
to image clutter in the background and the object scale. This allows to compute local
features at a constant scale, and hence it is not needed to sacrifice a certain amount of
discriminative power and reliability by scale-invariant feature detection. The contribution
of the presented method to the field of object segmentation is that it points out the use of
a simple, scalar confidence measurements to control the segmentation process. Therefore,
prior knowledge about the approximate shape of objects can be exploited to achieve a both
fast and robust segmentation. This is demonstrated on the annotated coin segmentation
testset of 92 images as well as all other coin datasets used for method evaluation in this
thesis, where no segmentation results with less than 94% mutual overlap are encountered.

The research presented in Chapter 4 aims to obtain a deeper understanding of illumination-
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insensitive feature extraction. A basic evaluation of low-level pixel-wise features for their
robustness and discriminative power under illumination changes illumination is conducted.
The study is the first one conducted so far that is comprehensive with respect to evalu-
ated features, influences of object material and object texturedness. Especially the type
of textureless objects like coins has not been investigated accordingly in the past. The
required comprehensiveness is reached by means of a new dataset of synthetically gen-
erated images. As a result, jets of oriented Gabor filter responses turn out to be most
effective under illumination changes. In the study a comprehensive parameter analysis
is conducted and it is further shown that for improved performance one can extend the
single-scale representation towards multiple scales by concatenating the single-scale jets.

The outcome of this basic study leads to the development of the LIDRIC descriptor,
which shows to outperform existing local descriptors on real images with illumination
variations. Regarding the experimental evaluation of the illumination-insensitivity of local
descriptors, the shortcomings of existing evaluations are emphasized. Therefore, a dataset
of textured as well as textureless objects is used which introduces a greater challenge
towards evaluating the robustness against illumination changes than conventional datasets
used in the past.

Finally, non-rigid object deformations as for instance occurring between ancient coins
of the same class are addressed in Chapter 5. It is deduced from a SIFT flow based
method that geometric constraints are crucial for establishing correct dense correspon-
dences between coin images. The proposed method is also inspired by correspondence-
based methods for image classification, but does not intend to establish a dense field of
correspondences but rather focuses on understanding what the most reliable correspon-
dences tell us about the similarity of the two images. Hence, a similarity metric is derived
from checking the geometric plausibility of matched features, instead of using geometric
plausibility to guide the correspondence search.

All the single proposed methods treat a specific kind of image variation and can
finally be integrated into a holistic ancient coin classification system: the query coin is
segmented, dense LIDRIC features are extracted and the correspondence-based similarity
to exemplars in the dataset is computed to classify the coin. Therefore, on the application
side, the work presented in this thesis contributes to the research of image-based ancient
coin classification, a quite new application field in the area of computer vision. Based
on the experimental results, the system shows the top performance compared to existing
correspondence-based as well as learning-based approaches. Moreover, it shows its real-
world applicability by classifying over 400 classes of the Roman Republican period with
high accuracy.

6.1 Limitations

Despite the diverse contributions of the proposed methods to the computer vision field,
there are certain limitations which are discussed below:
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� Shape-Controlled Object Segmentation

– The presented segmentation method is quite application-driven and thus only
applicable to nearly-circular objects like coins. However, within the broad
field of object segmentation, an applied method accounts for the challenging
diversity of the problem, as there is no general state-of-the-art segmentation
method applicable for all scenarios. Therefore, designing a segmentation for
a specific type of objects can be assumed to be more powerful than applying
a general-purpose unsupervised segmentation method, which is also shown in
the experiments.

– The method might fail if its assumptions - the coin is less regular as the sur-
rounding background and the most circular object in the image - are not ful-
filled, although this has never been encountered during evaluation.

� Illumination-Insensitive Feature Extraction

– The LIDRIC descriptor is designed to be insensitive to illumination conditions.
Evidently, that means that it loses discriminative power when no illumination
changes occur. More insensitivity means that more points in the space of all
images are mapped to the same representation. Therefore, it is not advisable
to use LIDRIC in scenarios where no illumination differences are present, in the
same manner as it is not advisable to use the rotation-invariant SIFT descriptor
when no image rotations are expected.

– LIDRIC does only treat the description stage of local image features and not the
interest point detection stage. Hence, it is most effectively used with regularly
sampled interest points, although it can be used in conjunction with existing
interest point detectors. However, existing detectors are not designed for scenes
with strong illumination variations and the result is likely to be unsatisfactory.

� Correspondence-Based Image Similarity

– The proposed GP similarity metric is based on data-driven matching and as-
sumes that for similar objects more correspondences are correct. Hence, the
method might fail when the objects to be compared are dominated by regu-
lar structures and thus no reliable correspondences can be detected without
considering their spatial location.

– In the presented form, the metric is not invariant to object rotations due to
involvement of the absolute displacement of features and the rotation-variant
comparison of neighboring correspondences. However, the individual terms can
be flexibly adapted to extend the metric to other kinds of geometric variations
between images.

� Ancient Coin Classification System

– Naturally, the system relies solely on image data and does not use other infor-
mation like the size and weight of the coin. Consequently, it fails in cases where
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the image data is also not sufficient for classification for a human expert, e.g.
very strong abrasions. This includes also the detection of professional forgeries,
which cannot be done from image data.

– Scale changes are compensated by normalizing the images with respect to the
size of segmented coin, but scale changes within the motive shown on the coin
can be handled only to a certain degree. Strong scale changes heavily affect
the dense features which are extracted at a constant scale.

6.2 Future Work and Implications

Shape-Controlled Object Segmentation

The segmentation method is in theory not limited to circular objects but can be applied
to all kinds of objects whose shape can be described by a confidence measure which
is invariant to global transformations like rotation or scale as well as insensitive to local
deformations. Given the proposed shape-controlled thresholding and an appropriate shape
descriptor, the segmentation of other shapes like elongated or rectangular ones is possible.
A further extension would be to use the formfactor to guide a locally adaptive thresholding
method.

Illumination-Insensitive Feature Extraction

Generally, the presented research on illumination-insensitive feature extraction enhances
the knowledge for this under-researched topic. The compared low-level features are the ba-
sis of many mid-level features and high-level systems, and thus it can also be derived from
the presented evaluation how these features and systems act in scenarios with textureless
objects and/or strong illumination changes. Consequently, it also helps researchers to
select proper features for their application scenarios in the future.

The LIDRIC descriptor shows superior performance for strong appearance variations
caused by different illumination directions. This includes one the one hand the matching
of highly specular surfaces, as even small viewpoint changes can lead to strong appear-
ance variations due to the inconstant BRDF for different viewing directions. Hence, the
descriptor can be used for an improved matching result for applications like stereo vision
[HS09] or structure-from-motion [OSVG10] when such objects are involved. For structure-
from-motion also the aspect of changing lighting conditions becomes more important as
the images are often collected from different sources and hence were taken at different
conditions (e.g. time of the day). The same applies to the problem of place recognition
[LBKS13]. Although the majority of objects in the world might be textured, these meth-
ods would also benefit from a more reliable matching of textureless object (parts), like
facades of buildings, statues etc.

Future work will focus on improving LIDRIC with respect to computational time,
dimensionality and rotation invariance. Additionally, the detection of interest points
under illumination changes will be investigated.
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Correspondence-Based Image Similarity

The proposed GP similarity metric is evaluated on ancient coins, but is not restricted
to this application. The method provides a fast and reliable similarity metric for non-
rigid deformations of features as occurring, for instance, for human faces or within object
categories like letters, cars etc. The similarity metric can be effectively used for exemplar-
based classification when a large number of classes has to be detected and it is impossible
or impractical to gather large amounts of training images to handle the intra-class vari-
ations. This is not only the case for ancient coin classification but also for domains like
writer identification [BS07] or plant leaf recognition [KBB+12]. Hence, for future re-
search it is planned to investigate and adapt the image similarity metric to such classes
of problems as well as to extend it to other kinds of geometric variations between images.
The method allows to flexibly adapt the similarity terms to account for other required
geometric invariances. For instance, rotation invariance can be achieved by using rotation-
invariant local features and a rotation-invariant evaluation of correspondence consistency,
e.g. by using only the distance of pairs of correspondences or by using the length and
angles between triplets of correspondences.

For further improvement of the similarity metric, the matching can be achieved on
multiple scales to jointly consider smaller and larger structures for similarity. Matching
from larger to smaller scales can be also done in a hierarchical subselection process to
speed-up the classification process as done for the SIFT flow method.

Notably, the method provides similarity values between images but no dense correspon-
dence field. Another research direction for the future is to derive dense correspondences
from the similarity metric, e.g. by seeding the correspondence search on the most similar
object parts and iteratively grow the correspondence field.

Ancient Coin Classification System

The ancient coin classification system demonstrates its practical usability by the high
classification rate achieved on the large-scale dataset. Considering the fact that simple
modifications will lead to further improved results, like a proper selection of reference
coins as well as a subselection scheme, the system is ready-for-use and thus able to support
numismatists in classifying coins from a certain era like the Roman Republican one. As
due to the achieved empirical results the classification can be assumed to be correct or at
least highly ranked for the majority of query coins, the presented automatic classification
system bears the potential to speed-up and ease their daily work.

Potential is also seen in using the visual similarity estimation in other forms within the
application field of numismatics. Visual similarity estimation can be combined with other
methods like symbol or legend recognition for a more extensive classification process. It
can also be used for automatic coin hoard grouping where a clustering of coins is performed
based on the proposed similarity metric.
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List of Acronyms

ALOI Amsterdam Library of Object Images

AUC Area Under Curve

BOVW Bag Of Visual Words

BRDF Bidirectional Reflectance Distribution Function

CBIR Content-Based Image Retrieval

FPR False Positive Rate

JOSD Jet of Oriented Second Derivative filters

LBDH Locally-Biased Directional Histograms

LDA Linear Discriminant Analysis

LIDRIC Local Image Descriptor Robust to Illumination Changes

LoG Laplacian of Gaussian

PCA Principal Component Analysis

RANSAC RANdom SAmple Consensus

ROC Receiver Operating Characteristic

SIDIRE Synthetic Image Dataset for Illumination Robustness Evaluation

SIFT Scale Invariant Feature Transform

SSDESC Self-Similarity DESCriptor

SSD Sum of Squared Distances

SVM Support Vector Machine

TPR True Positive Rate
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[HPS09] M. Heikkilä, M. Pietikäinen, and C. Schmid. Description of interest regions
with local binary patterns. Pattern Recognition, 42(3):425–436, 2009.

[HRM+05] Reinhold Huber, Herbert Ramoser, Konrad Mayer, Harald Penz, and
Michael Rubik. Classification of coins using an eigenspace approach. Pat-
tern Recognition Letters, 26(1):61–75, 2005.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Proc. of Alvey Vision Conference, pages 147–151, 1988.

[HS09] H. Hirschmüller and D. Scharstein. Evaluation of stereo matching costs
on images with radiometric differences. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(9):1582–1599, Sept 2009.

121



[HSSB98] M. Heath, S. Sarkar, T. Sanocki, and K. Bowyer. Comparison of edge
detectors. A methodology and initial study. Computer Vision and Image
Understanding, 69(1):38–54, 1998.

[HW62] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex. The Journal of
Physiology, 160(1):106, 1962.

[Jai89] Anil K Jain. Fundamentals of digital image processing. Prentice-Hall, Inc.,
1989.

[JDS08] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding
and weak geometric consistency for large scale image search. In Proc. of
European Conference on Computer Vision (ECCV), pages 304–317, 2008.

[JHD12] Yangqing Jia, Chang Huang, and Trevor Darrell. Beyond spatial pyra-
mids: Receptive field learning for pooled image features. In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
3370–3377, 2012.

[JJT11] Anne Jorstad, David Jacobs, and Alain Trouvé. A deformation and lighting
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deformation model for non-rigid image matching. Computer Vision and
Image Understanding, 112(1):91–99, 2008.

[SLH91] Guy L Scott and H Christopher Longuet-Higgins. An algorithm for as-
sociating the features of two images. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 244(1309):21–26, 1991.

[SM97] C. Schmid and R. Mohr. Local grayvalue invariants for image re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):530–535, 1997.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):888–905, 2000.

[SMB00] Cordelia Schmid, Roger Mohr, and Christian Bauckhage. Evaluation
of interest point detectors. International Journal of Computer vVision,
37(2):151–172, 2000.

[SPM+09] David W. Shattuck, Gautam Prasad, Mubeena Mirza, Katherine L. Narr,
and Arthur W. Toga. Online resource for validation of brain segmentation
methods. NeuroImage, 45(2):431 – 439, 2009.

128



[SRR01] A. Shashua and T. Riklin-Raviv. The quotient image: Class-based re-
rendering and recognition with varying illuminations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(2):129–139, 2001.

[SRZ12] Jichuan Shi, Nilanjan Ray, and Hong Zhang. Shape based local thresholding
for binarization of document images. Pattern Recognition Letters, 33(1):24
– 32, 2012.

[SS04] M. Sezgin and B. Sankur. Survey over image thresholding techniques
and quantitative performance evaluation. Journal of Electronic Imaging,
13(1):146–165, June 2004.

[SSBDB14] L. Seidenari, G. Serra, A.D. Bagdanov, and A. Del Bimbo. Local pyramidal
descriptors for image recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(5):1033–1040, May 2014.

[SVZ12] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Descriptor
learning using convex optimisation. In Proc. of European Conference on
Computer Vision (ECCV), pages 243–256, 2012.

[SWC06] Silvio Savarese, John Winn, and Antonio Criminisi. Discriminative object
class models of appearance and shape by correlatons. In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2033–2040, 2006.

[SWS+00] Arnold WM Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta,
and Ramesh Jain. Content-based image retrieval at the end of the early
years. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(12):1349–1380, 2000.

[SZ03] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach
to object matching in videos. In Proc. of International Conference on
Computer Vision (ICCV), pages 1470–1477, 2003.

[Sze10] Richard Szeliski. Computer vision: algorithms and applications. Springer,
2010.

[TAF06] Marshall F Tappen, Edward H Adelson, and William T Freeman. Esti-
mating intrinsic component images using non-linear regression. In Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1992–1999, 2006.
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