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Abstract

Image matching relates to the problem of finding corresponding points in two images of the
same scene. An unsolved problem in computer vision is to match images from sparsely tex-
tured scenes. Examples of such scenes are indoor environments with homogenous regions, e.g.
walls, ceilings or floors. It is shown that wide field of view cameras, so called omnidirectional
cameras, can improve the matching problem in sparsely textured scenes. Approaches for match-
ing omnidirectional images were proposed since traditional matching methods like the Scale
Invariant Feature Transform (SIFT) do not consider the non-linear distortion introduced by om-
nidirectional images, captured with catadioptric or fisheye cameras. In this thesis the keypoint
detection and descriptor matching performance is evaluated and compared for SIFT, sRD-SIFT
and SIFT on the Sphere (SIFT Sphere) in the context of indoor scenery. The performance of
keypoint detection is estimated with the measure repeatability and recall vs. 1-precision is used
to compare the descriptor matching performance of each approach. sRD-SIFT and SIFT Sphere
are adaptations of SIFT, adding a model of non-linear camera distortion for images with a single
viewpoint. The main contribution of this thesis is the estimation of the general performance of
those approaches in relation to different image transformations, e.g. scaling, rotation, viewpoint
changes and field of view changes, and in respect of sparsely textured and structured scenes.
It is shown that SIFT loses invariance to rotation, scaling and viewpoint changes in matching
omnidirectional images. SIFT Sphere is the sole approach examined which is invariant to such
transformations. Further it is shown that the performance of SIFT, sRD-SIFT and SIFT Sphere
in matching omnidirectional images with each other is superior to the matching of perspective
to omnidirectional images, which is the case in hybrid camera networks. Overall it is concluded
that all approaches examined have a complementary performance, which highly depends on the
scene type and image transformation, but in general none of them can be identified to be more
superior to the others.

I



Kurzfassung

Keypoint Matching bezeichnet das Problem vom Finden korrespondierender Punkte in zwei
Bildern. Dies ist für Bilder von schwach texturierten Szene ein ungelöstes Problem in der Com-
puter Vision. Derartige Szenen befinden sich z.B. innerhalb von Gebäuden, welche hauptsäch-
lich aus homogenen Flächen wie z.B. Wänden, Decken oder Böden bestehen. Es wird gezeigt,
dass Kameras mit einem besonders großen Blickwinkel, sogenannte omnidirektionale Kameras,
das Matching Problem in diesen Umgebungen besser lösen können. Jüngst wurden neue Algo-
rithmen vorgeschlagen um das Finden von korrespondierenden Punkten in omnidirektionalen
Bildern zu verbessern. Herkömmliche Matching Verfahren, wie die Invariant Feature Transform
(SIFT) für perspektivische Bilder ignorieren die nicht-lineare Verzerrung von omnidirektionalen
Bildern, die mittels katadioptrischen oder Fischaugen Kameras erzeugt werden können. In dieser
Arbeit wird die Leistung der Keypoint Erkennung und deren Zuordnung für SIFT, sRD-SIFT und
SIFT on the Sphere (SIFT Sphere) im Kontext von Innenraumfotos untersucht und evaluiert. Die
Vergleichsmaße der Auswertung sind Repeatability und Recall vs. 1-Precision. sRD-SIFT und
SIFT Sphere sind Adaptierungen von SIFT, die ein geeignetes Model für die nichtlineare Bild-
verzerrung von Single Viewpoint Kameras verwenden. Das Ziel dieser Arbeit ist die Leistung
von den genannten Verfahren im Zusammenhang mit unterschiedlichen Bildtransformationen
wie Skalierungen, Rotationen, Änderungen des Standpunktes und Änderungen des Blickwinkels
in schwach strukturierten und texturierten Bildszenen zu untersuchen. Dabei werden nicht nur
die Matching Ergebnisse von omnidirektionalen Bildern untereinander, sondern auch die Ergeb-
nisse von perspektivischen Bildern mit omnidirektionalen Bildern miteinander verglichen. Der
zuletzt genannte Fall tritt bei sogenannten hybriden Kamera Netzwerken auf. Es wird gezeigt,
dass nur SIFT Sphere bezüglich der untersuchten Bildtransformationen invariant ist. Die wich-
tigste Erkenntnis dieser Arbeit ist, dass die untersuchten Verfahren komplementäre Ergebnisse
liefern, welche wiederum stark von der jeweiligen Szene und Bildtransformation abhängen. Es
wird gezeigt, dass sich keines der untersuchten Verfahren in Hinblick auf die Matching Leistung
von den Anderen deutlich absetzt.
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CHAPTER 1
Introduction

The human brain needs to constantly match the information perceived by the retina of each
eye [16] in daily life. This is processed seemingly without any consciously effort, since it is
done automatically. But in fact, even for the human brain this is a complex task [35]. Inspired
by the human visual system, matching of digital images is tried to be solved with the detection
of corresponding locations. Since the majority of digital images are captured with perspective
cameras, algorithms for image matching in computer vision are adapted for this class of camera.
Similar to the human eye [16], there are cameras with a field of view of approximately 180
degrees. In contrast to perspective cameras, they do not provide a constant spatial resolution and
thus traditional matching algorithms are not capable to handle them properly. New approaches
for image matching have been developed [8], [28] taking the specific geometry of wide field of
view cameras into account.

1.1 Problem Definition

Image matching in computer vision relates to the problem of automatically identifying points or
regions in two images of the same scene which refer to the same 3D location of that scene, as
shown in Figure 1.1. Those points are called correspondences, as they correspond to the same
scene position. Finding correspondences in two or multiple images is a fundamental concept
in computer vision, as it has a variety of applications, e.g. object recognition [34], texture
recognition [24], content-based image retrieval [25], object tracking [7], wide baseline matching
[22], [48], 3D reconstruction [45], [13], structure from motion [30], outdoor localization [17],
robot localization [39], video data mining [41] or camera calibration [42]. Tuytelaars et al.
provide an extensive survey on interest point detection [46]. The matching problem is one of
the fundamental problems in computer vision [31]. The core demand on point matching is that
a point of interest in one image should be re-detectable and found in another image under image
transformations such as viewpoint changes, scale changes or rotation changes. The optimal
case is, if this point is matched as long as it is captured in the second image, regardless from
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which position, orientation or photometric conditions the image is taken [40]. Therefore the
requirements of the region around the so called interest point or keypoint are to be distinctive
and simultaneously robust to the aforementioned transformations [31].

?

?

?

Figure 1.1: Identifying corresponding points in two images of the same scene.

In particular, environments with sparsely textured surfaces are still an open research field
of image matching [10], since robust keypoints are relying on the image texture and structure.
Indoor is a characteristic environment, where the major elements are homogenous regions from
walls, ceilings, floors. For example, video surveillance [36] or robot localization [43] are typi-
cally faced with those scenarios.

This work proposes and shows that indoor matching can be improved by using large field of
view cameras, so called omnidirectional cameras. A detailed characterization is given in Chapter
2. The increased viewing angle in contrast to narrow field of view cameras enables the detection
of more robust interest points than in the other case, since more spatial structure is observed.

In the case of matching perspective images, the Scale Invariant Feature Transform (SIFT)
[29] is a well examined and very successful approach. This approach is not only used by several
authors in different applications [52], [38], [3] or [26], but is also evaluated to give the most reli-
able matching results compared to other state-of-the-art methods for matching, as shown in [31].
Unfortunately, as shown in [28] the matching performance of SIFT is not constant over images
with different radial distortion. This is due to the fact that SIFT assumes images with constant
spatial resolution. However, it is an open question how strong the matching performance is in
general influenced by using omnidirectional images, since the distortion decreases in direction
from the image borders to the image center.

Because of the lack of an adapted omnidirectional model in the case of SIFT [28], newly
developed methods try to fill this gap by using a spherical image model or a specific non-linear
distortion model for example [8], [28]. One of those is SIFT on the Sphere (SIFT Sphere)
proposed by Cruz-Mota et al. [8]. Another approach to solve this problem is published by
Lourenco et al. with the name sRD-SIFT [28]. The authors evaluated their methods using
only a small set of different scenes, i.e. up to 3 image sequences, and not with respect to all
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geometric image transformations for which the original proposed SIFT is invariant. These are
scale, rotation and viewpoint changes of < 50 degrees. For evaluation, they also mainly used
artificial image data. Therefore it is unknown how well these methods perform on real world
image matching, especially on images with sparse structure and texture, and in comparison to
SIFT, when applied on omnidirectional images.

1.2 Related Work

sRD-SIFT assumes a radial distortion model for the description of the image distortion. Its most
important contribution is that all operations of the algorithm are taking place on the original
image data and no resampling of the image is needed. Lourenco et al. propose that interpolation
is an important issue in performing SIFT on distorted images [28]. In contrast to sRD-SIFT,
SIFT Sphere warps the original image data onto a spherical surface. Cruz-Mota et al. assume
that a precise image model is more important than resampling the original image data [8]. Since
there is a one-to-one mapping between omnidirectional images and the surface of the unit sphere,
the sphere can be used as a model for all types of omnidirectional images from different kinds
of cameras such as catadioptric or fisheye cameras.

To find scale invariant interest points in an image, SIFT first computes the scale space of
an image [29]. Koenderink gives in [23] a fundamental theoretical background of scale space
in computer vision. Based on that, Lindeberg shows how to estimate the scale space of an
image, and what applications it can have [27]. The scale space has the objective to represent an
image in different levels of detail. Before a SIFT-based keypoint detector and descriptor on the
spherical image domain is proposed by Cruz-Mota et al., the key aspect, i.e. estimation of the
scale space for spherical images, is published by several authors. Bülow proposes a spherical
Gaussian kernel to filter the image in the spherical image domain, namely the Green’s function
of the spherical diffusion equation, see [6] for details. Gaussian filtering is a key processing step
of estimating the scale space of an image. Daniilidis et al. go a step further than Bülow and not
only estimate the spherical scale space, but also propose a method to estimate the optical flow of
omnidirectional images without resampling the original image data [9]. A different approach to
estimate scale space and interest points is given by Briggs et al. [4], this based on the assumption
of one dimensional omnidirectional images. In contrast to Gaussian filtering, Puig et al. propose
a method based on the Laplace-Beltrami operator to estimate the spherical scale space of an
image [37]. This approach does not require resampling the image data.

To solve the sparse structure matching problem for perspective images, Dickscheid proposes
a generic statistical model for the seamless integration of different specific existing matching
approaches [10]. This relies on the assumption that for each specific problem instance at least
one concrete matching method is already available. Scaramuzza et al. propose an approach
to match omnidirectional images in the context of robot motion estimation [39]. This work is
based on the extraction of vertical lines in catadioptric images and their description for matching.
Goedeme et al. invent a matching framework for omnidirectional vision to automatically build
an environment map for real-time localization in autonomous mobile robot navigation [15]. Not
based on interest point extraction but on interest region detection, Mauthern et al. propose
a method to match omnidirectional images while extracting virtual perspective camera planes

3



[44]. Arican et al. propose a formal derivation based on the heat diffusion equation to describe
omnidirectional images with Riemannian geometry and to compute scale-invariant features [1].
An extensive survey on general omnidirectional sensing is given by Yagi in [50].

Not only the matching methods for perspective and omnidirectional images are established,
but their evaluation is also a fundamental research topic. In case of perspective matching an
extensive evaluation of state-of-the-art affine region detectors is done by Mikolajczyk et al. [32].
They estimate not only the performance of different detectors, but also the matching performance
in relation to different region descriptors in [31].

The two specialized methods SIFT Sphere and sRD-SIFT are selected in this thesis for eval-
uation because they give two contrary state-of-the-art methods for matching omnidirectional
images. SIFT Sphere formulates the entire process of keypoint detection and keypoint descrip-
tion in the spherical domain, i.e. the original image data is transformed onto the unit sphere.
Hereby, a proper camera model of the given omnidirectional image is known a priori. Scale
space estimation is done using the Spherical Fourier Transform, see [8] for details. SIFT Sphere
includes two types of descriptors for detected keypoints. One is called Local Spherical Descrip-
tor (LSD) [8], it is proposed to match omnidirectional images with each other and the other is
called Local Planar Descriptor (LPD) [8] which is specialized to match perspective images with
omnidirectional images. In this work, both types are compared with each other.

sRD-SIFT adapts the division distortion model proposed by Fitzgibbon [12]. A mathemati-
cal approach is used that enables the scale space to be estimated directly from the original image
data. Since the division model is proposed for perspective images with radial distortion, it can-
not describe the entire image plane of omnidirectional images which have a field of view more
than 180 degrees. Nevertheless, because of its partial correctness, Lourenco et al. proposed
sRD-SIFT for the use with fisheye images as well, which typically have this large field of view.

For this work, the general idea from Mikolajczyk et al. [32] is taken, to develop a robust and
accurate evaluation framework for omnidirectional image matching. The basic idea is to take
images of planar scenes for which a linear transformation between two images can be estimated.
This transformation, i.e. the ground truth, enables predicting where a keypoint from one image
should appear in a second image. Then it is possible to determine whether a keypoint is re-
detected or not. Not only the re-detection can be estimated from the ground truth, but also if the
matching, i.e. the association of keypoints from two images, is correct.

1.3 Scope of Work

In this thesis SIFT, SIFT Sphere and sRD-SIFT are evaluated and compared in terms of keypoint
detector performance and descriptor matching performance. The evaluation is done with images
of indoor environments where only sparsely textured and structured surfaces are available. Each
scene type is assessed for all Euclidean image transformations against a planar object, i.e. scale
changes, field of view changes, viewpoint changes and rotation changes. Not only omnidirec-
tional images are matched with each other, but also perspective images with omnidirectional
ones. Two evaluation criteria are used to estimate the performance of the keypoint detectors and
the matching performance. In the first case this is the so called repeatability which is the relative
number of re-detected keypoints. For the latter case, the recall vs. 1-precision measure is used.
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It is based on the fact, that a matching algorithm can associate a matchable or a not matchable
keypoint, correctly or incorrectly with another keypoint.

1.4 Contribution

The main contribution of this thesis is the estimation of the general performance of SIFT, sRD-
SIFT and SIFT Sphere over all Euclidean image transformations and over sparsely textured
images.

Since SIFT is originally proposed to be invariant to image rotations, scale changes and view-
point changes up to 50 degrees in the case of perspective images, it is shown how the perfor-
mance is influenced under those transformations by omnidirectional image matching.

From a theoretical point of view, omnidirectional images include an additional invariance to
every camera rotation, if the sphere is used as the underlying image model [17]. This transfor-
mation type is included in the evaluation and it is shown how the different methods can keep
invariance.

Since SIFT, sRD-SIFT and SIFT Sphere are based on different image models, a detailed
performance analysis regarding the aforementioned transformations and scene types is given
for each. It is shown that all methods act complementary and none are, in general, superior in
omnidirectional matching. Furthermore, the pros and cons of each method are investigated and
it is shown for which scene type and image transformation each approach gives the best results.

Additionally more specific issues in terms of omnidirectional image matching are analyzed.
Wide field of view images afford the opportunity to match images with a larger field of view
change than perspective images. It is estimated how the matching with SIFT, sRD-SIFT and
SIFT Sphere is influenced by this transformation type. Since the resolution density is larger in
the central region than at the borders of omnidirectional images, it is analyzed to check if this
fact has an impact on keypoint detection and descriptor matching, especially for SIFT.

By definition, it is true that larger field of view cameras can observe more scene structure.
In the case of matching images with sparse structure, the use of omnidirectional images should
improve the results. The actual effect is estimated with the comparison of matching omnidirec-
tional images with each other and perspective images with omnidirectional images.

Since the overall matching performance is examined, the specific performance of SIFT is
estimated too. Here it is analyzed which specific requirements SIFT has on the scene, since its
matching performance of omnidirectional images is unknown thus far.

Last but not least, it is shown that wide baseline matching even with the use of omnidirec-
tional cameras cannot be improved.

1.5 Organization

The thesis is organized as follows. First, a fundamental theoretical understanding of omnidirec-
tional vision is given in Chapter 2. Chapter 3 leads to image matching in general and matching
of omnidirectional images in particular. SIFT, sRD-SIFT and SIFT Sphere are introduced and
their keypoint detector and descriptors are discussed separately. Chapter 4 states the experi-
mental setup of the evaluation. In this chapter not only the image sets but also the performance
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measures are introduced. Finally, Chapter 5 contains the actual results and a discussion of the
entire experimental evaluation of SIFT, sRD-SIFT and SIFT Sphere in omnidirectional image
matching. Chapter 6 concludes the evaluation and outlooks future work.
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CHAPTER 2
Omnidirectional Imaging

In this chapter the theory of omnidirectional imaging is described. It starts with the discussion
of what omnidirectional vision actually is, and how perspective images are related to omnidi-
rectional vision. The chapter is concluded with the unified model for all types of central omni-
directional cameras. Not only the basic concepts are discussed, but the types of actual cameras
for omnidirectional vision are also presented. All concepts of omnidirectional vision, which are
used in the following evaluation, are described in the following sections.

This chapter is organized as follows. In Section 2.1 the shared theory of image formations
in perspective and omnidirectional vision is given. A definition of different image domains fol-
lows in Section 2.2. The image domains are the interface between the camera and the matching
algorithm. They describe the image format of different cameras and simultaneously they rep-
resent the image structure assumed by an algorithm. In Section 2.3 different camera types for
capturing omnidirectional images are discussed. The last Section 2.4 describes how all different
types of omnidirectional cameras can be merged into one single formal projection model.The
geometrical concepts of the unified model of central catadioptric and fisheye cameras are given.

2.1 Image Formation

An image of the physical world can be captured through projecting rays of light with a single
center of projections onto an arbitrary surface. Thus, theoretically it is possible to see the entire
surrounding environment from one single viewpoint, as shown in Figure 2.1. Such a field of
view in all directions of a sphere is called omnidirectional [33], since rays of light are captured
from all directions regarding a certain point of view. With a single center of projection the single
viewpoint constraint is fulfilled and thus from any omnidirectional image, pure perspective im-
ages can be obtained by projecting the rays of light onto a plane with an arbitrary distance to the
center of projection (focal length) [33] as shown in Figure 2.1. The distance and the size of that
plane defines the actual angle of the field of view. It follows directly that there is no perspective
projection with a field of view equal to 180 degrees or larger, since the rays of light would run
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360◦

80◦

50◦

30◦

Figure 2.1: Fully omnidirectional vision from a single viewpoint (center of projection). Colored
parts represent perspective projections with different fields of view.

parallel to that plane. The perspective projected images preserve linear geometry. Thus, straight
lines in space are still straight on the image plane, for details see [19]. Nayar propose that there
are two reasons for obtaining perspective images. First they are consistent with the vision sys-
tem of the human eye and second the large body of work in computer vision assumes linear
perspective projected images [33].

180◦ 120◦ 140◦ 160◦

Figure 2.2: Omnidirectional image with 180◦ field of view (left). Undistorted perspective pro-
jections with different viewing angles. Note the increasing perspective distortion for larger fields
of view.

As long as the single viewpoint constraint is fulfilled, perspective images can be obtained
from omnidirectional images, and because of the large field of view it is still reasonable to
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capture omnidirectional images. For simplicity in this thesis, any image with a field of view
larger or equal to 180 degrees is called omnidirectional, regardless from which camera it is
obtained. Certainly it cannot be a perspective camera.

Images from perspective projection suffer from perspective distortion. In Figure 2.2 per-
spective projections from an omnidirectional image with different fields of view are depicted. It
can be clearly observed that increasing the field of view results in stronger perspective distor-
tion. For example, the panels of the ceiling are stretched more in the viewing direction with 160
degrees field of view as with 120 degrees. In reality their shapes are approximately quadratic.
The omnidirectional image does not contain such strong perspective distortion even for a field
of view of 180 degrees. This is due to the fact that rays of light are not perspectively projected
onto a planar surface, but correspond to a projection onto a spherical surface. Finally, non-linear
distortion enables to project this image onto a plane. This latter distortion type is called radial
distortion or lens distortion of an image and must be distinguished to perspective distortion.

2.2 Image Domains

Depending on the type of camera, different image domains can be figured out. These are the
image modalities which the matching algorithms assume as the input. It is distinguished be-
tween omnidirectional and perspective cameras. In the case of omnidirectional images, the data
can be represented in spherical coordinates or similar to perspective images, in planar image
coordinates. In Figure 2.3 the different image domains are shown as an illustration and with a
corresponding sample image.

perspective planar omnidirectional planar omnidirectional spherical omnidirectional spherical 3D

Figure 2.3: Image domains: illustrations and samples.

The term planar refers to the property of planar pixel representation. On the contrary, spher-
ical relates to the case that the pixel positions are equal to a spherical angle and therefore can
be represented on a sphere. In Figure 2.3 the pixels in spherical coordinates are shown with the
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label omnidirectional spherical and the actual representation on the sphere is shown with the
label omnidirectional spherical 3D.

For all image domains the major difference is the actual pixel representation. It is assumed,
that the sampling is uniform in each domain in relation to the actual spatial representation, but
the underlying projected scene is represented arbitrarily. Planar perspective images without any
image distortion have a constant resolution in spatial directions of the perspective image plane.
This property is not valid for planar omnidirectional images, since non-linear distortion causes
displacements of the pixel positions. For omnidirectional spherical images the resolution is
equiangular, because each pixel position represents a certain angular coordinate of the sphere.

Matching algorithms, i.e. SIFT, sRD-SIFT or SIFT Sphere, are proposed on different im-
age domains, e.g. SIFT assumes a planar perspective image [29], sRD-SIFT assumes a radial
distorted image [28] and SIFT Sphere assumes an image in spherical coordinates [8]. In prin-
ciple, that means the methods do not work in different image domains, because the actual pixel
sampling is arbitrary. Nevertheless, images from calibrated cameras can be transformed at least
partially to any other image domain. Warping the image means interpolation and introduces
sampling errors, i.e. removing or adding high signal frequencies [28]. Therefore, Daniilidis et
al. propose that in omnidirectional vision the original sampled values should always be used for
any signal processing [9].

2.3 Cameras

After showing how perspective and omnidirectional images are obtained and what their underly-
ing image domains are, now the actual camera types for perspective and omnidirectional vision
are discussed.

FOV FOV

FOV

Figure 2.4: Illustrations of a perspective camera with a small field of view (left), a fisheye camera
with large field of view (middle) and a catadioptric camera with large field of view (right). FOV
= Field Of View. Image is taken from [33].

A perspective camera, as shown in Figure 2.4 (left) has a limited field of view in comparison
to omnidirectional cameras, but it is consistent with the vision system of the human [33] and
therefore produces familiar images. In contrast, omnidirectional images can be obtained by
multiple different camera types. Yagi gives a survey of various ways to capture omnidirectional
images [50]. Two of them are either the use of one rotating perspective camera or to bundle
multiple perspective cameras in a way that the optical centers are coinciding. In practice this is
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hard to achieve [50]. Since these two solutions only obtain an omnidirectional image composed
of multiple perspective images, they are not elaborated more in this work.

A wide angle view can be acquired by using a perspective camera with an attached, so called,
fisheye lens, as shown in Figure 2.4 (middle). The field of view can cover the entire hemisphere,
i.e. 180 degrees [50]. This special type of lens is designed in a way to capture rays of light
which incide perpendicular to the optical axis. Another solution to enhance the field of view of a
perspective camera is to place a reflective surface in front of it, as shown in Figure 2.4. Here, the
incident angle of light can be increased by an appropriate mirror. Most importantly for such a
construction is, that all incoming light rays are reflected so that they intersect in one single center
of projection [33]. Otherwise the image obtained does not satisfy the single viewpoint constraint
and no perspective images can be reproduced from that image. The optics of refracting elements
(lenses) is called dioptrics and the optics of reflecting surfaces (mirrors) is called catoptrics.
The combination of both elements is called catadioptrics [20], and therefore a camera with an
attached reflecting surface is called a catadioptric camera. Baker et al. have proven that a
catadioptric camera has a single effective viewpoint if and only if the mirror’s cross-section is
a conic section [2]. Practically, that means the shape of the mirror needs to be a rotated conic
section to achieve a catadioptric camera with a single center of projection.

2.4 Unified Model

Every camera type, such as fisheye or catadioptric with an elliptical mirror, a hyperbolic mirror
or a parabolic mirror, for example, produces images with different radial distortion. Therefore,
those images are not practical in applying algorithms which are influenced by such distortions.
If one single common projection model can be found, then algorithms can be adapted to this
underlying shared model and would work with every omnidirectional image that is consistent
with the single viewpoint constraint. This postulation is accomplished for all catadioptric images
with a single viewpoint by Geyer et al. [14]. They prove that all cases of mirroring surfaces,
e.g. parabolic, hyperbolic, elliptic or planar, with an appropriate orthographic or perspective
camera can be modeled with a projection from world points to the unit sphere. And secondly,
a projection from the sphere to the image plane. Here, the projection center is on a diameter of
the sphere, to which the image plane is perpendicular.

As shown in Figure 2.5, the unifying theory from Geyer et al. contains two separated pro-
jections. Let P = (x, y, z, w) ∈ P3 be a point in 3D projective space, i.e. represented with
homogenous coordinates, then P is projected onto the surface of a unit sphere S2 centered at the
origin (0, 0, 0) by

F : P3 → S2/ ∼ (2.1)

F (x, y, z, w) = (±x
r
,±y

r
,±z

r
) (2.2)

with r =
√
x2 + y2 + z2. The equivalence relation of antipodal points on the sphere is repre-

sented by ∼. To finally map the points from the spherical surface to the image plane z = −m,
they are projected from (0, 0, l). The mapping is done by

G : P3 → R2
∼ (2.3)
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x′′
x′

l

m

P = (x, y, z, w)

(x, y, z)/r

−(x, y, z)/r

Figure 2.5: Unifying projection model. An arbitrary point P is projected onto the sphere (red)
to the two antipodal points (±x,±y,±z)/r. Then both antipodal points are projected with the
point (0, 0, l) to the image plane (green). Image is taken with slight modifications from [14].

G(x, y, z, w) = (±x(l +m)

lr ∓ z
,±y(l +m)

lr ∓ z
,−m). (2.4)

In Figure 2.5 the image plane is shown as a green line with z = −m. Thus, the principle
axis (blue) is perpendicular to the image plane, passing through the center of the sphere and
is coincident with the z-axis of the coordinate system. Likewise, the center of the perspective
projection lies on that axis too, with z = l.

As shown in [14], changing m, i.e. moving the image plane in direction of z, results in
scaling of the final image. Therefore m = 1 can be assumed. Similarly it is shown that special
cases of l = 1 and m = 0 relate to the stereographic projection (the center of projection is at the
North Pole) and l = 0 with m = 1 corresponds to a perspective projection [14].

Based on this projection model, Geyer et al. proved for all catadioptric projections with a
single effective viewpoint that they are equal to the projection of a sphere followed by a pro-
jection to an image plane, as shown above [14]. This means they have proven the equivalence
for projections with a parabolic, hyperbolic, elliptical and planar mirror. Each type relates to a
different value of l in the range [0, 1].

An extension to the unified model by Geyer et al. proposed is presented by Ying et al. [51].
Their extension allows describing not only central catadioptric images but images captured by
fisheye cameras too. Hence a fisheye image can be transformed into a central catadioptric image
and vice versa. In [51], it is shown that allowing l > 1, or l =∞ in the unified model of Geyer
et al. leads to the equivalence of the projection of fisheye cameras.
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Finally, with the unified model of central catadioptric cameras and fisheye cameras an un-
derlying shared geometrical surface is found, which is the unit sphere. All the various projection
types can be described by the projection of points on a spherical surface to the actual image. It
follows that if an image processing algorithm is proposed for spherical image data, then central
catadioptric images or fisheye images can be processed. One way is to map the original image
data onto the sphere before applying the algorithm. If resampling of the original image data
needs to be avoided, then an adaption of the algorithm for the actual camera type is essential.

2.5 Summary

In this chapter the theoretical basis of omnidirectional vision was introduced. It was shown
how omnidirectional and perspective images are captured and what their underlying image do-
mains are. After introducing different camera types for omnidirectional imaging, the unified
model from Geyer et al. was explained. It combines different types of cameras into a unified
geometrical formulation.
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CHAPTER 3
Matching of Omnidirectional Images

This chapter describes the matching approaches evaluated in this work. All of the approaches
are SIFT based, which means they are adapted versions of the original SIFT proposed from
Lowe [29]. These adaptations take the omnidirectional geometry into account. Specifically,
SIFT Sphere and sRD-SIFT are considered. The former is a SIFT variation for image matching
of spherical images and the latter approach uses the division distortion model [12] for keypoint
and descriptor calculation.

First in Section 3.1, the general matching approach of SIFT is shown. All basic parts of the
processing pipeline are discussed and decomposed into elementary concepts, which are further
exchanged in the cases of SIFT Sphere and sRD-SIFT. Since keypoint matching relies on the part
of keypoint detection and descriptor estimation, those stages are presented for each matching
approach in Section 3.2 and Section 3.3 separately. Finally, the actual descriptor matching is
presented in Section 3.4, which is the same for each matching method.

3.1 Matching Approach

Finding corresponding points in two images is in the case of SIFT, a three step approach. As
shown in Figure 3.1 it is split into keypoint detection of an image, descriptor estimation of each
keypoint and finally the matching of each keypoint with its corresponding descriptor. Keypoints
are point locations in an image which relate to a distinctive local image structure, e.g. corners,
gradients. This is necessary so that they can be uniquely identified. In contrast, descriptors are
based on image regions, i.e. sets of multiple pixels, and abstract their specific content in a numer-
ical representation. They are a description of a certain region. The detection of keypoints makes
it possible to find potential corresponding image locations and the search of similar descriptors
enables the assignment of those locations.

Let P 1 =
{
p1
1,p

1
2, ...,p

1
M

}
and P 2 =

{
p1
2,p

1
2, ...,p

1
N

}
with pki = (xki , y

k
i ) ∈ R2 two sets

of detected keypoints in image I1 and I2. Then the region around each keypoint is transformed
into descriptor space R128. Therefore there are two sets of descriptors D1 =

{
d1
1,d

1
2, ...,d

1
M

}
and D2 =

{
d2
1,d

2
2, ...,d

2
N

}
with dki ∈ R128.
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for each descriptor pair of two images

for each keypoint

Figure 3.1: Matching pipeline. Included steps are keypoint detection, descriptor estimation and
the final descriptor matching.

A matching is a set M =
{
(d1

i ,d
2
j ) | d1

i ∈ D1,d2
j ∈ D2

}
. The descriptor space is also

called feature space and a descriptor is also called feature vector. A descriptor is a numerical
representation of the surrounding region of a keypoint in an image. It is postulated that the
distance under a certain metric, e.g. Euclidean norm:

dist(d1,d2) =

√√√√ n∑
i=1

(d1i − d2i )2, (3.1)

is correlating with the similarity of the underlying region. For similar regions the distance be-
tween the descriptors should be lower than for dissimilar regions. That enables the matching
of corresponding regions, i.e. keypoints, by searching for the nearest neighbor in the descriptor
space.

The matching pipeline is not only valid for SIFT, but also for sRD-SIFT and SIFT Sphere. In
the following sections each of the stages keypoint detection, descriptor estimation and descriptor
matching will be explained, for the three approaches, in detail.

3.2 Keypoint Detection

In the case of SIFT [29] the detection of keypoints in an image includes several stages , as shown
in Figure 3.2. All these general steps are also the same for sRD-SIFT and SIFT Sphere. To de-
tect scale invariant interest points, the so called scale space of an image is calculated. This is
a representation of the different levels of details in an image. A similar effect can be achieved
by resizing an image. Since the scale space representation depends on the image structure, it
is influenced by radial image distortion, in particular by omnidirectional images. In the follow-
ing subsections it is shown how sRD-SIFT and SIFT Sphere are adapted for the scale space
estimation.

In the next step of the keypoint detection pipeline, the so called Difference of Gaussians
(DoG) is calculated. These are the subtractions of adjacent layers from the scale space. The
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Figure 3.2: Keypoint detection pipeline of SIFT based approaches.

detection of extrema locations of the DoG is followed. A location is an extrema if all surrounding
pixel values have a smaller or larger value than the respective position. All extrema are potential
keypoints. To remove unstable keypoints in the step Filter Keypoints, those extrema which have
a contrast below a certain threshold or are lying on an edge and have therefore an unstable
location, are removed. This stage of the pipeline also includes the fitting of a certain function
on the extrema to interpolate its location and reach, hence a more accurate location. In the final
step, an orientation, based on the image gradients is assigned to each extrema that makes the
keypoints invariant to image rotations.

Since the keypoints are detected in scale space, each keypoint corresponds to a specific scale
value, which is measured in pixels. The scale value represents the size of the underlying image
structure from which the keypoint is recognized. For the calculation of the descriptor it is taken
to define the size of the underlying region. In the following figures, keypoints are always shown
as a circle with a radius according to its scale value and a line, originating from its center,
pointing in the direction of the keypoint’s orientation.

sRD-SIFT and SIFT Sphere propose new methods for estimating the scale space of an omni-
directional image. All other steps of the pipeline are not affected and only have slight underlying
changes. The scale space is the only affected part in the keypoint detection in the case of om-
nidirectional images [28]. All other stages are relying on the scale space, but do not apply any
global image transformation which can be influenced by radial distortion. In Figure 3.3 key-
points detection for SIFT, sRD-SIFT and SIFT Sphere are shown respective their image domain.
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SIFT sRD-SIFT SIFT Sphere

Figure 3.3: Keypoints detected by SIFT, sRD-SIFT and SIFT Sphere in each respective image
domain.

SIFT

The stages of the keypoint detection pipeline for SIFT, as shown in Figure 3.2, are composed
in detail as follows. The scale space is obtained by transforming the image with the use of a
cascading filtering approach, as proposed by Lowe [29]. This estimation is based on the scale
space representation of signals introduced by Witkin [47]. For planar perspective images the
scale space is defined as

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.2)

where x and y are image coordinates, I is the input image, ∗ is the convolution operator and G
is

G(x, y, σ) =
1

2πσ2
e−

1
2σ2

(x2+y2). (3.3)

which is the Gaussian function with variance σ2. This parameter represents the actual scale value
in the scale space. As L(x, y, σ) is discrete in all parameters, the scale space representation is a
stack of increasing blurred images from the input (see Figure 3.4). From this definition it can be
observed that, it is only valid in case of non-distorted images. The reason is that the convolution
with the Gaussian function requires spatial shift invariance, otherwise the image is not constantly
blurred. For distorted images this premise is not fulfilled because image content is deformed.

Lowe also propose an efficient method for calculating the scale space representation of an
image [29]. The optimization plays an important role to understand the parameter of SIFT
implementations involved. The scale space, as shown in Figure 3.4, is divided into multiple
octaves. To produce the images of the first octave the original image is incrementally convoluted
with Gaussians having the initial value σ0 and a constant factor k. To complete an octave if 2σ0
is reached, Lowe chooses k = 2(1/s), where s is the amount of intervals inside one octave. After
finishing one octave, the last Gaussian image that has 2σ0 is resampled by taking every second
pixel in each row and column. The resampled image is taken as the initial layer of the next
octave and then is only half of its previous size. Therefore the next Gaussian convolution kernel
also has to be the half size of the previous. Therefore the next octave starts with σ0 again. This
is called sampling relative to σ [29].
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Figure 3.4: Scale space of an image (left) and the corresponding Difference of Gaussians (right).
Different octaves in the sale space are obtained by resampling the image to the half size. And
different layers in one octave are calculated by consecutive Gaussian convolution. Image is
taken from [29].

For detecting stable keypoint locations, Lowe introduces the Difference of Gaussian (DoG)
as

DoG(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (3.4)

with a constant factor k, to separate two adjacent scales [29]. DoG is a close approximation of
the Laplacian of Gaussians, proposed by Lindeberg [27]. Stable keypoints are detected as local
extrema of the DoG(x, y, σ). Therefore each pixel is compared to its eight neighbors of the
current DoG image with σ and to its nine neighbors in the scale below with (k− 1)σ and above
with (k + 1)σ. The pixel is only taken as a keypoint candidate if its value is larger or smaller
than to all of the compared values.

In this step the detected keypoint locations are at exact pixel and scale positions in the scale
space. This is only a quantized representation of the captured scene and the optimal extrema of
the DoG probably does not lie directly on this sampled position. Therefore Lowe uses a method
developed by Brown [5] to determine the optimal position. It fits a 3D quadratic function to the
local keypoint position and estimates an interpolated location of the extremum. To approximate
the underlying continuous signal he uses the Taylor expansion (up to the quadratic terms) of the
scale space function DoG

DoG(x) = DoG+
∂DoGT

∂x
+

1

2
xT

∂2DoG

∂x2
x (3.5)

with x = (x, y, σ), for details see [29]. This processing step is combined with the estimation of
stable keypoints in the keypoint detection pipeline (see Figure 3.2) of the stage Filter Keypoints.
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Extrema with low contrast are rejected to finally obtain only the keypoints which are stable
against image transformations. For stability, keypoints lying on edges are also eliminated. These
are not robust for small amounts of noise [29].

So far keypoints with a specific scale and location are detected. To make them also invariant
to image rotations an orientation is assigned to each keypoint. This calculation is based on the
local image gradients. The image with the respective scale of each keypoint is taken from scale
space, and a histogram from the gradients of the keypoint’s regions is formed. The gradient
magnitude

m(x, y) =
√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.6)

and the orientation

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (3.7)

is computed for each location (x, y) in L and added to the respective histogram. The orientation
of a keypoint is then set to the orientation of the highest peak in the histogram [29]. For several
peaks with a maximal relative difference of 20% multiple keypoints are generated.

sRD-SIFT

Keypoint detection with sRD-SIFT consists of the same principles used for SIFT. Scale invariant
keypoints are detected in scale space as extrema of the DoG and an orientation is assigned
through the estimation of local gradients. Optimization of the keypoint location and stability
is applied in the same way as for SIFT. The difference between SIFT and sRD-SIFT is the
estimation of the scale space, because this processing step is affected by omnidirectional images.
For sRD-SIFT, it is assumed that the image can be undistorted by a proper model to remove
radial distortion. For omnidirectional images this is only partially valid, since the entire view of
more than 180 degrees cannot be uniquely mapped to a plane. Nevertheless, the inner part of the
image can still be described by such a model [21].

Before the algorithm for estimating the scale space is discussed in detail, the distortion
model used is described. Lourenco et al. assume that the image distortion follows the first-order
division model proposed by Fitzgibbon [28], [12]. Hence the amount of distortion depends only
on a single parameter ξ and the center of distortion is approximated by the image center [28].
The pixel displacement between a distorted and undistorted image is in the case of the division
model

x = f(u) =

(
fx(u)
fy(u)

)
=

 2u

1+
√

1−4ξ(u2+v2)
2v

1+
√

1−4ξ(u2+v2

 (3.8)

whereby x = (x, y)T is a point in the distorted image and u = (u, v)T refers to the corre-
sponding point in the undistorted image. Equation 3.8 describes how to apply distortion on a
distortion-free image. One of the main benefits of the division model is that there is a simple
explicit inversion

u = f−1(x) =

(
f−1u (x)
f−1v (x)

)
=

(
x

1+ξ(x2+y2)
y

1+ξ(x2+y2

)
. (3.9)
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Since the amount of distortion is quantified by a single parameter, Lourenco et al. propose
to provide the distortion in relative terms as

%distortion =
ruM − rM
ruM

× 100 (3.10)

with radius r =
√
x2 + y2 [28]. ru is the radius of undistorted points and rM is the distance

from the image center to the corner, which is for a given image the maximal distorted radius.
Using image resampling, the scale space is estimated by the convolution of the Gaussian

function (see above) on an undistorted version of the original image. With this in mind, Lourenco
et al. formulate an algorithm that estimates the equivalent result, what is obtained if first, the
original image is undistorted, then smoothed with a Gaussian kernel and then distorted again to
the original image domain [28]. The convolution operation of an undistorted image Iu is

Lu(s, t;σ) =
+∞∑

u=−∞

+∞∑
v=−∞

Iu(u, v)G(s− u, t− v;σ) (3.11)

where G is the Gaussian function as defined in Section 3.2 and σ is the standard deviation of
G. From 3.8, 3.9 and 3.11 Lourenco et al. deduce an explicit solution of an adaptive Gaussian
convolution on distorted images [28], which is

L(h, k;σ) =
α∑

u=−α

α∑
v=−α

I(x, y)G

(
h− x+ ξr2(hδ2 − x)

1 + ξr2(1 + δ2 + ξr2δ2)
,
k − y + ξr2(kδ2 − y)

1 + ξr2(1 + δ2 + ξr2δ2)
;σ

)
(3.12)

with (h, k) being the distorted counterparts of (s, t) and with

δ =
d

r
=

√
x2 + y2√
h2 + k2

, α =
1√
−ξ

(3.13)

where δ is the ratio of the two radii d and r. For the entire deduction see [28]. Without re-
sampling the image, from Equation 3.13 the scale space of distorted images can be estimated
directly. The major disadvantage is that the filter function of the convolution varies with the
image location that is being filtered. Thus this operation is called adaptive convolution. The
drawback is a drastic increase of computational runtime, because the kernel has to be recalcu-
lated at each location [28]. Lourenco et al. propose an approximation of this convolution for
which the filter kernel only changes for different image radii. Additionally, the convolution is
separable, which means that the convolution can be done in x and y-direction separately. With
these optimizations the runtime performance of SIFT is reached [28].

To finally estimate the keypoints from the adapted scale space, all other steps of the keypoint
detection pipeline (see Figure 3.2) are executed in the same ways as for SIFT.

SIFT Sphere

In Chapter 2 it is shown that all central omnidirectional images can be mapped uniquely onto
the sphere. In the spherical image domain the image is not affected by image distortion and the

20



Figure 3.5: Unit sphere with spherical coordinate system. θ is the angle around the x1 axis and
ϕ is the angle around the x0 axis. Image is taken from [8].

resolution is equiangular. Therefore Cruz-Mota et al. propose to estimate the scale space for
computing SIFT keypoints on the sphere [8]. Thus, the image domain is changed from planar
to spherical and SIFT Sphere can be estimated for all central omnidirectional images, which
are previously mapped onto the sphere. As a consequence, all subsequent processing steps to
estimate local keypoints have to be adapted to the spherical domain.

Mapping an omnidirectional image onto the sphere can only be achieved with a proper model
for the specific omnidirectional image. The model used in this work to evaluate the images is
described in Sec 4.1. The mapping is performed on the unit 2-sphere by

f : R2 → S2 (3.14)

(θ, ϕ) = f(x, y) (3.15)

with θ ∈ [0, π) and ϕ ∈ (0, 2π]. (x, y) is a point in local image coordinates. θ and ϕ are the two
angles as shown in Figure 3.5, which uniquely describe each point on the unit 2-sphere. θ is the
polar angle (rotation around x1) and ϕ the azimuthal angle (rotation around x0). If an image is
projected onto the sphere, then the resulting pixels refer to angular coordinates. Such an image
is shown in Figure 2.3 (omnidirectional spherical). The vertical axis corresponds to θ from 0 to
π degrees and the horizontal axis corresponds to ϕ from 0 to 2π degrees.

The scale space estimation in spherical coordinates requires convolution in spherical coordi-
nates. Cruz-Mota et al. state, that this is hard to compute and propose to calculate the spherical
convolution in the spherical Fourier domain, which is obtained by the spherical Fourier trans-
form [8]. If the convolution is directly performed in the omnidirectional spherical image domain
or in the omnidirectional planar image domain, the results obtained are incorrect as shown in
Figure 3.6. This experiment is implemented by Bülow et al. [6]. The leftmost image is a syn-
thetic texture mapped to the sphere. Figure 3.6 (b) is obtained by Gaussian smoothing in the
omnidirectional planar domain. In this case, the image center is more affected by blur than
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Figure 3.6: (a) A synthetic generated image on the upper hemisphere. (b) After Gaussian
smoothing in the omnidirectional planar image domain. (b) After Gaussian smoothing in the
omnidirectional spherical domain and (d) after spherical Gaussian smoothing within the spheri-
cal Fourier domain. Image is taken from [6].

being close to the equator. An opposite effect is shown in Figure 3.6 (c). Here the Gaussian
smoothing is performed in the omnidirectional spherical domain. Only Figure 3.6 (d) contains a
correct Gaussian smoothing, which is obtained by spherical smoothing in the spherical Fourier
domain.

Let f, h ∈ L2(S2) be two functions defined on the 2-sphere S2 ∈ R3. The spherical
convolution is then

(f ∗ h)(ω) =
∫
r∈SO(3)

f(rη)h(r−1ω)dr (3.16)

with ω = (θ, ϕ) ∈ S2. The convolution can be expressed as the point-wise product of their
spherical Fourier transform

(̂f ∗ h)(l,m) = 2π

√
4π

2l + 1
f̂(l,m)ĥ(l, 0), (3.17)

where (̂·) is the spherical Fourier transform of a function. For details on how to calculate the
spherical Fourier transform see [8].

The major drawback of the spherical Fourier transform is the bandwidth limitation. The
bandwidth is the actual sampling rate of the spherical image. For increased values the computa-
tion time increases drastically. For an image with a resolution of 768× 786 pixels it takes 5:42
minutes and for 1280× 1280 pixels it takes 26:40 minutes on an Intel Core i7-620M CPU at 2x
2.66 GHz with the provided implementation from [8].

Cruz-Mota et al. estimate the scale space by consecutive spherical convolution and down-
sampling of the spherical image [8], similar to the scale space estimation of SIFT. The same
number of octaves and inter-stages of an octave are used. The processing steps for estimating
local keypoints are the same as for SIFT, but with the difference that they take place in the spher-
ical domain. An important difference is that the image has no real borders since it represents the
surface of a sphere. Another difference during the keypoint calculation is that in the step Filter
Keypoints the estimation of an accurate extrema location only takes place in the spatial domain
and not also in the scale domain [8]. The final orientation assignment is performed using the
gradients, which are also computed in the spherical image domain.
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3.3 Keypoint Descriptor

The keypoint descriptor estimation pipeline contains the following steps as shown in Figure 3.7.
Since the general idea of the SIFT descriptor is to generate a histogram over the local gradients of
the region around the keypoint, the first step is to estimate the gradients in that region. All of the
following calculations have to be completed for each of the detected keypoints separately. The
next step is a Gaussian weighting of the estimated gradients. From that, 4×4 gradient histograms
with 8 bins are generated. The resulting descriptor is a 128-dimensional vector, which contains
all bins from all histogram. The final step is the normalization of the descriptor vectors to length
1.0, to reduce the effects of illumination changes [29].

Descriptor
Estimation

Gradients

Gaussian
Weighting

4x4x8
Histogram

128-dim
Descriptor

Normalize

Figure 3.7: Descriptor estimation pipeline of SIFT based approaches.

Mikolajczyk et al. propose that descriptors should be distinctive and at the same time robust
to changes in viewing conditions [31]. In case of SIFT, distinctiveness is achieved by using
a high dimensional, i.e. 128-dimensional, descriptor vector. Hence the descriptor of a region
around a keypoint can be much more precise than with an e.g. 10 dimensional descriptor. On
the other hand, a too specific region description may not be robust against image transformations,
which is claimed at the same time. SIFT reaches invariance to several transformations, i.e. scale,
image rotation, viewpoint changes up to 50 degrees, by using the scale space representation,
estimating a specific orientation for each keypoint and finally using the gradients and not the
specific intensity values of each pixel. The quantization of gradient locations and orientations
also makes the descriptor robust to small geometric distortions and small errors in the region
detection [29].
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SIFT

Figure 3.8: Keypoint descriptor estimation of an 8 × 8 region. The arrow of each sample cor-
responds to the magnitude and orientation of the underlying gradient. Histograms are formed
over 2 × 2 parts with 8 bins for the gradient orientations. The descriptor is composed from the
orientation bins. Image is taken from [29].

In Figure 3.8 the estimation of gradient orientations and magnitudes for an 8 × 8 set of
samples is shown. In contrast to this illustration, SIFT uses 16 × 16 samples per region. From
the gradient orientations and magnitudes, 4 × 4 histograms are estimated. For simplicity 2 × 2
are depicted in Figure 3.8. To achieve rotation invariance, before forming the histogram, all
gradients and the coordinates of the descriptor are rotated relative to the keypoint orientation
[29]. The gradients are computed on the scale space image with the specific scale of the keypoint.
This makes the descriptor invariant to scale changes.

Additionally a Gaussian weighting is applied before forming the gradient histograms. In
Figure 3.8 this is shown with a blue circle. A weight from that is assigned to the magnitude
of each sample point. The Gaussian function ensures that the weight falls off smoothly [29].
Hence, small spatial changes of the region from which the descriptor is calculated do not cause
sudden changes of the descriptor.

For each orientation histogram, the gradient orientations are sampled into 8 bins. Therefore
each bin covers a range of 360/8 = 45 degrees. The concrete number of samples per region,
number of orientation histograms and number of bins for each histogram is experimentally esti-
mated and recommended by Lowe [29] to give the best matching results.

After estimating 4× 4 histograms over a region of 16× 16 gradient samples, the descriptor
is formed from the bins of the histograms. Since each histogram contains 8 bins the dimension
of the descriptor is 4× 4× 8 = 128.

The final step, for estimating the keypoint descriptor, is the normalization of the 128-dimensional
vector. As shown in [29] the normalization is required to obtain invariance to affine changes in
illumination.
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sRD-SIFT

Lourenco et al. argue that calculation of SIFT descriptors directly on images with radial dis-
tortion causes a displacement in descriptor space with respect to the position that it would have
in the absence of distortion [28]. The reason is, that non-linear deformation changes the image
gradients of the region around the keypoint. As a consequence, Lourenco et al. propose implicit
gradient correction to compensate this error in descriptor calculation [28]. The corresponding
explicit adaptation would be to warp the image and compute the gradients in the undistorted
image.

sRD-SIFT calculates the corrected gradient from the original image domain. This is achieved
by

Iu(u) = I(f(u)). (3.18)

which follows from Equation 3.8, with the original image I and its undistorted version Iu.
Lourenco et al. apply the derivative chain rule to [28] and obtain

∇Iu = Jf · ∇I. (3.19)

∇Iu are the gradients in the undistorted image and ∇I corresponds to the gradients in I . Jf is
the Jacobian matrix of function f , i.e. the division model. In [28] the Jacobian matrix is deduced
from Equation 3.9 in terms of distorted image coordinates x = (x, y)T as

Jf =
1 + ξr2

1− ξr2

(
1− ξ(r2 − 8x2) 8ξxy

8ξxy 1− ξ(r2 − 8y2)

)
(3.20)

with radius r of x.
From the corrected gradients, histograms are estimated in the same way as for SIFT. Also,

the final descriptor is calculated in the same way with one exception, the Gaussian weighting
function G(x, y;σ) is adapted for the non-linear distortion with G(x, y; (1 + ξr2)σ). The re-
sulting descriptors from sRD-SIFT are therefore invariant to image distortion described by the
division model.

SIFT Sphere

For SIFT Sphere, two different descriptors are proposed [8]. LSD has the purpose of matching
omnidirectional images with each other and LPD is proposed to match omnidirectional images
with perspective images. Before explaining the specific algorithm for the calculation of the
descriptors, first an example of differently estimated scale space regions is given, from which
LSD and LPD are obtained.

In Figure 3.9 three different images of the same corresponding region from one keypoint
are shown. The LSD is computed on the content of the first image. For matching perspective
images, this patch is first projected onto the tangential plane. The resampled result is the second
image. From this the LPD is calculated. To finally match this region against a corresponding
region of a perspective image, a SIFT descriptor of the perspective corresponding region has
to be computed. The third image is the underlying region of the last step. In the optimal case
the second and third image patches should look the same, expect for affine transformations.
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Spherical region
Interpolated local

planar region
Corresponding region
in perspective image

Figure 3.9: Region of a keypoint from spherical octave image of spherical scale space (left).
Projected and interpolated local planar region from spherical octave image (middle) and the
corresponding planar region from a corresponding perspective image (right).

Actually, the second image is highly affected by the interpolation. The first image does not
have the same resolution as the third image, although they correspond to the same scale value.
The descriptor matching of LPD and standard SIFT descriptor finally fails in this case. Specific
descriptor matching performance is shown in Section 5.2.

The major different of SIFT and SIFT Sphere is the underlying image domain. Since SIFT
Sphere estimates keypoints in the spherical image domain, the descriptor calculation has to
be adapted. This is done by formulating a proper method for estimating the gradients. Using
spherical gradients, the stages from the descriptor estimation pipeline (see Figure 3.3) can remain
the same [8].

Cruz-Mota et al. propose to estimate the orientation of a point (θ, ϕ) ∈ S2 with scale σ in
spherical scale space LS

2
as [8]

α(θ, ϕ, σ) = arctan

(
LS

2

ϕ (θ, ϕ, σ)

LS
2

θ (θ, ϕ, σ)

)
. (3.21)

Equally an adaptation of the magnitude of the gradient at that point (θ, ϕ) is proposed as

m(θ, ϕ, σ) =
√
LS2

ϕ (θ, ϕ, σ)2 + LS
2

θ (θ, ϕ, σ)2. (3.22)

From the adapted orientation and magnitude of each gradient, histograms are formed from a
3σ × 3σ region around the respective keypoint. Through normalization the final descriptor is
calculated similar to SIFT.

Because LSD depends on gradients of the spherical image domain it is not compatible with
matching SIFT descriptors from planar image gradients. Therefore the LPD is an adaption, to
make the descriptor matchable with standard SIFT descriptors of planar perspective images. The
region around each keypoint pi of LS

2
(θ, ϕ, σi) is projected onto the tangent plane in that point

through its antipodal point. The resulting region is an approximation of L(x, y, σ) in pi [8].
Since all gradients are different than in the spherical domain, the keypoint orientation has to
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be re-estimated. The descriptor estimation of SIFT is used to estimate LPD from the projected
region, because it is planar and is not affected by non-linear distortion.

3.4 Descriptor Matching

The last step of the matching approach discussed is to associate descriptors of corresponding
keypoints from two images. This is done with a nearest neighbor search in the descriptor space.
In other words for each descriptor of one image the closest descriptor in descriptor space is
searched for. Depending on the matching strategy, the descriptor is either taken as a match or
not.

Descriptor
Matching

Euclidean
Distance

Apply
Matching
Strategy

Determine
Matches

Figure 3.10: Descriptor matching approach.

The descriptor matching pipeline is shown in Figure 3.10. It is the same for matching de-
scriptors of SIFT, sRD-SIFT or SIFT Sphere. In the first step of finding corresponding keypoints,
the Euclidean distance is pair-wise calculated for all descriptors of two images.

The next step includes the nearest neighbor search. It depends on the matching strategy.
A simple strategy is to associate each descriptor of one image with the closest descriptor of the
other image in the descriptor space. However, all keypoints for which no corresponding keypoint
exist are falsely matched. Therefore, another matching strategy is to take the nearest neighbor
only if the distance lies under a certain threshold. If the application requires finding as many
correct matches as possible, by accepting additional false matches, then all descriptors can be
taken as a match under a certain threshold. Contrary to this, if false matches are to be avoided,
then a better matching strategy is to associate a descriptor only if the ratio between the closest
and the second closest descriptor is lower than a threshold. If this is true the match is assumed to
be correct, otherwise no match is assigned to the keypoint. The strategy prevents the case where
similar but not corresponding descriptors are mistakenly matched. Different matching strategies
are evaluated in Section 5.2.
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3.5 Summary

This chapter introduced the matching approach of SIFT and its adaptations for omnidirectional
images, sRD-SIFT and SIFT Sphere. The keypoint detection and descriptor matching were pre-
sented separately. It was shown that the general matching pipeline is the same for each approach.
Only scale space estimation has to be adapted for keypoint detection in non-linear distorted im-
ages. sRD-SIFT achieves this through adaptive Gaussian convolution with the division model. In
contrast, SIFT Sphere warps the planar image onto the spherical surface and subsequently con-
volves the image with the spherical Fourier transform. Descriptor calculation requires correction
of gradients from scale space images. sRD-SIFT uses again the division model to accomplish
this and SIFT Sphere calculates the adapted gradients from the spherical scale space. Finally,
this chapter presented the actual descriptor matching, which is for all matching approaches the
same.
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CHAPTER 4
Experimental Setup

Before going into the final scene evaluation of SIFT, sRD-SIFT and SIFT Sphere on omnidi-
rectional images, an experimental environment has to be set up carefully. This chapter deals
with the physical experiment, its setup which includes the different image sequences, the mea-
sures chosen for performance estimation and the parameter sets involved of each method. The
experimental evaluation of matching perspective vs. omnidirectional and omnidirectional vs.
omnidirectional images is based on the elaborated matching evaluation of region detectors [32]
and region descriptors [31] for perspective images of Mikolajczyk et al.

The main contribution from the evaluation is the specific behavior of each matching ap-
proach related to the appearance of environments captured and to transformations between those
images. The performance evaluation enables to determine if a matching approach is invariant to
a certain transformation or not and how the degree of dependency is. Since all methods are eval-
uated in the same environment and with the same measures, their performance can be compared
on each scene.

The first section deals with the image data sets, under which circumstances they are recorded
and what image types are chosen. Also the ground truth estimation for matching those images
is discussed. The next section is about state-of-the-art measures for image matching, which
are used for the experimental evaluation. An extensive discussion about parameter sets of each
method is given in the last section of this chapter.

4.1 Image Data Sets

The experimental evaluation of SIFT, sRD-SIFT and SIFT Sphere is done with multiple and
different image sets. In Figure 4.1 example images of the data sets are shown. The perspective
and omnidirectional reference image is included for each sequence. Each sequence contains
one perspective and six omnidirectional images of the same scene. In Figure 4.1 only the first,
third, fourth and sixth image of each sequence are shown. The perspective and the first omni-
directional image are used as the reference image and are then matched against all other five
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.1: Data set used for the evaluation. For each sequence (a-g) the perspective image and
the first, third, fourth and sixth omnidirectional image is shown. (a) (door), (b) (wall1) Scale
change, (c) (floor), (d) (wall2) field of view change, (e) (entrance), (f) (wall3) viewing angle
change and (g) (ceiling) rotation change.
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omnidirectional images of each sequence in the experimental evaluation. All images are cap-
tured indoor and contain walls, doors, ceilings and floors. These are all surfaces on planes and
therefore accomplish the ground truth estimation requirement. As in Fig 4.1 all scenes are not
rich in image structure. In several cases the dominant elements are straight lines. The overall
structure is composed of homogenous and uniform regions.

The following different imaging conditions are evaluated: scale changes (a) & (b), field of
view changes (c) & (d), viewing angle changes (e) & (f) and rotation changes (g). Similar to
Mikolajczyk et al. [32] two different scene types are evaluated for all transformations except for
the rotation changes. Specifically these are structured and textured scenes. The structured type
contains homogeneous regions with non repetitive content and arbitrary shapes, e.g. a wooden
door. The textured scenes include images with repetitive patterns, e.g. a wall with squared
panels. The distinction to [32] is, that all sequences are captured indoor and therefore contain
much less structure or texture. This property influences the detectors in finding less keypoints
than in outdoor scenes as in [32]. See Section 4.3 with regards to the actual numbers of detected
keypoints in each sequence.

In case of perspective to omni matching, the reference perspective image is always captured
from the same viewing angle as the reference omnidirectional image. The perspective image
covers the center region of the omnidirectional image in general. It is then possible that for each
omnidirectional image of the respective sequence an image region is shared with the perspective
image.

Figure 4.2: Sigma AF 8mm 3.5 EX fisheye lens, which is used to capture the omnidirectional
images.

The combination of images from planar surfaces and wide angular image acquisition which
covers more than an 180◦ field of view creates the outcome that the entire image can never be
covered completely by the planar object. If the camera is placed fronto-parallel to e.g. a wall,
then the image borders are not covered by the wall. By rotating the camera around the vertical
y-axis, the wall can be projected onto one image border. However, in this case most of the other
image parts are not covered by the wall. Hence the image sequences contain both types. In (b),
(e), (f) and (g) the images are captured in fronto-parallel view and in (a), (c) and (d) the camera
is rotated towards the planar object.
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All images are from a Canon 5D Mark II with a Sigma AF 8mm 3.5 EX (see Figure 4.2). The
resolution of the perspective images is 1404× 934 and of the fisheye images it is 1498× 1499.

Image Acquisition

The non-linear properties of the fisheye lenses, results in increasing radial distortion from the
image center to its corners. Depending on the location in the image plane, the respective region
is distorted differently. Consequently geometric image transformations, such as scaling or view-
port changes are no longer linear. Photometric changes e.g. image blur, illumination changes or
JPEG compression are not influenced by the omnidirectional vision. These transformations are
still equally applied on the entire image surface. Therefore photometric effects are out of scope
and not examined. For perspective image matching photometric transformations are already
evaluated in [32] and [31].

C C ′

C ′
C ′

rotation about y /
field of view change

translation in x /
viewing angle change

translation in -z /
scale change

x
y

z

Figure 4.3: Transformations of omnidirectional vision with projection center C related to a
planar object. Arrows illustrate viewing rays with > 180◦ field of view. C ′ are the transformed
projection centers after translating C in x or z direction or rotating C around the y-axis.

In Euclidean 3D space there are 6 possible transformations [19]. For each direction of the
3 dimensions there is a translation and a rotation. In Figure 4.3 the geometric transformations
of an omnidirectional vision system are illustrated. The planar object, e.g. a wall is extended
in x- and y-direction. Therefore a translation in either the x- or y-direction has the same effect
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as the distance to the surface remains unaffected. Because translating the viewpoint, this trans-
formation is called viewpoint changes. The last remaining translation, in z-direction, adapts the
distance to the plane. The projected image parts increase or decrease in size and therefore this
transformation is referred to as scale changes. Rotating the x- or y-axis has again a similar effect,
which moves the viewing direction away from the plane. This is called field of view changes.
Rotations around the y-axis, which correspond to the camera’s viewing direction, are similar to
rotating the 2D image around its center and therefore it is named rotation changes.

The experimental evaluation and analysis shows how well each matching approach can deal
with a certain geometric transformation regarding different degrees of difficulty. The range of
each transformation is measured in degrees of rotation and field of view changes with a scale
factor for scale changes. In the case of viewport changes, only the number of the image pair is
given, because the relative distance of each viewport is unknown.

Fisheye Camera Model

Since the omnidirectional images are all captured by the Sigma AF 8mm 3.5 EX fisheye lens,
a fisheye camera model from Mičušík et al. [30] is used. This model can be applied to radial
symmetric omnidirectional images, which implies fisheye images as well.

Figure 4.4: Non-linear projection model for wide angular cameras. A point x is projected onto
the sensor plain in u via the sphere S3. Image is taken from [30] with slightly changed labels.

Figure 4.4 depicts the general projection procedure. A point X ∈ R3 in 3D space is mapped
onto the surface of a unit sphere S3 in q. S3 shares its center with the center of projection (red
dot in Figure 4.4). q is in linear projective camera coordinates, since the spherical surface is
mapped bijective onto the sensor plane, i.e. each point on the spherical surface has a one-to-one
relation to a point in the omnidirectional image. It is also called the camera viewing ray of u.
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To cover the non-linear behavior of the fisheye lens, a function g : R × RN → R is introduced
which maps ‖u‖ with N model parameters to p. u ∈ R2 is a point in the image plane and ‖u‖
corresponds to its radius, i.e. the distance of u to the image’s center of symmetry. p and q are
3D vectors with the same direction, but q has length one, since it is located on the unit sphere.
This results in

p =

(
u

g(‖u‖ ,a)

)
, with a ∈ RN . (4.1)

Depending on the actual lens, function g can have different solutions with a different number
of parameters a. In general the more parameters involved, the more complex and accurate is the
model [30]. Mičušík et al. propose a specific two parametric model for fisheye lenses, like the
Sigma AF 8mm 3.5 EX, as

g(‖u‖ , a, b) = ‖u‖
tan θ(a, b)

(4.2)

with

θ(a, b) =
1

b
sin−1(

b ∗ ‖u‖
a

) (4.3)

and model parameters a, b ∈ R.

Ground Truth Estimation

A reference measure is needed to evaluate interest point matching. In other words, it must be
known if two corresponding points from different images relate to the same 3D point in space.
Therefore knowledge about the actual scene and the cameras is required. To simplify this prob-
lem, only planar scenes are captured for evaluation. In this case there exists a linear transfor-
mation called homography between two images of a planar scene. Let pi = (xi, yi, wi) ∈ P2

be a 2D point in a reference image whereby wi is the homogenous part of pi and let p′i =
(x′i, y

′
i, w
′
i) ∈ P2 be the corresponding point in a second image. If pi and p′i are located on a

plane, then there is a homography H ∈ R3×3 with

p′i = H ∗ pi. (4.4)

From at least 4 corresponding points on a plane, H can be estimated with the golden standard
algorithm, for example, described by Hartley and Zisserman in [19].

Similar to the approach in [32] a robust ground truth homography between all image pairs
of the test sequences is semi automatically estimated. Since a homography is a linear transfor-
mation, the non-linear properties of the omnidirectional images need to be taken into account.
An outline of the main six steps of this strategy is given:

(1) Manually select at least 4 points P = (p1,p2, ..,pn) in the reference image and corre-
sponding points P ′ = (p′1,p

′
2, ..,p

′
n) in the second image as shown in Figure 4.5.

(2) In between the image coordinates of both images, a linear transformation does not exist
because of the non-linear distortion of the omnidirectional image. Therefore the image coordi-
nates P ′ of the non-perspective image need to be transformed to camera coordinates P ′c, which
are lying in the linear 2D projective space P2. This is done by applying the camera model
described above in Equation 4.2 and Equation 4.3.
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Reference Image Second Image

p1

p′1

p2

p′2

p3
p′3

Figure 4.5: Corresponding points in perspective image (left) and omnidirectional image (right).

(3) Estimate an approximate homography H1 from corresponding point sets P and P ′c with
the golden standard algorithm [19].

(4) Warp the second image with H1 to the reference image as shown in Figure 4.6. Then
there remains only a small baseline between the reference image and the warped one. This
difference is consistent with the error of H1.

(5) As the second image is now roughly aligned with the reference image, a small-baseline
robust homography estimation algorithm can be applied. Harris Corners [18] are detected and
matched by correlation [19]. Then the RANdom SAmple Consensus (RANSAC) algorithm [11]
is used to eliminate outliers and retrieve an accurate residual homography H2. For details see
Hartley and Zisserman [19]. The interest point detector for estimating the robust ground truth
homography should be independent of all evaluated methods, as proposed by Mikolajczyk et
al. [32].

reference image second image warped second image

warp with H1

Figure 4.6: Transformation of omnidirectional image (right) to perspective image (middle) by
applying the manually estimated rough homography H1.

(6) Finally estimate H from H1 and H2 to receive the robust homography between the
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reference image and the second image. Since

p′i = H1(H2pi) (4.5)

it follows that
H = H1H2. (4.6)

Note, that in case of estimating H between two omnidirectional images, corresponding
points in both images need to be transformed into camera coordinates before applying H .

The mean symmetric transfer error [19] of H1 from manually set keypoints is 3.33 pixels
over all 70 image pairs. This error is minimized to 1.41 pixel, which is the mean symmetric
transfer error of H2 and thus for H . This remaining error results from the accuracy of the
omnidirectional image model, since this is involved in the transformation from image to camera
coordinates. Another error source is the lens distortion of the perspective image. However, it
can be ignored because the error is already small enough to not influence the estimation of the
ground truth matches for two images.

4.2 Measures

To compare the performance of different keypoint detectors and their descriptors, performance
measures have to be defined. By design each detector detects different locations of interest in one
image. Therefore it is not reasonable to test the detection rate of one keypoint over all detectors.
As the purpose of an interest point detector is to redetect the same locations in another image,
the amount of repeated points can be used to quantify the detector’s performance. This measure
is called repeatability. To evaluate the matching performance of keypoint descriptors, correct
matches can be set in relation to false matches.

In both cases of detector and descriptor evaluation, it must be known which location in the
reference image belongs to which location in the second image. Due to planarity of the captured
image sequences, each point in the reference image can be uniquely transformed to the second
image by the manually estimated ground-truth homography and the knowledge of the intrinsic
parameters of the fisheye camera.

Subsequently the two measures repeatability [32] and recall-precision [31] are described.
The former is used to evaluate the performance of keypoint detectors and the latter is used to
evaluate the performance of keypoint descriptors.

Repeatability

Schmid et al. introduce the evaluation criteria, repeatability, to estimate the performance of
interest point detectors and to show their geometrical stability under different transformations
for perspective images [40]. The repeatability ri between a reference image Iref to an image Ii
is defined as

ri =
#Ktrue

min(#Kref ,#Ki)
(4.7)

where Kref , Ki refers to the set of keypoints detected in image Iref , Ii and #K is the cardi-
nality of set K. Ktrue is the set of keypoints which are simultaneously detected in image Iref
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and image Ii [40]. Since keypoints are, due to sampling errors, not redetected at the exact corre-
sponding position, Schmid et al., define an error range ε in which keypoints are still recognized
as repeated. The error follows the consistency criterion postulated by M. Lourenço et al. [28].
Another claim is that 0 <= ri <= 1 holds. Per definition ri = 0 means that no keypoint from
the reference image is redetected and ri = 1 refers to the case that all keypoints in image Iref
are redetected in image Ii. In case two points are lying inside the range ε only the closest point
is taken. Otherwise ri could become larger than 1. Points, which are not visible in both images
or do not satisfy the homography, are excluded from set K [40].

(a) Reference image (b) Second image

Figure 4.7: Original SIFT feature detected in reference image and its transformed illustration in
second image (white). Estimated SIFT feature in second image with adapted scale (blue).

Repeatability measures how many keypoints are matchable with an appropriate descriptor.
As the keypoints evaluated not only consist of a location but a scale and an orientation too,
the consistency criterion has to be adapted. These additional properties originate from SIFT
proposed by D. Lowe. Therefore the following experiments use the same suggested ranges for
location, scale and orientation. A detected keypoint k in image Iref is transformed by homog-
raphy to image Ii with scale σki . The keypoint is only repeated if there is a corresponding point
in image Ii, with a distance of less than σki pixel. Its scale value must be in range of

√
2 ∗ σki

and its orientation can have a maximal difference of 15 degrees [29]. If scale and orientation are
not considered, keypoints from the reference image and the second image may be mistakenly
assumed to be a match, but actually do not correspond because of a different scale or orientation.

With the homography, it is known where keypoints from the reference image have to be
redetected in the second image. As the second image is taken from a different viewpoint the
scale and orientation of the keypoint may change too. Therefore these properties need to be
adapted. The scale value defines the region used by the descriptor and can be visualized as a
circle with its center at the keypoint location [29]. To estimate the altered scale value in the
second image, points on the circle are transformed by the homography. The new scale value
is set to the mean distance of the transformed circle points to its transformed center, as it is
depicted in Figure 4.7. The same idea is used to estimate the transformed orientation. Here only
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the point with the corresponding angle is mapped to the second image. This heuristic permits to
predict the scale and orientation of detected keypoints after their transformation to the second
image. Consider that the underlying image domain has to be taken into account, e.g. if the
image is represented in spherical coordinates, the keypoint and its scale and orientation have to
be projected onto the spherical surface after applying the homography.

The repeatability is evaluated in relative and absolute values. Only both values together are
significant, because the relative value can be 100%, for example, with an absolute number of
one. Then the descriptor seems to be perfect in relative terms, but practically just one match
is unusable. In contrast, a relative value of 10%, for example, with an absolute number of 100
matches, can be still a reasonable result, despite the low relative value.

Recall Precision

The repeatability measure previously shown just evaluates how good keypoints can be redetected
under a certain image transformation. Actual descriptor matching is not involved and needs to
be evaluated separately. Since there are only correct or incorrect matchable keypoints which can
be matched by the approach, a two by two design as shown in Table 4.1 can be establish. Here
the four possible cases, true positives (TP), false positives (FP), true negative (TN) and false
negative (FN) are depicted.

Matchable Not matchable

Match test positiv TP =M true FP =Mfalse

Match test negative FN = Ktrue −M true TN = Kfalse −Mfalse

Table 4.1: Definitions for sets of True Positives (TP), False Positives (FP), True Negatives (TN)
and False Negative (FN). M is the set of all matched keypoints. K is the set of all detected
keypoints, whereby Ktrue are matchable keypoints and Kfalse are detected keypoints without a
correspondence.

To compare the matching performance of different detectors and their descriptors, the recall
versus 1-precision is estimated. This criterion is already used by Mikolajczyk and Schmid [31]
to evaluate the performance of local descriptors for perspective images. These measures are
defined as

recall =
#M true

#Ktrue
=

TP

TP + FN
(4.8)

and

1− precision = 1− #M true

#M
= 1− TP

TP + FP
=

FP

TP + FP
. (4.9)

Recall is the percentage of correctly matched keypoints to all actual corresponding keypoints for
two images of the same scene. 1-Precision defines the amount of false matches with respect to
the total number of matches. The two measures are evaluated against each other in one graph.
The resulting curve corresponds to the matching performance of the respective descriptor. Actual
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values of precision and recall are estimated with the ground truth matches, which are already
used for the detector evaluation (see above). The actual shape of the recall-precision curve
results by varying the threshold of the matching.

4.3 Parameter Sets

As SIFT Sphere and sRD-SIFT are developed from the original SIFT [29], they share all param-
eters from SIFT. Relevant parameters for which the authors of each method suggest different
values are σ0, Omin and Tpeak. The first two values relate to the scale space generation and con-
trol the sampling rate in spatial and scale orientation. The third parameter mentioned controls
the sensitivity of extrema detection. All other parameters proposed by Lowe [29] stay fixed in
sRD-SIFT and SIFT Sphere. For details see [8] and [28].

Doo
r

W
all

1

Floo
r

W
all

2

Entr
an

ce
W

all
3

Ceil
ing

0

5,000

10,000

15,000

20,000

7
1

2
,9
5
6

2
,8
9
2

3
,9
0
0

7
2
9

4
,4
2
8

1
7
,6
0
6

7
4 9
2
1 1
,8
3
4

1
,3
5
2

3
5
0 1
,3
2
6

4
,1
3
3

3
1 1
5
2

2
4
2

2
7
5

1
1
1

2
0
1

6
0
8

av
er

ag
e

nu
m

be
ro

fk
ey

po
in

ts

SIFT

sRD-SIFT

SIFT Sphere

Doo
r
W

all
1

Floo
r
W

all
2

Entr
an

ce
W

all
3

Ceil
ing

0

1,000

2,000

3,000

4
9 1
9
5 5

0
7

1
9
5

1
2
8

1
7
5

3
,3
8
6

av
er

ag
e

nu
m

be
ro

fk
ey

po
in

ts

SIFT

Figure 4.8: Average number of keypoints detected by SIFT, sRD-SIFT and SIFT with original
proposed parameter values. Left: omnidirectional images, right: perspective images.

The choice of parameter values influences the keypoint density. If the keypoint density
increases, more potential matchable keypoints are detected. Keypoints can also be detected
which are not re-detectable under a different viewing angle and thus are not matchable. The
number of detected keypoints is not only depending on the parameter values, but on the scene
type too. In Figure 4.8 the average number of detected keypoints for each scene is shown. It is
important to note here, that the parameter values suggested of each author are used. These are
for SIFT σ0 = 1.6, Tpeak = 0.03, Omin = −1 and for sRD-SIFT σ0 = 1.6, Tpeak = 0.04,
Omin = 0 and for SIFT Sphere σ0 = 3.0, Tpeak = 0.02, Omin = 0. Lowe claims that in a
typical image, several thousand keypoints can be extracted [29]. This assertion stays in strong
contrast with the detection numbers in Figure 4.8. Actually, for example, for the door scene
the number is below 100 for SIFT. This fact is explained by the application of indoor matching,
where the images contain sparse structure and texture. Nevertheless the keypoint density can still
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Figure 4.9: Repeatability with respect to number of detected keypoints for matching first and
third sample of scene floor. Results for parameter sets suggested from author of each method
(black circles).

be increased by changing the parameter values. In perspective images the number of detected
keypoints is for SIFT for each scene lower than for the omnidirectional images. The reason is
the larger field of view in case of omnidirectional images.

The choice of parameter values not only results in different keypoint densities, but also
influences the detection repeatability and the matching performance, as shown by Lowe [29]. In
Figure 4.9 this effect is depicted by changing the parameter Tpeak for SIFT, sRD-SIFT and σ0 for
SIFT Sphere. The reference implementation of SIFT Sphere does not allow the peak threshold to
be adapted. For different parameter values, the number of detected keypoints changes drastically,
e.g. for SIFT in a range of 168 to 6547, but the effected repeatability varies only in a minor
range from 8.3% to 12.1%. In general, the repeatability increases for SIFT and sRD-SIFT for
higher keypoint densities and for SIFT Sphere the repeatability decreases from a density of 390
keypoints. The black dots in Figure 4.9 mark the results for the parameter values suggested from
the original papers ( [29], [28] and [8]). As already shown in Figure 4.8, SIFT Sphere detects
much less keypoints with the default parameter values. This is due to the bandwidth limitations
of the Spherical Fourier Transformation. Nevertheless, it is possible to increase the number of
keypoints by changing parameter σ0 without losing repeatability score.

The evaluation of the different image sequences is done with the default parameters supplied
by the authors, because the rank of the detectors stays the same in the range of the analyzed
keypoint densities (see Figure 4.9). One exception is made for SIFT Sphere, because the number
of keypoints is low for all scenes in comparison to its competitors. σ0 = 1.6 and Omin = −1,
instead of σ0 = 3.0 and Omin = 0 is used. These values are related to 390 keypoints and 37%
repeatability for matching the first and the third image of the floor sequence.

One parameter is still not analyzed and may have a significant effect on the matching per-
formance. It is the distortion parameter of sRD-SIFT. The influences of different values for
the distortion parameter on the repeatability of sRD-SIFT is shown in Figure 4.10. The range
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Figure 4.10: Repeatability (left) and number related correspondences (right) of sRD-SIFT with
different values of its distortion parameter. The omnidirectional reference image is matched
against the third image of the sequences ceiling (g), door (a), entrance (e) and floor (c), see
Figure 4.1.

examined is between 0%, which means no distortion and a performance similar to SIFT [28],
and 200% distortion (see Equation 3.10). It is clearly observed, that the actual value has a huge
influence on the repeatability and the number of correspondences. Also the parameter changes
are not invariant to the scene type. The dependency between the distortion value chosen and
the scene type follows from the fact that the distortion model of sRD-SIFT cannot describe the
distortion of the entire fisheye image correctly. As in each scene type, keypoint density varies
in its location, the performance is superior or not, depending on which part of the image is cur-
rently described best by the distortion model. Finally, a distortion value of 10% for the scene
evaluation is chosen. Larger values of distortion may increase the number of correspondences,
but they decrease also the average repeatability score over all scenes examined (see Figure 4.10).

4.4 Summary

This chapter presented all necessary parts for performing the experimental evaluation. First, the
image sets are given. Then, image acquisition described the possible camera transformations,
which are used to capture the image sets. These are scale changes, rotation changes, field of view
changes and viewpoint changes. A fisheye camera model from Micusik et al. was introduced for
describing the actual camera used. A major part of this chapter is the explanation of ground truth
estimation, since the accuracy of the performance evaluation is depending on that. All substeps
of the robust estimation are given. Next, evaluation measures were introduced. Repeatability
is used for estimating the performance of keypoint detection and recall vs. 1-precision is the
measure to estimate the performance of descriptor matching. This chapter concludes with a
discussion of the parameter sets used for each matching approach.
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CHAPTER 5
Evaluation

In this chapter the results of the evaluation are presented and discussed. First, the performance
of the keypoint detectors from SIFT, sRD-SIFT and SIFT Sphere are compared (see Section 5.1)
and estimated on the image data set under different image transformations. These sequences are
captured in real indoor environments and not rendered artificially. Using the latter case is also
a reasonable source for performance evaluation, since there is already an accurate ground truth
available for any image transformation. But as artificially generated data does not model each
variable of real cameras, lenses and scenes, an evaluation on natural images gives more realistic
results to assess the performance of each matching approach.

The second part of this chapter (Section 5.2) contains the experimental results from the ac-
tual image matching. After estimating which keypoint detector renders the most reliable results,
here the total overall performance of each approach is examined and discussed. It demonstrates
how well each method can convert the performance of the detector into the final matching per-
formance.

In all cases there are not only omnidirectional images matched with each other, but also
perspective to omnidirectional matching is evaluated. This can be done since the matching
approaches are capable to match both types. For SIFT the VLFeat implementation1 is used. In
the case of sRD-SIFT and SIFT Sphere the implementations provided by the authors Lourenço
et al.2 and Cruz-Mota et al.3 are taken respectively.

5.1 Results on Keypoint Detection

Matching approaches comprise both a detector and a descriptor. First the detector is evaluated.
The descriptor matching can never be better than the keypoint detection, as only redetected
keypoints can be matched. Thus the keypoint detector constitutes the basis for any matching
approach.

1VLFeat: http://www.vlfeat.org/
2sRD-SIFT: http://arthronav.isr.uc.pt/~mlourenco/srdsift/
3SIFT Sphere: https://sites.google.com/site/javicm/software
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Mikolajczyk et al. show that keypoint, specifically region detection, is not invariant to the
scene type and any transformation during matching of perspective images [32]. In the current
evaluation these properties of keypoint detection are analyzed on omnidirectional images taken
in indoor environments. SIFT, sRD-SIFT and SIFT Sphere have to demonstrate if and how good
they can redetect keypoints under different geometric transformations, i.e. scale changes, field of
view changes, viewpoint changes and rotation changes. One question is how strong the detector
performance is actually influenced by the transformation. In addition, similar to the evaluation
of Mikolajczyk et al., structured and textured scene types are analyzed for each sequence. In
the case of perspective matching, it is already shown that there is no general invariance for each
detector. In the following evaluation the role of these two scene types in omnidirectional image
matching is shown.

Since SIFT Sphere and sRD-SIFT are designed not only to match omnidirectional images
with itself, but to match perspective with omnidirectional images too, this aspect is evaluated
under the same conditions as the evaluation of omni to omni matching.

SIFT sRD-SIFT SIFT Sphere

Figure 5.1: Keypoint detections in two different images by SIFT (left), sRD-SIFT (middle) and
SIFT Sphere (right). Keypoints in blue are detected only in one image and the green ones have a
correspondence in the other image. The circle radius is equal to the scale value and the line the
orientation of the keypoint.

Results of the keypoint detections from SIFT, sRD-SIFT and SIFT Sphere are shown in
Figure 5.1. Each keypoint is visualized as a circle with a radius equal to its scale value and a
line segment starting from the center to the circle border, which indicates the orientation of the
respective feature. Keypoints which are redetected in the second image are marked as green and
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all of the non redetected interest points are colored in blue.
Before discussing the actual evaluation of the different transformations, it can be already

observed in Figure 5.1 that SIFT and sRD-SIFT have redetections in the center of the omnidi-
rectional image only. In the case of SIFT, keypoints on average have a small scale of a few pixels.
This is due to the fact that SIFT does not consider the omnidirectional, non-linear geometry. In
contrast sRD-SIFT obtains keypoints with a larger average scale. SIFT Sphere redetects equally
distributed keypoints on the image plane, but despite of interpolation only keypoints with larger
scales are recognized as depicted in Figure 5.1.

In the following subsections each transformation is evaluated under the different scene types
and image sequences.

Scale Changes

In Figure 5.2 the influence of scale changes for the structured door sequence from Figure 4.1(a)
is shown. The repeatability score and the absolute number of correspondences are depicted for
omni to omni matching and for perspective to omni matching. The best results for both cases
are obtained by SIFT Sphere. This follows from the fact that SIFT Sphere takes the spherical
geometry of the fisheye lens into account. Therefore SIFT Sphere can still handle scale changes
with a factor 1.8 better than SIFT and even sRD-SIFT.

Door scene Iref , I2 Iref , I3 Iref , I4 Iref , I5 Iref , I6
omni to omni 1.23 1.43 1.57 1.82 2.16

perspective to omni 1.61 2.0 2.25 2.63 3.09

Wall1 scene
omni to omni 1.3 1.7 2.2 2.7 3.2

perspective to omni 0.8 1.1 1.4 1.7 1.9

Table 5.1: Factors of scale changes between images of the door scene and wall1 scene.

All methods are not invariant to scale changes for the omni to omni matching and for per-
spective to omni matching. In the latter case, sRD-SIFT is least affected by scale changes. Its
repeatability varies between 18% and 28%. Concerning the other approaches, the range starts
with 9% to 16% for small scale changes and ends between 21% and 27% for larger scale changes.
In the omni to omni matching case the repeatability score of SIFT and sRD-SIFT decreases with
a constant difference equally. Together with SIFT Sphere small scale changes (factor 1.2) result
in the range of 40% - 45% and end for high scale changes (factor 2.2) at 13% to 18%. These
low values are due to the sparse structure of the door scene, which contains small gradients.
Therefore the absolute number of correspondences found is very low (5 - 25) in contrast to
other scenes with more structure (ceiling sequence Figure 4.1(g)). For omni to omni matching,
the largest number of corresponding keypoints is given by SIFT (25) and closely followed by
sRD-SIFT (23) and SIFT Sphere (20). Where the maximum given scale change (factor 2.2) is
concerned, the number of correspondences decrease in the range of 5 to 7 for all approaches, in
perspective to omni matching results in never more than 15 redetections.
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Figure 5.2: Scale changes for structured scene (Door sequence Figure 4.1(a)). (top) Repeatabil-
ity and number of corresponding points for omni to omni matching. (bottom) Same for perspec-
tive to omni matching.

The influences of scale changes on the textured wall1 scene from Figure 4.1(b) are shown in
Figure 5.3. Here the results for omni to omni matching are significantly less favorable than in
the case of scale changes in the textured scene (Figure 5.2). However SIFT still redetected 107
correspondences, for a scale change of factor 1.3, but this is only 10% of all detected keypoints.

The overall performance lies between 2% and 10% for all approaches, with one distinctive
exception of 40% redetected points by sRD-SIFT for scale changes of factor 1.7. This can be
explained by the actual scale values of the detected keypoints. Which can correlates with the
scale changes of the images and therefore causes this unique exception. Interestingly in the case
of omni to omni matching the results are invariant to scale changes, which was not the case
for the structured scene type. The reason is that the textured wall1 scene is captured fronto-
parallel and for the structured door scene the camera is rotated of approximately 50 degrees
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Figure 5.3: Scale changes for sparse textured scene (Wall1 sequence Figure 4.1(b)). (Top) Re-
peatability and number of corresponding points for omni to omni matching. (Bottom) Same for
perspective to omni matching.

against the plane. In the first case keypoints are predominantly detected in the center of the
omnidirectional images and in the latter, the keypoints are lying closer to the image border and
are therefore more affected by the non-linear distortion of the lens. The absolute number of
corresponding keypoints decreases from 107 to 8 for SIFT and for sRD-SIFT and SIFT Sphere
from 22, respective 25 to 3.

The effect of scale changes for the textured scene type in perspective to omni matching is
different for each approach. For small scale changes of 0.8% the repeatability score of sRD-SIFT
is 58%, which decreases for larger scale changes to 11%. Contrary to this, small scale changes
in the case of SIFT result a relatively low repeatability score of 23% and then increases for larger
scale changes to 77%. Apart from these numbers, SIFT Sphere is the only one which can keep
invariance to scale changes, but with the exchange to a low repeatability score of 19% to 24%
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Figure 5.4: Field of view changes for sparse structured scene (Floor sequence Figure 4.1(c)).
(Top) Repeatability and number of corresponding points for omni to omni matching. (Bottom)
Same for perspective to omni matching.

for all scale changes. The number of detected correspondences ranges between 229 and 86. For
small scale changes sRD-SIFT and SIFT Sphere start with 68 respective 94 correspondences.
For large scale changes (factor 1.9) the detection shrinks down to 3 or 10 keypoints.

Field of View Changes

Figure 5.4 shows the results of the structured scene floor from Figure 4.1(c) for omni to omni
matching and perspective to omni matching. In the first case the repeatability score has an
approximately constant difference between SIFT, sRD-SIFT and SIFT Sphere. All are affected
by field of view changes and the actual values are between 33% and 51% for a field of view
change of 18 degrees. For an angle of 90 degrees they are between 20% and 24%.
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Figure 5.5: Field of view changes for sparse textured scene (Wall2 sequence Figure 4.1(d)).
(Top) Repeatability and number of corresponding points for omni to omni matching. (Bottom)
Same for perspective to omni matching.

The results of SIFT are superior than the results of sRD-SIFT and again sRD-SIFT is on
top of SIFT Sphere. However, SIFT Sphere is the least affected by the field of view changes.
The floor sequence includes sparse, but very small structures. As a result most keypoints are
extracted with a scale of 1 to 4 pixels. These points are minimally influenced by the radial
distortion, since the spherical geometry locally reacts approximately like a planar surface (see
Section 2.1). The number of detected correspondences results in the same ranking as for the
repeatability score.

SIFT recognizes 1525 keypoints for small field of view changes and this number decreases
to 161 for up to 90 degrees of field of view changes. Similar behavior is observed for sRD-SIFT
within a range of 802 to 411 correspondences and for SIFT Sphere 161 to 56 correspondences.
Here again, SIFT Sphere redetects at least keypoints because the original image is interpolated
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onto the sphere in a lower resolution. Especially in the floor sequence most of the structure is
eliminated, since it corresponds to small scale values.

Perspective to omni matching again obtains a contrary result in comparison to omni to omni
matching. sRD-SIFT and SIFT have only a maximal repeatability score of 3%. Similarly, the
corresponding absolute number of redetected keypoints is low with a maximum of 35. The low
results are due to the smaller overlap of the perspective image with the omnidirectional images
rather than the overlap of two omnidirectional images with the same field of view change. SIFT
performance is only slightly better, with a repeatability score up to 10% and 175 correspon-
dences for a field of view change of 72 degrees. Again SIFT superior redetects the sparse and
small image structure of the floor sequence better than the other approaches.

Floor scene Iref , I2 Iref , I3 Iref , I4 Iref , I5 Iref , I6
omni to omni 18 36 54 72 90

perspective to omni 18 36 54 72 90

Wall2 scene
omni to omni 30 60 80 100 120

perspective to omni -30 0 20 40 60

Table 5.2: Angles of field of view changes between images of the floor scene and wall2 scene.

The effect of field of view changes for the textured wall2 scene from Figure 4.1(d) is depicted
in Figure 5.5. In the case of omni to omni matching the best results from 80 degrees to 120
degrees field of view changes are obtained by sRD-SIFT. Here the overlapping regions are lying
in opposite image parts and both are highly affected by the radial distortion.

Since SIFT does not take the spherical distortion into account and SIFT Sphere loses the
small image texture during interpolation, sRD-SIT is the only approach which can redetect such
points. For small rotations between 30 degrees and 80 degrees, SIFT Sphere has the best re-
peatability rate. In contrast, sRD-SIFT provides the worst results with only 6% for changes of
60 degrees. The results obtained of SIFT lie between SIFT Sphere and sRD-SIFT.

Most interestingly all approaches are not totally invariant to field of view changes with the
sparse textured scene type, but distinct ranking is observed. sRD-SIFT is mostly affected, fol-
lowed by SIFT and the least affected is once again SIFT Sphere. The spherical model of the
scale space is in this context again SIFT Sphere’s strength. Despite the sparse texture, which
includes straight lines and orthogonal structure only, SIFT can still detect 311 correspondences
for 30 degrees field of view changes and 68 points for changes of 120 degrees. In comparison
sRD-SIFT and SIFT Sphere can only redetect 38 to 2 keypoints.

Field of view changes regarding perspective to omni matching, gives a similar but more
distinct observation. The mostly affected approach is once again sRD-SIFT and its results are
in the most cases superior by comparison. The repeatability score is up to 60 degrees for non
field of view change. Also without a field of view change the repeatability is not perfect, since
the geometrical differences between the perspective image and the omnidirectional image is
involved. SIFT Sphere is again the least affected by the field of view change, but also obtains
a low repeatability score between 13% and 3%. The absolute number of correspondences is
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for all approaches for a field of view change of -30 degrees between 228 and 9 and for the
maximum change of 60 degrees between 9 and 2. The ranking is the same as for the omni to
omni matching.

Viewpoint Changes

Viewpoint changes for the structured scene type are evaluated with the entrance sequence from
Figure 4.1(e). Of all sequences, this is the most difficult scene for matching. It contains just
planar homogenous regions, with only two distinct borders and nearly no structure on the scene
itself. During the estimation of the ground truth homography, only 11 corresponding points
are found manually. Furthermore viewpoint changes correspond to the wide-baseline matching
problem [49], since the distance between two viewpoints and their viewing angles increases
drastically.

The results of keypoint detection for the structured scene related to viewpoint changes are
shown in Figure 5.6. As expected the results are worse than in all other sequences, but still for
this challenging task of sparse structure and wide-baseline matching, corresponding keypoints
are found. Neither SIFT, sRD-SIFT nor SIFT Sphere are preferable in this case. The repeatabil-
ity is between 13% and 17% for matching the second image of the sequence. This decreases to
2% and 3% for the image number five and finally slightly increases to 2% and 4% for the last
image pair.

The numbers of corresponding keypoints begin with 29 to 13 keypoints, decrease to 2 and 5
keypoints, and finally increase again to 2 and 7 points for all approaches. The first decline can
be explained by the increasing viewing angle between the features detected. The unexpected
ascent in terms of correspondences and repeatability is caused by the wide viewing angle of the
omnidirectional images. In this case an image structure appears and is detected, initially lying
close to the image border and is therefore highly affected by the radial distortion. For increasing
viewpoint changes this structure moves from the image border in the direction of the image
center and is then matchable again.

In the case of perspective to omni matching, the results are similar but less affected by view-
point changes. In other words SIFT, sRD-SIFT and SIFT Sphere are more invariant to viewpoint
changes, than in the case of omni to omni matching. Again the absolute number of correspon-
dences detected is low, starting from 4 to 2 keypoints for slightly viewpoint changes and 2 to 9
keypoints for large viewpoint changes (see Figure 4.1(e) for actual viewpoint change). The cor-
responding repeatability for image number 2 is approximately 2% for all approaches and varies
until image number 6 between 2% and 4%. In this difficult scene, all matching approaches re-
main detected stable keypoints, because of the wide field of view of the omnidirectional camera.
The few correspondences are detected constantly over the range of matching approaches.

Figure 5.7 shows the performances of the keypoint detector from SIFT, sRD-SIT and SIFT
Sphere of the textured wall3 scene from Figure 4.1(f) on viewpoint changes. The results are
better than in the case of viewpoint changes on the structured scene. Again no method can be
distinguished to give better results than the others in case of omni to omni matching.

An obvious difference, compared to the results of the structured scene, is the dependency
on the viewpoint changes. The repeatability is in the range of 24% and 34% for image number
two and decreases continuously to approximate 1% to 4% for image number six. The absolute
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Figure 5.6: Viewpoint changes for sparse structured scene (Entrance sequence Figure 4.1(e)).
(Top) Repeatability and number of corresponding points for omni to omni matching. (Bottom)
Same for perspective to omni matching.

number of correspondences depicts a similar behavior, with the exception that SIFT starts with
much more keypoints (264) than sRD-SIFT (38) and SIFT Sphere (13). The performance fits
to the expectations of matching two perspective images with SIFT [29]. Omnidirectional vision
does not affect viewpoint changes and the actual angle between two corresponding viewing rays
still remains large for large viewpoint changes.

For perspective to omni matching similar results are obtained, i.e. showing a low level of
invariance to viewpoint changes, except for the SIFT detector. Its repeatability is increased
from image number two to image number four with 55% to 62%. Corresponding to the large
number of redetected keypoints (303) this is clearly due to detection of keypoints with small
scale values, which are approximately invariant to omnidirectional distortion. For sRD-SIFT
and SIFT Sphere the repeatability starts between 22% and 28% and decreases to 0% and 8%.
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Figure 5.7: Viewpoint changes for sparse textured scene (Wall3 sequence Figure 4.1(f)). (Top)
Repeatability and number of corresponding points for omni to omni matching. (Bottom) Same
for perspective to omni matching.

Thus, sRD-SIFT cannot redetect any keypoint for image number six. This is because the overlap
of the two images remains only on the image boundaries. In that area the distortion model of
sRD-SIFT is too inaccurate to detect any correspondence.

Rotation Changes

Figure 5.8 shows the results for rotation changes for the image scene ceiling from Figure 4.1(g).
The ceiling sequence is the only one, rich in image structure and texture at the same time.
Therefore only one scene is analyzed for this transformation.

The results between omni to omni matching and perspective to omni matching are very
different in terms of detector dependency on the rotation angle. In the latter case, all approaches
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Figure 5.8: Rotation changes for textured scene (Ceiling sequence Figure 4.1(g)). (Top) Re-
peatability and number of corresponding points for omni to omni matching. (Bottom) Same for
perspective to omni matching.

are more invariant to the transformation than in the first case. Due to the non linear image
distortion of the omnidirectional image, images related to a rotation around the principle axis
cannot be described by a linear transformation anymore. This is of course not valid for the
perspective image and therefore the invariance can be kept better.

Overall in both cases SIFT Sphere obtains the best results, which are for omni to omni
matching between 52% and 37% in repeatability. The number of correspondences is between
390 and 461 for all rotation angles. Because of this difference, even SIFT Sphere is in the case
of omni to omni matching not completely invariant to rotation changes. The reason for this can
be the insufficient detection accuracy of the keypoints, because of image resampling.

In contrast, sRD-SIFT is largely affected by the rotation and a small rotation angle (50
degrees) starts at 18% and decreases too only 4% for a rotation of 175 degrees. SIFT still can
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Ceiling scene Iref , I2 Iref , I3 Iref , I4 Iref , I5 Iref , I6
omni to omni 50 102 175 235 345

perspective to omni 32 89 152 218 322

Table 5.3: Angles of rotation changes between images of the ceiling scene.

redetect 29% of the keypoints for the same rotation angle. In the case of perspective to omni
matching only SIFT and sRD-SIFT are affected by the rotation, and therefore SIFT Sphere
provides the best results, which are still not more than 21% to 29%.

Discussion of Detector Performance

Finally it is concluded that of all approaches tested, neither is most superior compared to the
others in indoor keypoint detection under the transformation considered. Additionally, there
is not a unique best approach for each transformation type itself, e.g. the performance in the
entrance sequence is equally for SIFT, sRD-SIFT and SIFT Sphere.

Overall, SIFT detects reliable keypoints in non linear distorted omnidirectional images, if
the keypoints have a small scale value of about maximal 5 pixels or the keypoints are lying close
to the image center. This is the case for the wall3 sequence in perspective to omni matching.
However, in general SIFT loses the invariances for transformations, scale changes and rotation
changes. These are only feasible in linear perspective image matching. If invariance to those
transformations can be achieved, then there is another transformation type to which a detector
can be invariant for omnidirectional images. This is the field of view transformation, which
corresponds to the rotation of the camera in any angle. Due to the underlying spherical model
of omnidirectional vision, the image looks theoretically the same in every direction. However,
in practice only the actual image resolution is not constant over the spherical surface.

As SIFT Sphere uses the spherical model, it provides more consistent results, compared
to the other approaches over all transformations except for viewpoint changes. These cannot
be compensated from the omnidirectional vision, because it only increases the field of view
and does not affect the respective viewpoint. The drawback of SIFT Sphere is obviously the
interpolation of the image into the spherical domain. This significantly affects the smaller scales
and the interest points lying in those scales, can no longer be detected. Concerning indoor
matching, the detection of keypoints with low scale value plays an important role as the sparse
image structure does not provide rich content like the graffiti scene in [32], where much more
keypoints can be detected. SIFT Sphere never detects more than 100 correspondences in each
indoor sequence examined. In contrast SIFT detects, in some cases, more than 1500 points.

The performance of sRD-SIFT lies between both SIFT and SIFT Sphere. The weak in-
terpolation is not included in this approach, but the underlying radial distortion model is only
accurate enough in the central region of the image. In cases where only the image borders of two
omnidirectional images are overlapping, e.g. in the wall3 sequence due to viewpoint changes,
sRD-SIFT cannot find any correspondence. For other transformations sRD-SIFT obtains the best
results over all detectors e.g. the wall2 sequence with field of view changes. Here the prominent
image structure, where correspondences can be found, is localized away from the image borders.
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Finding corresponding points in perspective and omnidirectional images compared to the
omni to omni case is more difficult. In each image sequence the absolute number of keypoints
and the repeatability score is worse, but still not zero. One exception is the wall1 scene where
the perspective to omni matching obtains superior results. Here the scale changes are in a range
from a factor of 0.8 to a factor 2, whereby in the omni to omni matching case the range is from
1.5 to more than a factor of 3. Perspective images have a smaller field of view and what explains
the lower performance in comparison to the omni to omni matching.

5.2 Results on Descriptor Matching

In this section the actual matching accomplished by each method is evaluated, regarding different
image scenes and transformations. The measurement recall vs. 1-precision is used. An optimal
curve would be a horizontal line, with recall equal to 1.0 for every precision between 0.0 and
1.0. If the orientation of the curve changes from horizontal to vertical, than the range of the
resulting precision values become narrower. Note that for indoor matching, in multiple cases
there are less than 30 keypoint correspondences, as shown in the previous section. This small
number restricts the number of actual values of recall, and it results in a stair-like appearance of
the recall precision curve. For example, possible recall values are 0.0, 0.5 and 1.0 for just two
correspondences. The different data points of the curves are obtained by varying the threshold
parameter of the matching strategy, which is examined in the next section.

The matching of keypoints is accomplished by matching their descriptors. Since the descrip-
tors are estimated from the surrounding region of each keypoint, their matching performance
depends on the keypoint detection performance. One method to only estimate the performance
of the descriptor is to compare their performance on only one unique keypoint set. In the case
of SIFT, sRD-SIFT and SIFT Sphere, this is not possible, since the descriptors are estimated
in different image domains. In other words, each method is a specialized approach, where the
descriptor estimation only works with the keypoints from their respective keypoint detectors.
Therefore in the following descriptor evaluation, for each method their own keypoints are used.
That means, the total matching performance of each matching approach is estimated and not
only the sole performance of each descriptor. Of course, the matching performance still depends
on the quality of the corresponding descriptor.

Actual matching results for the floor sequence are shown in Figure 5.9. The average scale
of correct matched keypoints increases from SIFT, over sRD-SIFT to SIFT Sphere. Similarly,
the number of correct matches decreases in the same order. Correct matches from SIFT and
sRD-SIFT are concentrated in the image center, whereby the matches from SIFT Sphere are
more equally distributed. The reason is, that for keypoints with larger scales the descriptor is
not accurate enough, because of radial distortion. Superior matching performance is accom-
plished with the descriptors of sRD-SIFT. Only keypoints close to the image border remain
un-matchable with sRD-SIFT. In contrast SIFT Sphere appropriates the spherical image model
for calculating the descriptor and inaccuracies of the descriptors are appearing only from image
interpolation. Therefore the descriptor matching for SIFT Sphere is not dependent on the image
location of each keypoint. In general the number of matches is much lower for SIFT Sphere,
than for SIFT or sRD-SIFT, since already the number of detected keypoints is less.
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SIFT sRD-SIFT SIFT Sphere

Figure 5.9: Keypoint matches from SIFT, sRD-SIFT and SIFT Sphere on the floor sequence.
Incorrect matches are shown in red and correct matches are illustrated in green.

In the following subsections each image transformation is evaluated for keypoint detection
and descriptor matching separately. Finally the estimated performance is discussed.

Matching Strategy

Before evaluating descriptor matching on different transformations, possible matching strategies
are examined. As can be seen in [31] three of them are discussed on the basis of a specific
application. In Figure 5.10 (top left) the matching results from threshold based matching on the
door sequence are shown for SIFT, sRD-SIFT and SIFT Sphere. In this case there is a threshold
which defines the maximal Euclidean distance for which two descriptors are still associated as a
valid match. As a consequence, one descriptor can have several matches, but only one of them
can be correct. Therefore the precision is low, but on the other hand a high recall up to 1.0 is
reached. If multiple matches are allowed for one descriptor, then the probability that one of them
are correct increases.

Another matching approach is nearest neighbor matching. Here the descriptor with the min-
imal Euclidean distance in descriptor space is associated as a match. Additionally, only matches
under a certain threshold are taken. By changing the threshold, the curves in Figure 5.10 (top
right) are established. The precision is slightly better than for threshold based matching, but the
recall is lower. With this, fewer keypoints are incorrectly matched, but simultaneously not all
correspondences are matched.
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Figure 5.10: Comparison of matching performance of SIFT, sRD-SIFT and SIFT Sphere on
image sequence Door (Figure 4.1 (a)) with descriptor matching strategies: threshold (top left),
nearest neighbor (top right) and nearest neighbor distance ratio (bottom).

With the application of indoor matching the best matching results are achieved with near-
est neighbor distance ratio matching. A descriptor is only matched if the ratio of the distance
between the first and second best matches is smaller than a certain threshold. This strategy
eliminates uncertain matches, where one descriptor has multiple, similar looking matching can-
didates. Specifically in indoor matching this is often the case, as images contain a lot of repeated
structure and textured, e.g. tiles or panels. In Figure 5.10 the results from this strategy are shown
in the plot at the bottom. A precision of 1.0 with a recall of 0.2 can be reached by sRD-SIFT for
the specific image pair. For SIFT Sphere and sRD-SIFT a better precision is reached compared
to the other matching strategies, i.e. 0.5 respective 0.3.

The ranking of the descriptors is similar for threshold-base and nearest neighbor distance
ratio matching. Only for nearest neighbor based matching is the order different. As each de-
scriptor is evaluated on its own keypoint set, the descriptor matching does not only depend on
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the descriptor itself. Where a different matching strategy is concerned, a particular matching
approach can give better results than another with a separate matching strategy. Nevertheless,
the results from nearest neighbor distance ratio based matching are suitably reliable to identify
the best matching approach for a certain image pair, as the recall and precision is highly better
than in nearest neighbor matching (Figure 5.10).

Scale Changes

In Figure 5.11 the descriptor matching performance of SIFT, sRD-SIFT and SIFT Sphere is
shown for an image pair of the door scene and the wall1 scene. Both pairs underlie a certain scale
change which is 1.8 and 2.7 for omni to omni matching and 2.6 respective 1.7 for perspective
to omni matching. The best matching results are achieved with the structured scene type (door
scene). Here sRD-SIFT obtains the highest precision results, which are up to 1.0 and for lower
precisions a recall of 0.8 in omni to omni matching and 0.4 in perspective to omni matching is
obtained.

Better recalls are achieved using SIFT in both cases, but with the drawback of a worse
precision, starting by 0.7 respective 0.5. Apart from that, the precision and recall values achieved
by SIFT Sphere are much lower. With respect to omni to omni matching a recall of 0.5 is reached
with a precision of only 0.1.

Perspective to omni matching is nearly impossible with SIFT Sphere on that scene, since
the recall is only 0.1 with a precision of 0.1. The reason for these low results is the incorrect
descriptors as shown in Figure 3.9. Especially in the case of perspective to omni matching, the
LPD descriptor is computed on an interpolated region from a section with a larger scale value.
Since regions with a larger scale value contain less information than regions with a lower scale
value, a region cannot be correctly interpolated from one with a larger scale value. In case
of omni to omni matching SIFT Sphere calculates the LSD descriptor directly on the spherical
surface. Here the sole interpolation is carried out from the original image to the spherical surface,
which results in better matchable descriptors than in the perspective case.

Matching of keypoints from the textured scene is a challenging task, since there are less
than 20 correspondences for SIFT Sphere and sRD-SIFT. Only SIFT detects more than 200
correspondences in these scene. Surprisingly SIFT cannot match any of these correctly by the
given matching strategy as shown in Figure 5.11. The reason is that each descriptor originates
from a similar looking image patch. Since SIFT can only detect keypoints with small scale
values properly (see Section 5.1), the descriptors of keypoints from the fine image structure of
the wall1 sequence are not distinguishable. SIFT Sphere is the only one which can detect reliable
matches with larger scales in the spherical image domain. This approach is the only one, which
can also match descriptors in the omni to omni matching case of the wall1 scene. Accordingly the
precision is low at approximately 0.8 with a related recall of 0.2. The best matching approach of
the textured scene type for scale changes and perspective to omni matching is sRD-SIFT. Here,
the precision obtained is between 0.5 and 0.1 and the corresponding recall starts from 0.1 and
goes up to 0.6.
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Figure 5.11: Scale changes of 1.8 degrees, respective 2.7 degrees for omni to omni matching
(top) and scale changes of 2.6, respective 1.7 degrees for perspective to omni matching (bottom).
Performance for structured scene (Door sequence Figure 4.1(a)) (left) and for textured scene
(Wall1 sequence Figure 4.1(b)) (right).

Field of View Changes

The results of descriptor matching on images with field of view changes between 40 degrees
and 100 degrees are shown in Figure 5.12. The floor image sequence represents the structured
scene type and the textured type corresponds to the wall2 sequence. Both cases of omni to
omni matching and perspective to omni matching are once again evaluated separately. The
best matching results for the floor sequence are obtained by SIFT. This is because of the small
distinctive structure available especially in the image center, where SIFT already achieved the
best results on correspondence detection. The recall precision curve is relatively smooth in
comparison to the other curves. The reason is the large number of correspondences detected in
that scene by SIFT. In omni to omni matching this number is 716 and in the perspective to omni
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Figure 5.12: Field of view changes of 70 degrees, respective 100 degrees for omni to omni
matching (left) and field of view changes of 70 degrees, respective 40 degrees for perspective to
omni matching (right). Performance for structured scene (Floor sequence Figure 4.1(c)) (left)
and for textured scene (Wall2 sequence Figure 4.1(d)) (right).

matching it is still 175. The former results in a precision of 0.8 with a corresponding recall of
0.6 for SIFT. This is the best acquired matching result of all analyzed omni to omni matching
scenes. An even better result is obtained by SIFT in the case of perspective to omni matching for
the floor scene. Here the precision is even 0.9 for a recall of 0.6. sRD-SIFT obtains the second
best matching results on the floor sequence which are still satisfactory. For a precision of 0.5 a
recall of 0.4 is obtained in both matching cases. SIFT Sphere provides only moderate results in
the omni to omni matching. In the perspective type no single match could be achieved. Again
this is due to the poorly estimated planar descriptor.

Once again the textured scene type, i.e. the wall2 sequence, is more challenging to match
detected keypoints. In the perspective matching case only sRD-SIFT gives reasonable results,
with a precision of 1.0 with a recall of 0.4. That means 40% of the 56 correspondences are
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correctly matched and no false positive match is included. For that scene SIFT do not find any
correct matches and SIFT Sphere gives a precision of 0.01 with a recall of 0.05. These small
values are negligible, as this corresponds to only one correct match.

In the case of omni to omni matching the results are much more scattered than in the previous
case. Again, sRD-SIFT achieves the best result on precision, which is 0.4 for a recall of 0.1. In
terms of recall, SIFT Sphere provides appropriate results. Here the recall is up to 0.5, but with
a precision of less than 0.1. SIFT Sphere detects mainly larger regions which are in general
more discriminative than smaller regions in the given indoor images. Therefore it is possible to
actually match these corresponding keypoints. Nevertheless the precision is still low, because
much more keypoints are matched incorrectly than correctly, due to the weak descriptor. In
contrast the descriptor from sRD-SIFT is much more robust and detects less false positives from
the wall2 sequence, but yet cannot match much of the existing correspondence, since the recall
is only 0.1. Here the reason is the repeated image structure which is still matchable especially
with keypoints of small scales. These are also detected by sRD-SIFT. Accordingly SIFT gives
the worst results for that image pair, i.e. precision equal to 0.01 with a recall of 0.1.

Viewpoint Changes

To evaluate the performance of viewpoint changes, images from the sparse structured entrance
scene and from the sparse textured wall3 scene are used. The entrance sequence is the most
difficult case for finding corresponding points. For all image pairs, with the exception of the
first, the number is below 11. In [31] it is observed that matching under viewpoint changes is
already in the perspective case the most challenging transformation. Accordingly SIFT Sphere
completely fails this task for the entrance scene, since it cannot find any correct match. After
detecting only 4 correspondences, the descriptor is too inaccurate to be matched correctly.

In perspective to omni matching and omni to omni matching SIFT can match some of the few
detections, with a precision of 0.2 and a corresponding recall of 0.5 in the former case, and with
a constant recall of approximately 0.1 over precisions between 0.5 and 0.01. As sRD-SIFT do
not give any correct matches also for the entrance scene for perspective to omni matching, SIFT
is the best approach in this scenario. Again, the few existing keypoints comprise a small scale of
only a few pixels. These are generally reliable, detected only by SIFT and can finally be matched.
Because of the structured scene type, they are discriminative too. In the omni to omni matching
case, keypoints also appear with larger scales. Once again, these are matched more favorably
by sRD-SIFT than with SIFT, since the descriptor is more appropriate because of the underlying
distortion model. Here the precision is low (0.1) but a relatively high recall of 0.5 is obtained.
That means, most of the matched keypoints are false positives and are matched accidentally,
because of similar image structure. Nevertheless, 3 of the 4 corresponding keypoints can be
matched.

Also in case of the viewpoint transformation, the scene type has a high impact on the per-
formance of a specific descriptor. With the exception of two previous transformations, scale
and field of view changes, here the textured scene type gives better matching results than the
structured type. This is because of the challenging matchable entrance scene, as shown above.
Again SIFT Sphere only obtains correct matches in the omni to omni matching case. There the
performance is, in terms of precision, in fact the best over SIFT and sRD-SIFT. It starts already
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Figure 5.13: Viewpoint changes with the fourth image for omni to omni matching (top) and
viewpoint changes with the fourth image for perspective to omni matching (bottom). Perfor-
mance for structured scene (Entrance sequence Figure 4.1(e)) (left) and for textured scene (Wall3
sequence Figure 4.1(f)) (right).

with 0.75 with a recall of 0.2. For lower precisions down to 0.1, the recall increases to approx-
imately 0.4. It is concluded that only some of the existing corresponding keypoints relates to a
uniquely descriptive image region, and therefore provide a more robust descriptor.

The descriptor of SIFT is due to radial distortion and repeated texture not accurate enough
to provide correct matches for this image sequence. In comparison sRD-SIFT results in a better
recall of up to 0.7 but in a worse precision of 0.3. That means, that the descriptor of sRD-SIFT is
less influenced by the spherical distortion, since e.g. SIFT detects the most corresponding points
but only gives a recall of 0.2 in descriptor matching. Additionally, SIFT does not even provide a
better precision. The value of only 0.2 is again explained by the scene type. Similar results from
SIFT are obtained for the same scene in perspective to omni matching. The precision is slightly
better (0.3) but the recall is never larger than 0.1. The same problem as before plays a crucial
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Figure 5.14: Rotation changes of 175 degrees for omni to omni matching (left) and for per-
spective to omni matching (right). Performance for textured scene (Ceiling sequence Figure
4.1(g)).

role in these results. SIFT Sphere matches maximum only one keypoint and sRD-SIFT gives
an interesting result, because the recall is constantly 0.5 for all precisions from 0.0 to 1.0. The
reason for this horizontal line is that there are only two corresponding points found, and only
one is matchable.

Rotation Changes

Rotation change is the only transformation where all keypoint detectors are more or less af-
fected. Therefore the keypoint matching demonstrates which matching approach has the best
performance. The matching results of two images from the ceiling sequence under a rotation of
175 degrees are shown in Figure 5.14.

Concerning omni to omni matching SIFT Sphere and sRD-SIFT give rise to a similar recall
precision curve, which has a larger variation in recall as in precision. For SIFT Sphere the
precision is between 0.3 and 0.5 with a recall up to 0.6 and sRD-SIFT obtains a precision of
0.2 to 0.1 and a recall up to 5. Thus SIFT Sphere matches more keypoints than sRD-SIFT
correctly. Therefore, only SIFT Sphere can handle rotation of 175 degrees with its spherical
image model. Since the distortion model of sRD-SIFT is partially correct, the slightly but still
good performance is reasonable. Apart from that, SIFT is lying in a similar precision range of
0.0 to 0.5, but obtains only a recall of 0.1 maximum. Most of the matches, especially keypoints
detected in larger regions are not described accurately enough by the descriptor. In contrast
sRD-SIFT and SIFT Sphere produces more robust descriptors.

Matching perspective and omnidirectional images under a rotation of 175 degrees is the most
challenging task for the descriptors of the matching approaches analyzed (see Figure 5.14). It
is the only case where none of the methods reach a better recall than 0.1 and a better precision
than 0.4. Inside this small range SIFT can be identified as the best approach followed by sRD-
SIFT and SIFT Sphere. It is concluded that the number of corresponding keypoints do not have
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to correlate with the number of actual matches, since SIFT detects more than 900 matchable
points, and for sRD-SIFT it is still 89 and 66 for SIFT Sphere. In each case the worse matching
results have a different reason. In the case of SIFT the descriptors from the omnidirectional
image are incorrect, because of the ignored spherical distortion. sRD-SIFT is expected to detect
more accurate descriptors, but in the case of the ceiling scene there are not only small but also
larger very similar looking regions. Therefore most of the keypoints are accidentally wrongly
matched. The same reason also holds for SIFT Sphere, but here the inaccurate local planar
descriptor as discussed above is deciding.

Discussion of Descriptor Matching

Matching descriptors depends highly on the quality of the respective keypoint detector, since non
detected keypoints cannot be matched. However, matching does not necessarily correlate with
the performance of keypoint detection. The experimental evaluation shows there are cases where
hundreds of correspondences are found, but only a few, e.g. 10, can be matched correctly by the
descriptor. In contrast, the keypoint detector performs worse with only 10 correspondences for
example, but then again the descriptor can still match most of them, e.g. 8. The result depends
on the image transformation and the actual scene.

If the standard SIFT descriptor is used for matching omnidirectional images, it can provide
a robust matching performance as shown for specific scenes. The best performance is obtained
on the door scene and the floor scene. The images of these sequences are richer in fine image
structure, e.g. pattern of the wooden door, or stone patterns of tiles, than the other scenes ex-
amined. SIFT highly depends on the scene type, because the results on the textured sequences
are significantly worse. In some cases, particularly the wall1 scene, less than 3 correct matches
are established. In contrast, not only in the door and floor sequence, but also in the other struc-
tured scenes, SIFT provides the best matching results. In these cases most of the corresponding
keypoints are still laying far from the image borders and the keypoint scales are small and only
slightly affected by the spherical distortion. In cases where keypoints with larger scales have to
be matched, typically the ceiling, SIFT fails due to the lack of a spherical distortion model.

In cases where the detected keypoints are lying on regions which are highly affected by the
spherical distortion, particularly the image border or larger structures, then the best matching
results obtained are with SIFT Sphere. For the sequences tested this is only the case in the
ceiling and in the wall3 scene. The major disadvantage of SIFT Sphere is the inaccurately
interpolated keypoint descriptor, and therefore the results are worse compared to SIFT or sRD-
SIFT. In particular, the local planar descriptor is based on a reasonable geometrical background
and promises robust matching results. But in application of real world image matching it fails
in all cases examined. For all transformations and all image types, there are never more than 3
correct matches found. In Figure 3.9 the influence of interpolation regarding the descriptor is
shown.

sRD-SIFT plays an intermediate role between SIFT and SIFT Sphere. This is already es-
tablished for its keypoint detector. It does not resample the image, and uses at the same time
a distortion model. Unfortunately the distortion model is only partially correct. That means it
applies well on the image center, but becomes inaccurate in direction to the image border. Also
small keypoints are discarded because of non-computing of the octave -1. This is related to the
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default parameter set, and can be changed. sRD-SIFT is the sole approach which is only slightly
affected by the scene type. The performance is between SIFT and SIFT Sphere, for example
the door sequence, and it can keep the same performance in most of the textured scene types for
omni to omni and for perspective to omni matching. There are only a few exceptions for which
sRD-SIFT completely fails, i.e. does not match more than 1 keypoint correctly. This happens
in the entrance scene for perspective to omni matching and in the wall1 scene for omni to omni
matching. Here the reason is a special keypoint constellation, where already only less than 4
correspondences are found with sRD-SIFT.

5.3 Overall Discussion

After comparing the performance of the state-of-the-art approaches SIFT, sRD-SIFT and SIFT
Sphere on omnidirectional indoor image sequences, it is concluded that none of these methods is
superior in general. Overall the performance is less favorable than in matching perspective im-
ages, as evaluated in [32]. On average a repeatability score of approximately 30% on structured
scene, and a score of less than 20% on textured indoor scenes are achieved across all methods.
This is relatively low in comparison to the 80%, proposed by Lowe [29]. The reason for such
results is the dependency on the actual scene content and the actual accuracy of the spherical dis-
tortion model. Indoor scenery provides per definition less structure than natural outdoor scenes.
But this fact means only that the absolute number of detected keypoints may be low, and not
that the relative number of correspondences have to be necessarily low, too. Therefore a large
potential for improvements on keypoint detection in omnidirectional images remains.

Room for improvement does not only exist for the keypoint detection, but also for the key-
point descriptors. The performance evaluation shows, that independent of the keypoint detector
performance, keypoint matching can either be successful or not. The results highly depend on
the actual scene type. With respect to the textured scenery including mainly repeated struc-
ture the performance is much lower than for images with non repeated structure. This problem
appears by design already in perspective image matching, but in the case of omnidirectional
matching in indoor environments it is even more challenging, since the structure diversity is
lower and in the same time more of the same repeated elements are visible.

For the stability of the keypoint descriptor, it is observed that image interpolation, as done in
SIFT Sphere, has a larger effect on performance, than non linear geometric deformations, which
appears in the descriptor estimation for SIFT and partially for sRD-SIFT. Here the descriptor
matching results are better. In particular these are images with fine non repeated structure,
mainly located in the central region of the image. Keypoints with larger scales are less affected
by the interpolation, but more influenced by the radial distortion. SIFT Sphere is the only ap-
proach which provides stable results concerning the matching of those keypoints. At the same
time, these descriptors describe repeated structures better as they are, on larger scale, more di-
verse. It follows that SIFT Sphere should obtain the best descriptor matching results for the
textured scene type, which is even reflected by the actual matching results.

It is shown that SIFT is not necessarily incapable of matching omnidirectional images. With-
out being designed for omnidirectional images, keypoints with a specific scale (<5 pixels) can be
detected and matched by SIFT if the underlying image type allows a distinctive descriptor to be
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computed. Nevertheless SIFT loses most of its geometrical transformation invariances, i.e. scale
and rotation changes. The influences from the transformations can only be removed if a proper
model of the non linear image distortion is provided. SIFT Sphere recovers the initially pro-
posed invariances on geometric transformations, but fails in detecting and matching keypoints
from fine image structure.

All three approaches perform best using different ranges of keypoint scales. SIFT performs
in small scales below 5 pixels, followed by sRD-SIFT which performs best with an intermediate
range and SIFT Sphere achieve best matching results for large scale keypoints. This result
depends not only on the detected keypoints, but also on the respective descriptor which only
takes the spherical distortion in case of SIFT Sphere and sRD-SIFT into account.

Finally it depends on the specific application if choosing SIFT, sRD-SIFT or SIFT Sphere
or even a combination of those three to obtain optimal matching results with omnidirectional
images.

5.4 Summary

In this chapter, the evaluation of SIFT, sRD-SIFT and SIFT Sphere with omnidirectional im-
ages was given. Keypoint detection and descriptor matching was examined separately. Each
approach had to perform under different image transformation, i.e. scale changes, field of view
changes, viewpoint changes and rotation changes. Also a comparison between omnidirectional
and perspective image matching was given for each scene type. For each transformation two
scene types, i.e. structured and textured were analyzed. The keypoint detector performance was
investigated with repeatability score in relative and absolute terms. For all transformations and
scene types, also descriptor matching was evaluated with the measure recall vs. 1-precision. In
this chapter it was shown, that none of the examined approaches gives the best results over all
experiments. Additionally it is shown that only SIFT Sphere is invariant to the transformations
examined.
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CHAPTER 6
Conclusion

In this work three state-of-the-art approaches, namely SIFT, sRD-SIFT and SIFT-Sphere for
matching omnidirectional images with the application of indoor environments were compared.
An evaluation framework has been implemented, which enables the estimation of the matching
performance of different keypoint detectors and descriptors on real world images. The main
requirement of the framework is to identify if a point of interest detected in a reference image,
is redetected on another image. Since SIFT keypoints contain not only a location, but a specific
scale and orientation, those properties were also taken into account. With the identification
of correspondences in two images, the actual descriptor matching performance is evaluated by
comparing correct to incorrect matches. The accuracy of this evaluation approach depends on
the accuracy of the underlying homography, which is used as a ground truth. An adoption of
a state-of-the-art robust ground truth estimation approach for matching perspective images was
proposed.

Previous work on matching perspective images have shown, that approaches for interest
point detection and matching highly depend on the degree of image transformations, e.g. view-
point changes, and scene types. Therefore, this work analyzed the given approaches under all
Euclidean camera transformations, i.e. translation, scale. Their influences, not only on the key-
point detection but also on the final matching, were estimated for different scene types. The
ability to estimate a robust ground truth was achieved by capturing planar scenes only. In con-
trast to perspective image matching, there is always more than only the planar surface visible
in the wide field of view image. A special focus was given in this circumstance, i.e. different
rotations and distances against the planar object were investigated.

Omnidirectional images yield special requirements on keypoint detection and descriptor es-
timations, since the images cover a field of view with more than 180 degrees, which can no
longer be described by perspective geometry. Therefore two methods with contrary approaches,
i.e. sRD-SIFT and SIFT Sphere, to handle the non-linear distortion, were selected to estimate the
matching performance against their perspective equivalent, i.e. SIFT. A specific evaluation of
both approaches was already separately provided by their corresponding authors in [28] and [8]
respectively. In contrast, this work extended the evaluation environment to a larger image test set
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and to extensive performance estimation on the range of geometric transformations, i.e. trans-
lation, rotation, respective different scene types. This thereby improved the significance of the
given results and provided more precise statements on conditional performance.

Omnidirectional cameras provide the opportunity to match images related to a much larger
field of view change, contrary to perspective imaging. Secondly, more scene structure is ob-
served and can lead to a more robust matching. From these properties omnidirectional images
fit better than perspective images to match indoor scenery. In general, they contain only sparse
structure e.g. walls, doors or floors. As a result, omnidirectional matching promises to achieve
better matching results than perspective matching for the same application. The test data set
for the evaluation used, included exclusively images captured indoor with sparse textured and
structure. In case of the entrance scene even with omnidirectional images the approaches failed
in matching this scenery, because no corresponding points were found by the approaches.

6.1 Overall Conclusion

The main insight of this work is that none of the approaches examined is preferable over the
other. The overall performance remains significantly worse than that of detecting and matching
interest points in perspective images. This comes from the fact, that none of the approaches
examined entirely models the omnidirectional geometry and performs all image operations on
the original raw image data. The matching performance of each method investigated highly
depends on the image content and geometric transformation between the images matched. Each
method investigated presents its own pros and cons and therefore provides the best matching
result only in specific circumstances, e.g. in small structured scenery in case of SIFT.

The blind application of SIFT onto an image domain, for which is has not been designed,
can still lead to promising results. The reasons are that keypoints with small spatial extent are,
approximately, not influenced by the spherical distortion, since the sphere behaves locally like
a plane. Secondly, the central region of the image is only slightly affected by radial distortion,
and still with SIFT matchable. Nevertheless, in most cases where keypoints with larger scales
all over the image are needed to be matched, SIFT is not capable in accomplishing that.

SIFT Sphere uses a spherical model to eliminate all of the radial distortion. The results are
superior to SIFT, when keypoints with larger scale values need to be detected. Also the matches
are equally distributed in spatial terms. The main disadvantage of SIFT Sphere is, that it fails
to detect small scaled keypoints and to provide a proper descriptor. A reason for this is the
interpolation of the original image data onto the sphere. Therefore SIFT Sphere redetects less
keypoints then SIFT and sRD-SIFT, but it is the only approach which can keep approximately
all geometric invariances proposed by SIFT and additional entire camera rotation invariance is
obtained. Nevertheless, due to the poor descriptor quality the matching is significantly worse
especially in matching perspective images with omnidirectional images.

sRD-SIFT does not interpolate the image data, but uses only an approximate model of the
radial distortion. Therefore the descriptor estimated and keypoints are only partially accurate
enough to obtain robust matching results. In cases where SIFT and SIFT Sphere fails, sRD-
SIFT finds as the only one correspondences and correct matches, e.g. for the textured scenes.
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It was shown, that matching cannot be improved under viewpoint changes with omnidirec-
tional cameras. The larger field of view admittedly increases the overlapping region of two
cameras from different viewpoints, but the viewing angle remains the same. The least favorable
matching results, under large viewpoint changes of more than 50 degrees, are approved in case
of omnidirectional matching.

6.2 Future work

Overall it is concluded that the methods examined are partially complementary and using multi-
ple simultaneously should provide most robust results. Despite this, the performance of SIFT in
perspective matching is not reached, and thus room for improvement prevails. An open question
remaining is if this performance gap can be closed entirely with a merged approach of SIFT
Sphere and sRD-SIFT, using a spherical model without resampling the image data.

If not, another question is if it is actually possible to obtain the same matching performance
for omnidirectional images compared to that for perspective images.

In case of indoor matching, new approaches can be adapted to the sparse structure available
in context of omnidirectional vision. With combined knowledge of the spherical distortion and
the image elements, e.g. lines, homogenous regions, there could be an improvement in terms of
finding stable image keypoints or regions.

Further work can focus on improving the matching performance of sRD-SIFT by using a
more precise model of the non-linear distortion. An idea is to use the adapted inversion model
from [30] for fisheye images, which depends on two parameters instead of one.
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