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Abstract

Tracking of objects without a priori knowledge of the object class is a growing
topic in computer vision. One popular approach is to use multiple interest points
for describing the position of the object. An essential step for these methods is the
estimation of the position of the points in a new image. Optical �ow is a method to
calculate the displacements of these points, however it does not produce in all cases
satisfactory predictions.

In this thesis we show a new method to detect these outliers on planar objects.
For that we take advantage of projective invariant properties of these points. With
the properties the algorithm is able to recognize wrong position estimations and
can consider them in the further tracking process. The veri�cation of the projective
invariant values can be e�ciently done and therefore the method processes the
images with more than 160 fps. By comparing with eight state-of-the-art trackers,
we show that our approach has the best trade-o� between computation speed and
tracking precision on a standard PC. For our experiments we use 25 sequences of a
well established benchmark dataset to compare our method with other trackers and
show its strengths and improvement possibilities.
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1 Introduction
In the 1960s Lawrence G. Roberts analyzed the extraction of 3D information from
2D views on a world consisting of blocks. He published his results in his Ph.D.
thesis [Roberts, 1963] at the theMassachusetts Institute of Technology [Huang, 1996].
Gilbert Falk responded to his publication and improved his proposed methods [Falk,
1972]. This was also the start of computer vision, the attempt to write algorithms
which make images and their contents understandable for machines [Bennamoun
and Mamic, 2012].

Object tracking is one sub�eld of computer vision. The goal thereby is to write
algorithms which are able to track objects in videos and calculate their location in
each image frame [Maggio and Cavallaro, 2011]. Due to unwanted real world e�ects
like occlusions, abrupt motion, pose and viewpoint changes, noise and blur, object
tracking is a challenging �eld [Yilmaz et al., 2006]. The origins of object tracking are
found in radar tracking. The response of a radar signal is superimposed by unwanted
radar returns from other objects like trees and buildings. The problem in this �eld is
to �nd the response from the target of interest [Ramachandra, 2000]. The pioneer of
radar tracking is Robert W Sittler [Ramachandra, 2000] with his article “An optimal
data association problem in surveillance theory” [Sittler, 1964].

1.1 Motivation
In the 40s of the 20th century James J. Gibson, an American psychologist, delved
deeply to describe the way animals perceive visual stimulus [Hochberg, 1994]. Some
years later in 1950 he published his results in the book The Perception of the Visual
World and introduced a new concept called optical �ow [Gibson, 1950]. Bats and birds
such as pigeons and goshawks use optical �ow to navigate their �ights through forest
cutter [Sebesta and Baillieul, 2012]. With the publication of Lucas andKanade in 1981
[Lucas and Kanade, 1981] this technique was also introduced in the computer vision
area and is used in trackers [Nebehay and P�ugfelder, 2014, Kalal et al., 2010, Vojir
and Matas, 2014]. But this algorithm is not able to predict the exact motion of every
point in an image [Lucas and Kanade, 1981]. We implement a new tracking method,
which calculates projective invariant values for these points in motion. With the help
of these invariant values we remove wrong correspondences.

1.2 Contributions
We use the proposed method Good Features to Track [Shi and Tomasi, 1994] to �nd
interest points in the initial image. For all points we calculate projective invariant
values. Mundy et al. explain the usage and properties of these values theoretically in
their work [Mundy and Zisserman, 1992]. Our algorithm estimates the displacement
of the key points between two sequential images by Lucas and Kanade Sparse Optical
Flow [Lucas and Kanade, 1981]. After this step we determine projective invariants
again to �nd key points which have been tracked wrongly. These outliers will be
removed from the key point database. For the estimation of the new state of the
object we use RANSAC [Fischler and Bolles, 1981].
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We implemented our idea in Python and evaluate it with a dataset containing
several scenes and compare the method with other tracking methods.

1.3 Problem De�nition
The problem of object tracking can be best de�ned in the words of Alper Yilmaz “In
its simplest form, tracking can be de�ned as the problem of estimating the trajectory
of an object in the image plane as it moves around a scene.” [Yilmaz et al., 2006]

In all images I1 . . . In of a video sequence a tracker calculates an estimation of
the position of a target. This position is called state and can be captured as vector

xi �
*...
,

tlx
tly
brx
bry

+///
-

(1.1)

that represents for example a rectangle. These four coordinates describe the rectangle
that enclosures the target. tlx and tly represent the x any y coordinate of the top left
corner of the rectangle, brx and bry represent the coordinates of the bottom right
corner. It is assumed that the rectangle has no rotation and its sides are parallel with
the x respectively y axis. Therefore it is possible to describe this quadrilateral with
only two coordinates. The index i of the state xi stands for the corresponding frame
number of the state. x1 is the state of the target in the �rst frame, xn the state in the
last frame.

i ∈ {1, 2, . . . , n − 1, n} (1.2)

For the calculation of the next state we presume theMarkov assumption. A method
that satis�es the Markov assumption only needs the last state xk to calculate the
next state xk+1. The previous states x1 , x2 , . . . , xk−1 are not required [Gardiner et al.,
1985].

Our focus in this work is on single-target tracking. In this case there is only one
target tracked and we can optimize our approach in this simpli�ed scenario. With
these experiences the tracker can be extended for multiple targets. One possibility to
de�ne the object to be tracked and how the initialization of the algorithm is done, is
to provide a list of keywords. Another alternative is to initialize the tracker with the
bounding box of the target in the �rst frame. Our tracker will need the state x1 of the
target in the �rst frame during the initialization [Forsyth and Ponce, 2002, Yilmaz
et al., 2006].

Summarized the problem can be seen in Figure 1.1. The current state xk of one
single target is given. The task is to calculate the state in the next frame xk+1.

Object Tracking Algorithm
In Figure 1.2 the basic concept of a single-target tracker is visualized. At the beginning
the tracker needs to be initialized. Therefore additional information, like the �rst
state or parameters of the sequence are required. With this data and the �rst image,
the tracker calculates a representation of the target. This representation is crucial
for the whole tracking task, because the algorithm must distinguish the target from
di�erent objects in the scene.

2



??
Figure 1.1: Object Tracking; the blue rectangle on the left represents the state xk, the task
is to �nd the state xk+1 in the following image

Initialization Data Extraction Localization Model Update

Figure 1.2: Object Tracking Algorithm

With the help of the model, the tracker is able to estimate all states for the
following frames. For every image of the sequence the tracker executes the remaining
three steps sequentially. First the algorithm extracts data of the new image and
prepares them for further usage. The result of this extraction can be e.g. color
histograms, the displacement of the pixels, et cetera.

The tracker combines all the extracted data with the previous state. With this
combination the method predicts the localization of the target and thereby the new
state.

The algorithms are able to join the information of the state and the new estimated
state to update the model. Herby the representation captures new information of the
target, which were not present during the initialization. But extensive updates must
be treated with caution, because they can falsify the model and thereby all the
following state estimations [Bradski and Kaehler, 2008, Challa, 2011].

1.4 Thesis Structure
This thesis is divided into four chapters. These chapters with their names and a
short explanation are listed below.

Chapter 2: Related Work provides information about existing approaches and ex-
plains advantages and disadvantages of current state of the art methods. Ad-
ditionally it clari�es the properties and origins of projective invariants and their
mathematical description is discussed.

Chapter 3: Methodology explains the implementation of our algorithm in more
detail and illustrates its functionality.

Chapter 4: Results describes the used dataset, shows the results of our algorithm
and compares them with other methods.

Chapter 5: Conclusion summarizes the work and discusses possible future work.
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1.5 Summary
In this chapter we gave an overview about computer vision and object tracking.
After that we described the motivation behind this thesis and explained the concept
of optical �ow and its usages in object tracking. Then we gave a problem de�nition
and illustrated the concept of single-target tracking. We described the structure of
this thesis and explained the chapters of this work.
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2 Related Work
Chapter one gave a �rst insight into the history of computer vision and basic concepts.
It would �ll several books to explain all concepts of this �eld in full detail. So this
chapter focuses on the concepts and articles of object tracking which in�uenced our
work. If the reader is interested in more computer vision �elds, we would suggest
[Hartley and Zisserman, 2003, Bradski and Kaehler, 2008]. They are a good point to
start.

This chapter has two additional parts at the end, Section 2.2 and Section 2.3. They
summarize the necessary theory of these concepts, which are needed to understand
the rest of the thesis.

2.1 Projective Invariants and Object Tracking
The �rst mentionable article about projective invariants in computer vision was
published in the year of 1992 by Mundy et al. [Mundy and Zisserman, 1992]. It
explains the theoretical concepts of projective geometry and their invariants. Sec-
tion 2.2 summarizes the crucial concepts of this work, which are important for our
algorithm.

We are not aware of any article which is about object tracking by exploiting
projective invariants. However there are two papers, which use projective invariants
for a specialized tracking application, marker tracking. In virtual and augmented
reality systems markers are used to calculate the pose between a camera and an
object [Kohler et al., 2011]. In [Loaiza et al., 2007] the authors use the projective
invariant values to distinguish dissimilar marker patterns. They have four collinear
and �ve coplanar patterns in their con�guration. The other work [van Liere and
Mulder, 2003] shows how markers with projective invariant patterns can be used to
reduce the search space for the recognition of the markers images.

The next enumerations describe algorithms which can be used for tracking. A
algorithm for point tracking is optical �ow [Lucas and Kanade, 1981]. This method
is able to estimate the sparse optical �ow of an image patch and thereby the dis-
placement of the patch. We use this algorithm for the motion calculation of interest
points between two sequential images. Mean shift is another tracking approach. In
2000 Comaniciu et al. published a paper [Comaniciu et al., 2000], which explains
how to develop a tracker with the aid of mean shift. First of all they calculate the
color histogram of the target. Afterwards they make an iterative maximization of a
similarity function in each image and estimate the new state.

The combination of interest point detectors and descriptors can be used for object
trackers [Nebehay and P�ugfelder, 2014]. An interest point detector �nds distinctive
points, e.g. Good Features to Track [Shi and Tomasi, 1994] or Harris Corner Detector
[Harris and Stephens, 1988]. Tuytelaars et al. proposed an article [Tuytelaars and
Mikolajczyk, 2008] about strengths and weaknesses, the history and the evolution of
feature detectors. These interest points and their surrounding pixels are character-
ized by descriptors, for instance BRISK [Leutenegger et al., 2011], ORB [Rublee et al.,
2011] SURF [Bay et al., 2008] and SIFT [Lowe, 2004]. The characterization vectors are
called feature vectors. In the next image this process is repeated again. Amatcher �nds
the corresponding feature vectors of the two images. With these correspondences it
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is possible to calculate the new state. Due to the fact that the matching process is
not perfect, there is the possibility that some matches are wrong. Random sample
consensus (RANSAC) [Fischler and Bolles, 1981] is a non deterministic algorithm
to detect outliers. This method uses only a small part of the matched key points
to calculate a �tting transformation of the state. Afterwards this transformation
is compared to the movement of the remaining point combinations. This process
separates the interest points into inliers and outliers. These steps are repeated a
�xed number of times. The transformation with the biggest number of inliers is
applied to the state.

The CMT tracker [Nebehay and P�ugfelder, 2015] enhances these detection
methods with a recursive tracking approach and an additional clustering of corre-
spondences. In comparison TLD [Kalal et al., 2012] uses image patches instead of
interest points. The tracker contains also a learning concept, where it tries to identify
detection errors and updates them to avoid these errors in following images. They
call their learning method P-N learning. Kalal et al. applied a forward- backward-
measurement on the tracked points. This measurement reveals erroneous tracked
interest points. During the initialization, all points are arranged in a rectangular
grid. Vojir et al. extend this method in [Vojir andMatas, 2014]. Each point may move
in a restricted area. Only if the key point leaves this area it will be reinitialized.

2.2 Projective Invariants in Detail
In this section we explain theories of projective geometry and projective invariants.

If someone is making a picture, the coordinates are transformed from real world
3D-coordinates to 2D-coordinates in the picture. This procedure is known as 3D to
2D camera projection. A di�erent necessity is to calculate the transformation rule, to
transform the coordinates from an object in one image to its coordinates in another
image, also called 2D homography [Hartley and Zisserman, 2003].

The transformation must be able to calculate the coordinates in an image of an
in�nite distant point, e.g. the horizon. Euclidean geometry is not powerful enough to
do this transformation, therefore a more powerful mathematical theory is necessary.
Projective Geometrywith the corresponding Projective Transformations is able to handle
these cases. An example of a projective transformation can be seen in Figure 2.1. But
these transformations do also have disadvantages. Parallelism and orthogonality
are not necessarily present anymore and the distance between two points is also
a�ected by the coordinate transformation. Parallel lines do not stay parallel, they
meet each other in a common point, the vanishing point. Some properties however
are not a�ected by projective transformations which are called Projective Invariants
[Mundy and Zisserman, 1992].

2.2.1 Fundamentals and Hierarchy

A projective transformation can be described by a matrix multiplication of the
transformation matrix Hp by a vector x holding the coordinates to be transformed.

x′ � Hpx �

[
A t
vT v

]
x (2.1)
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Figure 2.1: An example of a projective transformation

Projective Invariants

Collinearity and
Coplanarity Incidence Conic Cross-Ratio

Figure 2.2: Hierachy of Projective Invariants

The transformation matrix has nine di�erent entries. Only the ratio of the eight
elements is required, therefore the ninth element v is mostly scaled to unity. t is a
translational 2-vector, A is a 2 × 2 non-singular matrix to calculate the rotation and
deformation of the object and v is a 2-vector used to describe the non-linear e�ects
of the projective transformation. For these transformations homogenous coordinates
are used. With homogenous coordinates the transformations become linear.

Several di�erent projective relations exist which are invariant to projective trans-
formations. The hierarchy of these are shown in Figure 2.2. The following sections
describe these preserved properties. The assumption for all the speci�ed invariants
in this chapter is, that the points and lines are always located on planar surfaces
[Mundy and Zisserman, 1992, Hartley and Zisserman, 2003].

The next sections de�ne those projective invariants which are relevant for our
approach. In [Mundy and Zisserman, 1992] is an elaborate description of conics and
their behavior related to projective transformations.

2.2.2 Collinearity and Coplanarity

A set of points is called collinear, if all points lie on the same line. Collinearity is not
only limited to Euclidean- and projective geometry, it is also a concept in spherical
geometry. But the meaning is di�erent, the points are not located on a line in the
classical sense, they are arranged on circles [Belot, 2011]. Two points inR2 are always
collinear.

According to Bronstein et al. [Bronstein and Semendjajew, 1979] the collinearity
of three points in the two dimensional space

v1 , v2 , v3 ∈ R2

can be checked as follows
�����
v1 v2 v3
1 1 1

�����
� 0 (2.2)
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Figure 2.3: Projective invariance of collinear and coplanar points

If the determinant is not equal to zero the points are not collinear. A set of n points in
Rm are collinear if the point-line distances of the points v3 , . . . , vn to the line de�ned
by (v1 , v2) are for all points 3, . . . , n zero.

Several points are coplanar if a (hyper) plane exists so that all points lie on this
plane. Three points in R3 are always coplanar.

As explained by Bronstein et al. [Bronstein and Semendjajew, 1979] Equation (2.2)
is a simpli�cation of a more general equation. The generalization is used to check if
four points in the three dimensional space

w1 ,w2 ,w3 ,w4 ∈ R
3

lie on the same plane.

�����
w1 w2 w3 w4
1 1 1 1

�����
� 0 (2.3)

A number of n points in Rm are coplanar if the point-plane distances of the
points w4 , . . . ,wn to the plane de�ned by (w1 ,w2 ,w3) are for all points 4, . . . , n
zero. Figure 2.3 visualizes the consequences of collinearity and coplanarity. After a
projective transformation collinear points (on the black line) remain collinear and
coplanar points (in the gray square; including the collinear points) remain also
coplanar.

2.2.3 Incidence

The incidence criteria checks if three or more lines are concurrent. Lines are con-
current if they intersect each other in the same point. Two non parallel lines have
always one intersection point. Figure 2.4 shows the invariance of an incidence to
projective transformations.

Three lines, described with line equations

a1x + b1y + c1 � 0
a2x + b2y + c2 � 0
a3x + b3y + c3 � 0

(2.4)

are concurrent if their determinant satis�es
�������

a1 b1 c1
a2 b2 c2
a3 b3 c3

�������
� 0 (2.5)
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Figure 2.4: Projective invariance of the incidence

A set of n lines in Rm , each de�ned by two points (v11 , v12), . . . , (vn1 , vn2), are
concurrent, if all the combinations of line one with every other line have the same
intersection point. The lines are determined in parametric form.

ln � vn1 + (vn2 − vn1) · tn (2.6)

The parameters t1 , . . . , tn can be obtained by inserting line one in the other n − 1
equations. If there is always a consistent solution for t1 and the value is always the
same, all lines are concurrent [Heuel, 2004].

2.2.4 Cross-Ratio

There are several di�erent cross-ratios de�ned, which are included in projective
invariants. A cross-ratio is the product of two ratios, therefore each cross-ratio
needs exactly four distinct values e.g. coordinates of points, angles between lines or
distances between points. All the following cross-ratios are invariant to projective
transformations [Mundy and Zisserman, 1992].

Collinear Points
The cross-ratio of the distances of four collinear points is de�ned by the equation

CR(A,B,C,D) �
AC

BC
·

BD

AD
(2.7)

where XY presents the Euclidean distance between point X and point Y. Figure 2.5a
shows the order of the points [Mundy and Zisserman, 1992].

Concurrent Lines
The angle of four concurrent lines can be used to characterize a cross-ratio

CR(A, B, C,D) �
sin(∠AC)
sin(∠BC)

·
sin(∠BD)
sin(∠AD)

(2.8)

∠AC is the smallest angle between line A and line B. See Figure 2.5b for more details
[Mundy and Zisserman, 1992].

Collinear Points on Concurrent Lines
For all lines cutting the pencil of four lines, the cross-ratio remains the same. Fig-
ure 2.5c shows the exact arrangement. With Equation (2.7) the phenomenon is
described by

CR(A1 ,B1 ,C1 ,D1) � CR(A2 ,B2 ,C2 ,D2) (2.9)

[Mundy and Zisserman, 1992]
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(a) Cross-Ratio Collinear Points

B
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∠BC

tikz
(b) Cross-Ratio Angle

A1
B1

C1
D1

A2 B2 C2 D2

(c) Cross-Ratio Collinear Points on Concur-
rent Lines

Figure 2.5: Cross-Ratios

2.3 Object Tracking in Detail
This sections explains two important concepts of object tracking, the object state and
feature selection.

2.3.1 Object State

Chapter 1 described rectangles for state representations. The rectangle is the model
and a concrete instantiation of the rectangle with values is the representation. The
number of possible instantiations de�nes the di�erent possible states of the model.
The more the higher is the amount of information [Shannon and Weaver, 1949]. But
there are also other possibilities [Yilmaz et al., 2006].

• Points: One point, the centroid (Figure 2.6a), or many distributed points (Fig-
ure 2.6b) are used to characterize an object.

• Primitive geometric shapes: For rigid objects circles, rectangles (Figure 2.6c),
ellipses are suitable representations.

• Object silhouette: The silhouette (Figure 2.6d) of an object is represented by
its outer contour.

• Shape and skeletal models: Humans are assembled by parts with arms, legs,
torso and the head. An appropriate model could be the composition of primi-
tive geometric shapes (Figure 2.6e) or its skeletal (Figure 2.6f) structure.
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(a) Centroid (b) Multiple Points (c) Rectangular Patch

(d) Object Contour (e)Multiple Part Patches (f) Object Skeleton

Figure 2.6: Object Representations (Human Image from [Sagan, 2013])

2.3.2 Feature Selection

Di�erent objects have to be distinguished from each other, therefore features as
unique as possible have to be extracted. These features are also part of the model
[Yilmaz et al., 2006].

Color and its histogram are used to generate features for objects. Di�erent color
spaces like RGB (red, green and blue), HSV (hue, saturation and value) and CIELUV
exist. Edges of objects are less sensitive to illumination changes than the color distri-
butions and are therefore an alternative possibility [Yilmaz et al., 2006]. Textures, a
set of texture elements occurring in some repeating pattern, are also less illumination
variant features than color values [Yilmaz et al., 2006].

2.4 Summary
In this chapter we explained the related work of this thesis and declared the concepts
and articles of object trackingwhich in�uenced ourwork. We then described theories
of projective geometry and projective invariants. Thereby we explained the terms
collinearity, coplanarity, incidence, and three cross-ratios. After that we gave an
insight into the concepts of object tracking the and the feature selection.
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3 Methodology
In this chapter we describe the details of our approach. All of our implementations
follow roughly the same characteristics. Therefore the �rst section gives an overview
about their procedure. The following sections characterize the speci�cs of our
attempts in chronological order. Our algorithm uses concepts like the ray casting
method and Good Features to Track. They are described later in the appendix of the
thesis.

3.1 Overview
Based on the tracking diagram from the �rst chapter, we explain our approach step
by step. An outlier following the scheme of Figure 1.2 is shown in Figure 3.1.

For the initialization process the tracker needs the state of the object of interest in
the �rst frame x1. The image and the state are used to compute interest points in the
�rst frame. We use Good Features to Track [Shi and Tomasi, 1994] for this task, because
it detects points which have large gradients in two orthogonal directions. Since
Lucas and Kanade Sparse Optical Flow determines the �ow in the gradient direction,
the gradients of the points must be large enough to be over the noise level of the
image [Eltoukhy and Salama, 2002, Lucas and Kanade, 1981]. During the next step,
the method chooses combinations of these points which have projective invariant
properties. Those identi�ed properties are stored in arrays. There is also the option
that the algorithm calculates feature vectors for each key point. This is the case,
when the feature to �nd lost key points again is enabled. More on this topic later.
The collected data is used to de�ne a model of the target.

After this initial processing, the tracker estimates the position of the object in
every frame. This is done with the help of the model. Next the new image is
analyzed and data for the optical �ow is extracted. We use Lucas and Kanade Sparse
Optical Flow [Lucas and Kanade, 1981] to estimate the displacement of each interest
point, because it produces accurate results [Baker et al., 2011, Thota et al., 2013] and
implementations for the GPU (Graphics Processing Unit) exist [Mahmoudi et al.,
2014]. This algorithm blurs the two steps data extraction and localization. Optical �ow
uses the previous and the new image and the prior interest point coordinates to
localize all these points in the new image. So optical �ow both extracts the data and
localizes the points.

With the new positions of the points the method examines the prior calculated
projective invariant properties on the new constellation of interest points. If points
do not ful�ll these properties anymore, they are removed from the tracking process.
An additional option to �nd former removed points exist. This idea is discussed in
a later section. The algorithm represents the object of interest with two di�erent
states. The �rst and primary state is de�ned by the coordinates of the key points.
The second one, a bounding box which enclosures the target, can be calculated with
the values of the initial state x1 (a rectangle), the initial position of the interest points
and the new positions. The bounding box is necessary for the comparison of our
algorithm with the other ones, because rectangles are a de facto standard for the
target state [Wu et al., 2013]. We use RANSAC [Fischler and Bolles, 1981] for the
calculation of a quadrilateral and determine the smallest rectangle which enclosures
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Figure 3.1: Our Algorithm; the green steps are optional, the blue ones are necessary

it. With the position of four points in the �rst image and their position in the new
one we compute the transformation matrix (see Equation (2.1)). With this matrix
the original bounding box is then transformed. RANSAC picks those four points,
which are representative for the movement of all points. The model is updated with
the new position of the interest points. The outliers are marked so they will not
be considered in the next images anymore. The method repeats these steps for all
following images.

3.2 Random Connections
Starting with this section we describe the di�erent implementations. The structures
of the algorithms are roughly the same and have been explained in the section
before.

In our �rst attempt we calculated lines in the initialization stage by connecting
randomly chosen pairs of interest points. The calculation is done e�ciently by
Bresenham’s line algorithm. The algorithm calculates the coordinates of the lines
in a discrete coordinate system [Nievergelt and Hinrichs, 1993]. Following the
Python-code for Bresenham’s line algorithm for the �rst, fourth, �fth and eight
octant.

Listing 1: Bresenham’s Line Algorithm
1 def bresenham_line ( p1 , p2 ) :
2 # f i r s t p o i n t c o o r d i n a t e : x
3 # s e c ond p o i n t c o o r d i n a t e : y
4 dx = abs ( p2 [ 0 ] − p1 [ 0 ] )
5 dy = abs ( p2 [ 1 ] − p1 [ 1 ] )
6 # signum o f dx and dy
7 sx = np . s ign ( p2 [ 0 ] − p1 [ 0 ] )
8 sy = np . s ign ( p2 [ 1 ] − p1 [ 1 ] )
9 d = 2 * dy − dx
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10 x = p1 [ 0 ]
11 y = p1 [ 1 ]
12 points = [ ( x , y ) ]
13 while x != p2 [ 0 ] :
14 i f (d > 0) or ( ( d == 0) and ( sy == 1 ) ) :
15 y += sy
16 d −= 2 * dx
17 x += sx
18 d += 2 * dy
19 points . append ( ( x , y ) )
20 return points

For the other four octants the calculation is also possible. But the x and y coordi-
nates of the input points, and afterwards the coordinates of the output points, have
to be swapped.

The scoring function of Good Features to Track [Shi and Tomasi, 1994] evaluates
these computed points. See Appendix A for more information about the scoring
function. All but the two best scored points and the initial points of the line are
removed. Figure 3.2a displays an example of the procedure. The light- and dark
gray �lled pixels represent together the digitalized points of the line. The endpoints
of the line are striped. Under consideration of the corner detector and its scoring,
only the dark gray pixels endure.

After the estimation of the displacement of each point we check all four points
of each line, if they are still almost collinear. Almost collinear points are allowed to
be located within a threshold around a line. We call these almost collinear points
“pseudo-collinear”. This term is more accurately discussed in the following section.
To check for the pseudo-collinearity, we use all six combinations of the four points
to create a line and measure the distances from all points to this line. If at least one
combination exists, where all points are in the threshold, the key points remain
active. Otherwise all four points are marked inactive and are not used anymore in
the following frames for tracking.

Experiments revealed that the two best scored points located between their initial
endpoints are often not reliable and yield to poor motion estimations by optical
�ow. On the line is only a very limited number of points and often, even if corners
are near, the Bresenham’s line does not include these points. Another issue is that
although points will be noticed when drifting away normal to the line, shifts in the
direction of the line are not recognized.

3.3 Pseudo-Collinearity
Before we begin with the description of the next algorithm, we insert an explanation
of pseudo-collinearity in more detail. This terminology is similar to the expression “al-
most collinear”. Collinearity is one of several projective invariants. Their description
and illustration can be found on page 7 in Section 2.2.2.

In order for a number of points to be collinear, they must be exactly located
on the same straight line. Practically through digitalized coordinates, noise and
small shifting errors, previous collinear points tend to lose this property. Therefore
the classic collinearity criteria is too rigorous. For that reason we introduce the
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end points
pixel candidates
selected pixels

(a) Bresenham’s Line (b) Bresenham’s Line Additional Pixels

Figure 3.2: The �gures illustrate possible points on the Bresenham’s line on the left and
points nearby the line on the right

terminology pseudo-collinearity. Pseudo-collinear points do not have to be positioned
on the same line anymore, however they have to stay in an area with a de�ned
size. A maximum threshold d exists between the desired line and the points, to tell
inliers and outliers apart. All points p1 . . . pk with their Euclidean distance d1 . . . dk
smaller than d belong to the pseudo-collinear area, all other points pk+1 . . . pn not.
Mathematically all points

P � {p1 , p2 , . . . , pn } (3.1)
PC(ax + b y + c � 0, d) � {∀p ∈ P | distance(ax + b y + c � 0, p) ≤ d} (3.2)

belong to the pseudo-collinear set PC(ax + b y + c � 0), which is de�ned by a line
equation ax + b y + c � 0 with real constants a , b , c and the Euclidean distance d.
The distance function distance(ax + b y + c � 0, p) calculates the normal distance of
a line and a point and is de�ned as

distance(ax + b y + c � 0, p) �
|apx + bpy + c |
√

a2 + b2
(3.3)

[Anton and Rorres, 2010]
Figure 3.3 visualizes this prerequisite. All black points belong to the pseudo-

collinear plane (light gray area) created by the threshold d and the black line. The
other gray points are outliers, because they are too distant from the line.

3.4 Random Connections and Cross-Ratio
With this method we �xed issues occurring in the previous algorithm (Section 3.2).
The �rst change is to extend the searching area for reliable points between the
random combinations of the key points found by the corner detector. This increases
the chance to �nd reliable interest points. As consequence even the points in the
initial image are not exactly collinear. But that is not a problem, because afterwards
for all images the points are checked for pseudo-collinearity and not collinearity.
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2d

Figure 3.3: Pseudo-Collinearity; the gray area is the region belonging to the pseudo-
collinear with the threshold d; all the black points are inliers and the gray ones are
outliers

The distance between the additional pixels and the constructing line must be smaller
or equal to the threshold d of the pseudo-collinear area. Figure 3.2b shows the
di�erence to the old method, which can be seen in Figure 3.2a on page 15. The
number of possible candidates has increased.

The method uses Equation (2.7) to calculate the cross-ratio. We use the distances
between the four points for the calculation of the ratio. With this addition it is
possible to detect unintended drifts between the four points.

But even now, after this change, the selection of the additional two points during
the initialization phase yields to points, which have lower scores, than the worst
scored point by the Good Features to Track detector. The only exception are those
points, which are already points from the feature detector. Another drawback of the
algorithm is the randomized selection of the point pairs. As a result the method has
a highly nondeterministic behavior. Therefore the outcomes of the tracking process
have a wide variation, depending on the selected combinations in the beginning.

3.5 Rectangular Templates
The previous method shows a number of disadvantages. The approach described in
this section eliminates them with a new initialization procedure. This procedure
has deterministic behavior.

After the corner detection the target area is separated into equal sized rectangles.
There is no gap between two neighboring regions and they do not overlap too.
Therefore it is possible to assign every point to such an area. These rectangles
have the same height as two times the pseudo-collinear threshold d. This distance
assures, that all points of the rectangle lie within its pseudo-collinear area. We call
this combination of rectangles a “template”. Figure 3.4 shows this basic procedure.
The outer rectangle is the image and the inner the bounding box around the object
of interest. The black �lled circles in Figure 3.4a show the key points detected by the
corner detector. After that, the image is separated into neighboring rectangles. Each
section has a unique id beginning with one. In Figure 3.4b the di�erent regions are
alternately colored for better distinguishability. Every key point is located exactly in
one of these planes and can be associated with it. The association is stored in a data
structure. This a�liation is illustrated in Figure 3.4c by red and blue colored key
points.
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(c) Add Points to Templates

Figure 3.4: Horizontal Template; the area of the target is separated into rectangles,
afterwards the points are associated with their rectangle (Penguin Image from [Pen,
2014])

In all processing iterations the points from each section build a new pseudo-
collinear area and should be located within its threshold. The line belonging to the
pseudo-collinear area is estimated with RANSAC [Fischler and Bolles, 1981]. For the
next descriptions only those points are considered, which are linked to the same
rectangle. This algorithm randomly picks two points to create a line and measures
the normal distance from each point to the line. All points within a distance smaller
or equal to the threshold d are counted as inliers. This procedure is repeated until a
combination is found with no outliers, or the maximum number of repetitions is
reached. That line is chosen, which has the most inliers. The outliers are removed
from this pseudo-collinear plane and are not considered for the next frame.

Because only the normal distance between the points and their line of the pseudo-
collinear area is measured, it is only possible to detect drifts normal to the line.
Displacements in the direction of the line are not registered. Again the cross-ratio
could be used to recognize these movements. In comparison to earlier discussed
algorithms, not only four points build a pseudo-collinear section, but rather several
belong to a pseudo-collinear area. The cross ratio is always de�ned by exactly four
values. The question is which four points should be chosen for the cross ratio. It is
possible to select them randomly. But this causes another non deterministic element
in the algorithm. For that reason, we did not consider the usage of the cross-ratio in
this scenario.

3.6 Two Rectangular Templates
The earlier method came up with a deterministic initialization stage. Furthermore,
it simpli�ed this step and the key points became easier to track. But one necessity of
the tracker is to recognize drifts of the key points in all directions, not only normally
to the line. Because all pseudo-collinears are parallel in the beginning, movements
can only be detected in their normal orientation. With a second template, which
is rotated about 90 degrees towards the �rst one, every point belongs to exactly
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(c) Rectangular Patch

Figure 3.5: Horizontal and Vertical Template; each point is associated with a horizontal
and a vertical template (Penguin Image from [Pen, 2014])

two rectangles - one rectangle from the �rst template and one from the other one.
Through the rotation the possibility exists to detect false movements of the interest
points in all directions.

The orientation of one template can be for instance horizontal. The result is that
the other one must be vertically oriented. Figure 3.5a shows the template described
in Section 3.5. The additional template can be seen in Figure 3.5b. It is rotated about
90 degrees compared to the other one. In Figure 3.5c an example is visualized. In
this illustration the key points at the right foot of the penguin would belong to
the horizontal area with the id nine and the vertical id three. These ids and key
points are purple colored. The interest points at the beginning of the left wing
can be associated with the horizontal template with the id four and the vertical
pseudo-collinear with the id six. All of them are in an orange color tone.

After the estimation of the new position of all key points, the pseudo-collinear
areas of the �rst template are calculated. This is the same as discussed before in
Section 3.5. Supplementary the equivalent is done for the second template. After
that the distances of the points to their lines are compared with the pseudo-collinear
threshold d. Points which can not satisfy the threshold distance are removed from
both templates and are not considered for tracking anymore.

In case that all rectangles from one template are not parallel to any section of
the di�erent template, the unwanted movement of every single point is detected in
horizontal and vertical direction. The maximum allowed distance between a point
and the line in a pseudo-collinear area is the threshold d. With two overlapping
rectangles a point belonging to both pseudo-collinears is only allowed to stay in the
intersecting area of them. Otherwise it is detected as an outlier. Figure 3.6b illustrates
key points which are located in the intersection of two pseudo-collinear areas. The
outlier detection of these points, belonging to both planes, and their motion vectors
are visualized in the adjacent image, in Figure 3.6b. The green interest points are
inliers, the red ones outliers. The allowed area is a rhombus.
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(a) Intersection (b) Outlier Detection

Figure 3.6: Outlier Detection; the points are allowed to stay in the gray colored in-
tersecting area of the pseudo-collinears; the red points on the right are detected as
outliers

3.7 Find Removed Key Points
For now the number of interest points decreases over time. At each violation of the
threshold distance points are removed and therefore less key points are considered
for the tracking process. But there is an way with the rectangular templates to �nd
removed interest points. Intersecting pseudo-collinear areas are used to reduce the
possible search space, when removed key points should be found again. Therefore it
is necessary to calculate a descriptor for each interest point during the initialization
step.

This method can only be used if every single key point can be associated with at
least two di�erent templates. The intersecting area of the rectangles, which have
prior contained the removed point, has to be estimated. For this area a feature
detector generates possible candidates for the removed point. Then descriptors
for all these points are calculated. The initial descriptor is compared against every
candidate. Because of the limited search space only a minor number of comparisons
exists. The number of comparisons scale linear with the number of candidates.
For the calculation of the distances between the descriptors a distance function is
necessary. The hamming distance is a suitable method for binary descriptors [Muja
and Lowe, 2012]. If the distance of the best match is lower than a selected threshold,
the speci�c point is added again to the templates and is considered for the next
tracking iterations. As you can see the area is minimal, when the two templates are
orthogonal orientated.

3.8 Multiple Templates
Two di�erently arranged templates are enough to identify wrong displacements of
the interest points and the retrieval of formerly removed points. In fact this realizes
the cross-ratio the aim we had in mind. But it is also possible to use more than
two templates. Additional templates give further redundancy. Their bene�ts are
discussed in this section.
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Table 3.1: Template Algorithm Comparison

Outlier Detection Retrieve
Number of Templates One Direction Both Directions Key Points Pseudo-Collinears

1 yes no yes1 no
2 yes yes yes no
3 yes yes yes yes
4. . . yes yes yes yes
1 yes, but the search space is the whole pseudo-collinear from one end to the other one and
not only a smaller rhombus shaped area

With a third template it is possible to retrieve a whole rectangle of a template, in
which all points have been removed. This is achieved by recovering the points of this
area with the help of the other two templates. With at least two recovered points,
the tracker is able to recalculate the position of their pseudo-collinear area. This is
visualized in Figure 3.7. A fourth template does not add any additional information,
it just adds more redundancy and stability.

Table 3.1 shows the di�erences between the discussed template based algorithms.

3.9 Summary
In this chapter we explained our approaches. At �rst we concretized the single-
target tracking algorithm from chapter one and explained it step by step. Then we
discussed our �rst approach, where randomly chosen interest points are connected.
With the help of the Bresenham’s line algorithm, two additional points are added to
each point connection. The collinearity criteria is checked in every frame. Afterwards
we introduced the terminology pseudo-collinearity. Thenwe gave a description, how
we extended our approach with an increased searching area during the initialization
and the usage of the cross-ratio. Next we explained our rectangular template based
algorithm. With this method we eliminated the indeterministic behavior of the
algorithm during the initialization process. We enhanced this method by adding a
second rectangular template, which is rotated against the other template. With this
addition our method is able to recognize wrong displacements of the interest points
in all directions. We then discussed an approach, which �nds prior removed interest
points in a reduced search space. At last we showed the advantages of methods
with multiple templates and compared them.
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(a) Lost Pseudo-Collinear (b) Other Templates (c) Find Points

(d) Retrieve Pseudo-
Collinear

Figure 3.7: Retrieve Pseudo-Collinear; A vertical template is displayed in the �rst image
in brown. The dotted gray rectangle was removed due the lost of its key points (gray
points). In the second image two additional templates are drawn in green and blue.
In the striped gray intersecting area of these templates, the method searches for the
removed points. The obtained ones have a red �lling. This is displayed in the third
image. The last image shows the reinitialization of the pseudo-collinear (red rectangle)
with the help of the retrieved key points.
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4 Results
The last chapter described ideas how to use projective invariants in object tracking.
In this part of the thesis we present the results of our experiments. For that we imple-
mented a tracker, which uses four templates with a rotation during the initialization
of 0°, 45°, 90°and 135°. The tracker is written in the programming language Python1
and uses supplementary the libraries OpenCV2 and Numpy3.

This part of the thesis is separated into three section. In the beginning we explain
the evaluation protocol and our experiment procedure. Afterwards we present the
dataset and the trackers used to compare the methods. Section 4.3 forms the main
part of this chapter, the experiments. In this section we measure the performance of
our approach and analyze its characteristics.

4.1 Evaluation Protocol
For the measurements of the capabilities of our tracker we use the Jaccard coe�cient.

φ(bT , bGT ) �
bT ∩ bGT

bT ∪ bGT
(4.1)

bT is the estimated bounding box of the tracker and bGT refers to a manually an-
notated bounding box. GT is the abbreviation for “ground truth” and means the
precise position of an object in each frame. The numerator expression calculates the
intersection of the two bounding boxes and the denumerator expression the union
of the areas. One bene�t of this measure is, that the results are always in the interval
[0, 1], because the union is per de�nition greater or equal to the intersection. More-
over it deals accurately with scalings and translations [Hemery et al., 2007]. This
method is de�ned on axis aligned rectangles. Therefore we calculate the smallest
possible rectangle which contains the quadrilateral calculated by our tracker.

The results have to be distinguished into correct estimations and wrong ones.
For that reason the results are divided into true positives, true negatives, false negatives
and false positives.

• True positives (TP): The output is true positive if the Jaccard coe�cient φ is
greater than a threshold τ.

• True negative (TN): If there is neither an annotation in the ground truth nor
an output was produced by the algorithm, the result for the speci�c frame is
considered as a true negative.

• False negative (FN): A false negative occurs if there is an entry in the ground
truth but no output from the tracker is produced.

• False positive (FP): The output is considered false positive if the Jaccard coef-
�cient φ is smaller than the threshold τ. In addition this case leads to a false
negative.

1https://www.python.org/
2http://opencv.org/
3http://www.numpy.org/
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All bounding boxes generated by the tracker can be classi�ed by Equation (4.1)
and the threshold τ into true positives and false negatives.{

TP, φ(bT , bGT ) ≥ τ
FN, φ(bT , bGT ) < τ (4.2)

With these de�nitions the recall is de�ned as follows:

recall �
TP

TP + FN
(4.3)

It can also be interpreted as the percentage of correctly tracked frames. The recall is our
primary measure to quantify the performance of the trackers.

Visualization
For the visualization we draw success plots of the algorithms. Using the method
proposed by List et al. [List et al., 2005]. On the x axis the required recall is assigned,
on the y axis the percentages of the sequences, which ful�ll the required recall are
assigned. All values on both axis are in the interval [0, 1] (or [0%, 100%]).

Beside these plots, which are based on the required recall, we visualize the results
using the overlap measure recommended by Wu et al. [Wu et al., 2013]. These
diagrams are similar to the previous ones, but on the x axis the Jaccard coe�cient is
plotted instead of the required recall. The plots show on the y axis the percentage of
frames whose overlap measure φ is greater than the given threshold on the x axis.

Both diagrams show the performance of the trackers over all sequences in only
one diagram. The best result of a tracker would be, if the line reaches the top right
corner.

4.2 Dataset and Trackers
Tomáš Vojíř created a diverse dataset4 with 77 sequences in total. From these se-
quences we use 25 for evaluation including partially and fully occluded humans,
cars, shows, motorcycles, objects and scenes with illumination changes [Tomáš,
2013]. We use these sequences to test and compare the algorithms. Figure 4.1 shows
qualitative results. The blue quadrilaterals are the results of our tracker, the yellow
rectangles are their bounding boxes. Furthermore the varieties of the sequences can
be seen.

We compare our algorithm with eight di�erent trackers.
• Consensus-based Matching and Tracking (CMT)5: CMT is a new key point

based tracker [Nebehay and P�ugfelder, 2014]
• Fragments-based Tracking (FT)6: FT is a basic parts-based tracker [Adam et al.,

2006]
• Structured Output Tracking (STR)7: STR uses a kernelized structure [Hare

et al., 2011]

4http://cmp.felk.cvut.cz/~vojirtom/dataset/index.html
5https://github.com/gnebehay/CppMT
6http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm
7http://www.samhare.net/research/struck/code
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Figure 4.1: Qualitative results; the blue quadrilaterals are the results of our tracker, the
yellow rectangles are their bounding boxes
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• Compressive Tracking (CT)8: CT needs only a small amount of time to process
frames [Zhang et al., 2012]

• Kernelized Correlation Filters on raw pixels (KCF-2012)9: KCF-2012 is a
tracker using a discriminative classi�er and the kernalized correlation �lter
for kernel regression. We use the older version of this algorithm from 2012,
because it can be easily as standalone application used [Henriques et al., 2012].
There is also a newer version from 2015 [Henriques et al., 2015].

• Discriminative Scale Space Tracker (DSST)10: DSST extends the Minimum
Output Sum of Squared Errors (MOSSE) tracker with robust scale estimation
[Danelljan et al., 2014]; DSST is also the best performing tracker in the VOT
2014 challange [Kristan et al., 2014]

• Mean Shift Tracker (MS): MS is a small tracker using mean shift and color
histograms [Comaniciu and Meer, 2002]

• Norm-Crosscorrelation Tracker (NCC)11: NCC is used in the VOT-Challenge
as lower bound [Kristan et al., 2014]

4.3 Experiments
In this part we compare the tracking abilities of our tracker with the methods listed
in the previous section. We obtained the source code of these trackers from the
internet addresses mentioned in the previous section. The only exception is the
mean shift tracker: we modi�ed an OpenCV example12 to be compatible with the
api of our experiment framework. All trackers are initialized with their default
parameters.

For our tests we use a threshold of τ � 0.5 for Equation (4.2), to divide the results
into true positives and false negatives. Popular values for τ are 0.25, 0.5 and 0.75, which
can be interpreted as low, medium and high precision requirement [Nebehay and
P�ugfelder, 2014].

We use the dataset and trackers described in the previous section. Our tracker
is called Ours in all following tables and graphics. If there is a plus sign + at the
end of the name the option is enabled to �nd lost key points again as mentioned in
Section 3.7. In both variants, our tracker uses four templates.

8http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
9http://home.isr.uc.pt/~henriques/circulant/

10https://github.com/gnebehay/DSST
11https://github.com/votchallenge/vot-toolkit
12http://docs.opencv.org/master/db/df8/tutorial_py_meanshift.html#gsc.tab=0
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4.3.1 Threshold Comparison

Our tracker has one primary parameter which can be adjusted, the threshold d of
the pseudo-collinear templates. We determine the best value for this parameter
empirically. For several di�erent values we measure the performance of the current
setting and choose the best adjustment. This adjustment is used for the comparison
with the other trackers.

Table 4.1 (p. 27) shows the performance of our tracker on sequences with di�erent
thresholds. The numbers in the column header represent the threshold d of the
pseudo-collinear planes and the size of the pseudo-collinear templates (Section 3.5).
We use the same number for both distances. If there is a plus sign + at the end of
the number, the option to �nd lost key points is enabled. Each row shows the recall
for all trackers on one sequence. In the last line the averaged recall is written down.

The algorithm performs best with a threshold of 17. Furthermore it reveals, that
it does not make a big di�erence if the algorithm tries to �nd removed points or not.
The maximum di�erence between Ours and Ours+ for the same threshold is two
percent. In 14 sequences it makes the result even worse, considering a threshold
distance of 17. Through wrong estimations of the point displacement the templates
degenerate. As a result the templates do not intersect each other on the same
locations on the target anymore, the intersection is on a di�erent point compared to
the initialization. Thus the algorithm is not able to correctly �nd the lost key point
or associates it with a wrong point.

For all the experiments we used the ORB [Rublee et al., 2011] descriptor, because
its computation is e�cient. The descriptor is rotation invariant in comparison to
BRISK [Leutenegger et al., 2011], compared to SIFT [Lowe, 2004] it is a binary
descriptor and it is free in comparison to SURF [Bay et al., 2008]. So ORB is the best
solution for our experiments.

4.3.2 Tracker Comparison

For the comparisons of our tracker with the other ones, we use a threshold distance
of 17, which is the best value according to the previous benchmarks. We disabled
the option to �nd lost key points because it does not improve the results signi�cantly,
but slows the tracker down. Later benchmarks will reveal that speed is one of the
biggest strengths of our method. In Table 4.2 you can see the comparison of the
trackers. Our tracker is with a recall percentage of 44% comparable with CT (48%)
and outperforms MS (12%) and KCF-2012 (35%). But there is a signi�cant gap to the
best ones CMT (84%) and DSST (78%). The success plots are illustrated in Figure 4.2
(p. 28) which plots the overlap ratio, in the left image and the recall in the right.

In every sequence apart from the “board” sequence the objects of interest are
not planar and therefore one prerequisite is not ful�lled. In seven sequences our
approach has a recall greater than 50%. The panda in the panda scene is clearly
not planar. But the camera does not move during the whole scene, so that is not
a problem. The challenge in this scene are the illumination changes, which can
be handled by all trackers exceptMS since it uses color histograms. Also the juice
packaging in sequence juice is not a problem because trough the big distance to the
camera it can be approximated as coplanar. In shaking camera and person poccl the
distance from the camera to the object is also big enough, so that the shape does not
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Table 4.1: Recall comparison for di�erent thresholds d

threshold d
Sequence 9 9+ 13 13+ 17 17+ 19 19+ 21 21+

david short 0.21 0.22 0.25 0.24 0.29 0.24 0.22 0.31 0.22 0.21
sylvester 0.27 0.27 0.26 0.27 0.32 0.31 0.23 0.25 0.31 0.25
occl face 2 0.31 0.28 0.26 0.24 0.25 0.16 0.22 0.20 0.29 0.20
shaking camera 0.34 0.46 0.50 0.39 0.75 0.71 0.69 0.30 0.49 0.54
person foccl 0.29 0.30 0.31 0.31 0.32 0.29 0.30 0.31 0.29 0.30
singer 1 0.50 0.33 0.30 0.37 0.37 0.43 0.33 0.42 0.30 0.44
rubikscube 0.35 0.30 0.32 0.31 0.35 0.33 0.33 0.36 0.35 0.33
gymnastics 0.40 0.43 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
cli� dive 1 0.33 0.42 0.37 0.38 0.39 0.55 0.37 0.37 0.38 0.39
volleyball 0.17 0.17 0.22 0.20 0.21 0.19 0.20 0.17 0.21 0.21
pedestrian 5 0.31 0.33 0.31 0.33 0.31 0.31 0.31 0.31 0.31 0.31
faceocc 1 0.30 0.20 0.20 0.19 0.23 0.34 0.30 0.37 0.20 0.30
mountain bike 0.35 0.64 0.24 0.42 0.46 0.44 0.52 0.37 0.34 0.30
panda 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
person poccl 0.96 0.97 0.95 0.99 0.94 0.95 0.96 0.96 0.96 1.00
dinosaur 0.22 0.16 0.15 0.17 0.27 0.25 0.15 0.16 0.17 0.16
transformer 0.32 0.26 0.30 0.34 0.23 0.32 0.29 0.31 0.31 0.33
juice 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dog 1 0.38 0.40 0.40 0.26 0.43 0.23 0.34 0.34 0.55 0.28
car 0.22 0.20 0.21 0.20 0.22 0.22 0.23 0.22 0.23 0.23
head motion 0.41 0.27 0.40 0.68 0.52 0.23 0.51 0.53 0.56 0.45
co�ee on table 0.26 0.24 0.23 0.25 0.32 0.24 0.24 0.26 0.29 0.33
person �oor 0.22 0.18 0.21 0.23 0.27 0.21 0.22 0.23 0.22 0.22
board 0.22 0.55 0.44 0.25 0.59 0.52 0.49 0.35 0.46 0.58
cup on table 0.72 0.57 0.67 0.61 0.63 0.67 0.57 0.64 0.81 0.58

avg 0.40 0.41 0.40 0.40 0.44 0.42 0.42 0.41 0.43 0.41

Table 4.2: Recall comparison

Sequence Ours NCC DSST MS KCF-2012 CMT STR FT CT

david short 0.29 0.07 1.00 0.00 0.01 0.96 0.75 0.36 0.20
sylvester 0.32 0.46 0.84 0.11 0.92 0.94 0.92 0.73 0.71
occl face 2 0.25 0.96 1.00 0.76 1.00 0.95 1.00 0.60 0.95
shaking camera 0.75 0.92 0.92 0.02 0.34 0.93 0.35 0.78 0.27
person foccl 0.32 0.52 0.85 0.00 0.34 0.94 0.33 0.34 0.33
singer 1 0.37 0.29 1.00 0.00 0.00 1.00 0.28 0.28 0.22
rubikscube 0.35 0.52 1.00 0.00 0.86 1.00 0.84 0.81 0.82
gymnastics 0.41 0.36 0.43 0.28 0.28 0.41 0.49 0.42 0.38
cli� dive 1 0.39 0.71 0.59 0.00 0.05 0.76 0.62 0.18 0.59
volleyball 0.21 0.37 0.42 0.22 0.37 0.25 0.59 0.34 0.51
pedestrian 5 0.31 0.50 0.34 0.12 0.01 0.97 0.60 0.38 0.33
faceocc 1 0.23 1.00 1.00 0.00 0.05 1.00 1.00 1.00 0.55
mountain bike 0.46 0.16 0.94 0.00 0.00 0.93 0.91 0.63 0.94
panda 1.00 1.00 1.00 0.20 1.00 1.00 1.00 1.00 1.00
person poccl 0.94 0.91 0.95 0.00 0.91 0.95 0.91 0.91 0.91
dinosaur 0.27 0.07 0.37 0.00 0.01 0.23 0.24 0.09 0.12
transformer 0.23 0.15 0.40 0.00 0.01 0.54 0.53 0.51 0.40
juice 1.00 0.43 1.00 0.00 0.03 1.00 0.48 0.08 0.48
dog 1 0.43 0.60 0.98 0.11 0.70 0.98 0.67 0.63 0.56
car 0.22 0.80 1.00 0.10 0.00 0.98 0.32 0.81 0.18
head motion 0.52 0.91 1.00 0.61 0.11 1.00 0.94 0.92 0.94
co�ee on table 0.32 0.23 0.46 0.00 0.18 0.97 0.22 0.24 0.18
person �oor 0.27 0.60 0.31 0.00 0.57 0.49 0.34 0.79 0.19
board 0.59 0.09 0.71 0.00 0.00 0.77 0.81 0.70 0.18
cup on table 0.63 0.90 1.00 0.38 0.90 1.00 0.91 0.88 0.00

avg 0.44 0.54 0.78 0.12 0.35 0.84 0.64 0.58 0.48
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Figure 4.2: Algorithm comparison; in the left image is the success plot of the overlap
measure plotted. On the right is the success plot of the recall drawn.

disturb the tracker. Another di�culty are full occlusions and overlaps. Due to the
fact that optical �ow is not able to handle these cases, our tracker performs worse on
sequences with these events. For instance in the scene person �oor two people cross
their way and the tracked person is fully occluded. Then the movement predictions
of optical �ow are wrong.

4.3.3 Threshold Comparison on Short Sequences

Because other trackers likeCMT are able to reinitialize the tracker after full occlusions
and ours is not, we shortened the sequences to a maximum of 100 frames per
sequence to make a fair scenario for our method. We chose to pick the �rst 100
frames, because analysis of the sequences revealed that full occlusions occur only
after after the 100th frame in all scenes.

We evaluated the best pseudo-collinear threshold distance d again. Table 4.3
shows the empirical results of these benchmarks on the shortened sequence. Now
we have success rates up to 88% and have in 11 sequences a success rate of 100%.
Again the additional attempt to �nd lost key points does not result in a signi�cant
change. The di�erence between the normal version and the version which tries
to revive former lost key points is two percent at the maximum. Two out of �ve
times the results are even worse. This time the tests for the best threshold result in a
distance of 19.

4.3.4 Tracker Comparison on Short Sequences

In the following comparisons our tracker uses of 19 as threshold distance d for the
pseudo-collinear regions. This is the best value according to the test from the last
section. We have not enabled the option to �nd the removed points and our tracker
is labeled Ours again. The results of this experiment can be found in Table 4.4 (p. 29).
This time our tracker performs better than before and is on the fourth place out of
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Table 4.3: Recall comparison for di�erent thresholds d on shortened secquences

threshold d
Sequence 9 9+ 13 13+ 17 17+ 19 19+ 21 21+

david short 0.87 0.85 0.84 0.89 0.78 0.84 0.86 0.77 0.83 0.76
sylvester 0.90 0.90 0.92 0.89 0.97 0.95 0.98 0.98 0.92 0.95
occl face 2 1.00 0.95 0.94 0.98 0.99 0.92 0.93 0.94 0.97 0.97
shaking camera 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
person foccl 0.87 0.95 0.93 0.97 0.92 0.94 0.95 0.91 0.96 0.90
singer 1 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.96 1.00
rubikscube 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
gymnastics 0.84 0.85 0.85 0.82 0.84 0.87 0.86 0.86 0.84 0.87
cli� dive 1 0.34 0.38 0.43 0.46 0.41 0.34 0.46 0.45 0.38 0.37
volleyball 0.92 0.87 0.96 0.98 0.99 0.98 0.98 0.99 0.99 0.99
pedestrian 5 0.69 0.67 0.67 0.71 0.68 0.68 0.68 0.68 0.68 0.68
faceocc 1 0.83 0.85 0.83 0.82 0.87 0.81 0.84 0.85 0.85 0.91
mountain bike 0.48 0.60 0.60 0.70 0.38 0.49 0.52 0.37 0.44 0.43
panda 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
person poccl 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dinosaur 0.54 0.61 0.45 0.61 0.75 0.74 0.56 0.57 0.51 0.56
transformer 0.39 0.30 0.37 0.37 0.36 0.34 0.36 0.42 0.38 0.39
juice 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dog 1 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.97
car 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
head motion 0.99 0.99 0.96 0.99 1.00 0.97 1.00 0.93 0.98 0.77
co�ee on table 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
person �oor 0.79 0.77 0.82 0.74 0.87 0.83 0.94 0.87 0.83 0.83
board 0.77 0.95 0.87 0.91 0.77 0.77 0.98 0.82 0.89 0.94
cup on table 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

avg 0.85 0.86 0.86 0.87 0.86 0.86 0.88 0.86 0.86 0.85

Table 4.4: Results on shortened sequences

Sequence Ours NCC DSST MS KCF-2012 CMT STR FT CT

david short 0.86 0.29 1.00 0.01 0.03 1.00 0.84 0.78 0.84
sylvester 0.98 1.00 1.00 0.58 1.00 1.00 1.00 1.00 1.00
occl face 2 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shaking camera 1.00 1.00 1.00 0.15 1.00 1.00 1.00 0.98 0.72
person foccl 0.95 0.97 1.00 0.00 1.00 1.00 1.00 1.00 1.00
singer 1 1.00 0.96 1.00 0.00 0.01 1.00 0.97 0.94 0.76
rubikscube 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00
gymnastics 0.86 0.74 0.88 0.57 0.58 0.83 0.89 0.86 0.79
cli� dive 1 0.46 0.71 0.59 0.00 0.05 0.76 0.62 0.18 0.59
volleyball 0.98 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00
pedestrian 5 0.68 0.72 0.72 0.25 0.03 0.94 0.82 0.72 0.67
faceocc 1 0.84 1.00 1.00 0.00 0.22 0.98 1.00 1.00 0.85
mountain bike 0.52 0.36 1.00 0.00 0.01 0.92 1.00 0.99 1.00
panda 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00
person poccl 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00
dinosaur 0.56 0.20 0.92 0.00 0.02 0.76 0.74 0.27 0.39
transformer 0.36 0.18 0.49 0.00 0.01 0.67 0.66 0.63 0.50
juice 1.00 1.00 1.00 0.00 0.14 1.00 1.00 0.34 1.00
dog 1 1.00 1.00 1.00 0.42 1.00 1.00 1.00 1.00 1.00
car 1.00 0.65 1.00 0.07 0.02 1.00 0.32 0.86 0.44
head motion 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00
co�ee on table 1.00 1.00 1.00 0.01 1.00 1.00 1.00 1.00 1.00
person �oor 0.94 0.78 1.00 0.00 1.00 0.98 1.00 1.00 0.70
board 0.98 0.27 1.00 0.00 0.02 0.84 1.00 0.64 0.54
cup on table 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.01

avg 0.88 0.79 0.94 0.22 0.57 0.95 0.91 0.85 0.79
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Figure 4.3: Algorithm comparison with shortened sequences; in the left image is the
success plot of the overlap measure plotted. On the right is the success plot of the recall
drawn. All the sequences contain only the shortened sequences from the �rst frame to
the 100th frame.

nine trackers, compared to the seventh rank on the original sequences (see Figure 4.2
on p. 28). Our tracker has an overall recall average of 88%. Again CMT by Nebehay
and P�ugfelder performs best with 95%. Furthermore DSST (94%) and STR (91%)
perform better than our method.

In 16 sequences the di�cult occlusions and perspective changes happen in images
with a frame number greater than 100. For instance the crossing of the people in
the sequence person �oor happens after the 100th frame. Or in the sequence board the
board rotates only after the removed frames. The rotation is a problem, because then
the initial area of the board is not visible for some time and optical �ow fails. With
the reduction of the number of frames we were able to eliminate these unwanted
events.

So in shorter sequences our algorithm is obviously comparable with state of the
art trackers. Plots of the results are drawn in Figure 4.3. The success plots with the
overlap measure are on the left side, the recall plots are on the right.

4.3.5 Timing Benchmark

Another characteristic, beside the recall, is the computation speed. We did a speed
benchmark and a comparison of the results is visualized in Figure 4.4. The ex-
periment ran on Ubuntu Linux 14.04 with an Intel Core i5-2430M processor, 6GB
memory and a NVIDIA GeForce GT 520M graphics card. Each algorithm ran ten
times under the same conditions, without any additional background processes
except the operating system. The outcomes of every method got averaged to remove
statistical outliers. Our algorithm performs second best with 164.43 fps. The fastest
one is MS with 192.78 fps. But the mean shift tracker performed in both prior exper-
iments worse than ours. There is a di�erence of approximately 90 fps between our
tracker and KCF-2012, the third one, with 72.95 fps. The algorithms with the best
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Figure 4.4: The diagram shows the averaged speed of the algorithms in frames per
second

object location estimations on the long and short sequences, CMT and DSST, are
the slowest ones with 3.07 fps and 5.21 fps. We benchmarked also our + tracker, but
with 40.53 fps it is signi�cantly (~120 fps) slower than our “normal” one without
the enabled feature.

This benchmark reveals that the computation speed of our algorithm is one of
its biggest strengths.

4.3.6 Precision vs. Speed

The results for the experiments can be summarized in a diagram. On the x axis is
the speed in fps and on the y axis the average recall plotted. With the outcomes of
Figure 4.4 and the results of the shortened sequences from Table 4.4 the results of
every tracker can be associated with a point in this 2D diagram. We also benchmark
our tracker with the enabled option to �nd lost key points. It uses the pseudo
collinear threshold distance d 19 (see Table 4.3). There are four di�erent quadrants
in this chart. The bottom left is the worst one, there both values speed and recall are
low. The preferred quadrant is at the top right, in this area the two values are great.
In the top left corner the speed is slow and in the bottom right the recall values are
bad. The results of this comparison are illustrated in Figure 4.5.

Eight of the trackers are positioned in the top left quadrant, also our tracker
Ours+. There are two exceptions, the �rst one is MS, which is in the bottom right
area located. The second one is our algorithm Ours. It is the only tracker which is
located on the top right corner. Therefore our algorithm is a good trade-o� between
speed and recall performance for these sequences.
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Figure 4.5: Precision vs. Speed; this plot compares the speed in frames per second with
the recall precision of the methods. The preferred quadrant is the top right.

4.4 Summary
In this chapter we began with the explanation of the used measures and visualiza-
tions of the benchmark. After that we listed the trackers, which are compared with
our tracker and the sequences of the dataset. We also gave qualitative results of
our method. Then we determined the best pseudo-collinear threshold distance of
our algorithm. Afterward we compared our method with the previous obtained
threshold with the other trackers. Then we shortened the sequences to a maximum
of 100 frames and determined the best threshold again. We benchmarked our and
the other trackers on the shortened sequences. The best average recall of our tracker
on the full sequences was 44%. It was the seventh best tracker out of nine. The best
tracker was CMT with 84% and the last MS with 12%. In comparison our tracker
reached 88% on the shortened sequences behind CMT with 95%, DSST with 94%
and STR with 91%. Next we compared the computation speed of the methods and
set the results of the timing benchmark in comparison with the average recall. With
164.43 fps our tracker was the fastest tracker behindMSwhich had 192.78 fps. The
slowest were DSST with 5.21 fps and CMT with 3.07 fps.
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5 Conclusion
In this work we elaborated a new technique to combine key point based tracking
with properties of projective invariants. Therefore we experimented with several
di�erent approaches. As conclusion we dropped the idea of using cross-ratios and
used the combination of two or more diverse arranged templates instead. With
them it is possible to detect outliers which have moved into wrong directions. Only
one template is not su�cient, because a false displacements can only be noticed in
one direction. We de�ned a new term called pseudo-collinearitywhich is similar to
collinearity but less restrict.

In terms of speed our algorithm performed second best behind MS. But on long
sequences, with more than 100 frames, our method has not the capabilities to keep
up with advanced trackers like CMT, which are able to handle full occlusions and
are not limited to objects with coplanar surfaces. For these benchmarks we used
sequences as general as possible to produce meaningful results for a variety of
scenarios. This dataset contains partially and fully occluded humans, cars, shows,
motorcycles, objects and sceneswith illumination changes. Despite the complexity of
our scenes, our pseudo-collinearity and template based tracker was able to correctly
estimate the bounding box positions in seven sequences with a recall greater than
50%. To make our algorithm comparable in its use-case, we cut the scenes to a
maximum of 100 frames. In this scenario our tracker was the fourth best tracker out
of nine. The combination of computation speed and recall precision showed, that
the approach presented in this work has the best trade-o� between recall and speed.

The attempt explained in this work to regain removed key points in a reduced
search space, was not able to ful�ll our expectations. The processing speed was
more than 120 fps slower and the maximum of the recall change was two percent.

We have ideas for potential tracker improvements. They are discussed in the
next paragraphs. A necessity to compete with trackers like DSST, CMT and STR on
the full sequences is the ability to handle full occlusions. An option would be to
combine our algorithm with CMT, which is also key point based.

Our tracker was the second fastest trackers although it is programmed in Python,
a programming language which is interpreted and not compiled into machine code.
The computation time can be further decreased by the reimplementation of time-
critical parts in C or C++.

Another weakness of our tracker was the calculation of the bounding box. The
computation of the matrix for the projective transformation resulted in distorted
quadrilaterals. A simpler transformation like the similarity transformation would
improve the robustness if the tracking process.

With hierarchical templates the possible applications for the tracker can be
extended to partially planar objects. A solution is to represent the object with
pyramidal patches. The width and height of the patches in each pyramid level are
reduced by a factor of two compared to the previous level. The tracker starts to
estimate the new position of the patches at the lowest level. These patches vote
for the position of the higher ones. Thus wrong votes by patches which cover non
planar parts of the object are overruled.
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Appendix A Corner Detector
For our algorithm the corner detector plays a crucial role, because it chooses the
interest points which are used to calculate to object’s position. We use Good Features
to Track [Shi and Tomasi, 1994] by Shi et al. for the corner detections. In the following
paragraphs we discuss this algorithm and its predecessor Harris Corner Detector
[Harris and Stephens, 1988].

Corners are regions with a large variation in intensity along the x and y axis
[Harris and Stephens, 1988]. In the following equations E describes the change in
intensity for a displacement of (x , y) in all directions. The window function w can
either be a rectangular or Gaussian window.

E(x , y) �
∑
u ,v

w(u , v)︸  ︷︷  ︸
window function

[I(x + u , y + v)︸            ︷︷            ︸
shifted intensity

− I(u , v)︸ ︷︷ ︸
intensity

]2 (A.1)

To �nd corners, E has to be maximized. With Taylor expansion and the prerequisite
of only small shifts (x , y) the equation can be simpli�ed to

E(x , y) ≈
[
x y

]
M

[
x
y

]
(A.2)

With the image derivatives Ix and Iy in x and y direction, the 2 × 2 matrixM is

M �

∑
u ,v

w(u , v)
[
Ix Ix Ix Iy
Iy Ix Iy Iy

]
(A.3)

Afterwards a score is created whether to specify if a corner located in the window is
a corner or not. Good Features to Track uses the following scoring function

R � min(λ1 , λ2) (A.4)

Where λ1 and λ2 are the eigenvalues of M. In comparison the scoring from the
Harris Corner Detector is a bit more complex and is de�ned as

RH � det(M) − k · trace(M)2 � λ1λ2 − k(λ1 + λ2)2 (A.5)

Appendix B Ray Casting
Our algorithm can not only be initialized with a rectangle, but also with a general
quadrilateral or a polygon. The corner detector calculates interest points for the
whole image, but we only need the points inside the initial region. Therefore it’s
necessary to know which points are located in this region and which are not. To
distinguish points inside and outside a axis aligned rectangle, each point has to be
checked if it is located between the top left and the bottom right coordinate of the
object [Shalev-Shwartz and Ben-David, 2014].

For polygons this approach is insu�cient. A solution for this problem provides
the ray casting algorithm. A ray comes from any direction outside the polygon and
ends at the point. If the number of intersections between the ray and the polygon is
odd then the point is located inside the polygon otherwise it is outside [Hormann
and Agathos, 2001]. Figure B.1 illustrates the principle of the ray casting algorithm.
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