
Application of Machine Learning for Automatic MRD Assessment in
Paediatric Acute Myeloid Leukaemia

Roxane Licandro1,2, Michael Reiter1, Markus Diem1, Michael Dworzak3,4, Angela Schumich4, and
Martin Kampel1

1Institute of Computer Aided Automation - Computer Vision Lab, TU Wien, Favoritenstrasse 9-11/183-2, 1040 Vienna,
Austria

2Department of Biomedical Imaging and Image-guided Therapy - Computational Imaging Research Lab, Medical
University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria

3Children’s Cancer Research Institute, Medical University of Vienna, Zimmermannplatz 10, 1090 Vienna, Austria
4Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090 Vienna, Austria

licandro@caa.tuwien.ac.at

Keywords: Clustering, Machine Learning, Flow Cytometry, Acute Myeloid Childhood Leukaemia, Minimal Residual
Disease

Abstract: Acute Myeloid Leukaemia (AML) is a rare type of blood cancer in children. This disease originates from
genetic alterations of hematopoetic progenitor cells, which are involved in the hematopoiesis process, and
leads to the proliferation of undifferentiated (leukaemic) cells. Flow CytoMetry (FCM) measurements enable
the assessment of the Minimal Residual Disease (MRD), a value which clinicians use as powerful predictor
for treatment response and diagnostic tool for planning patients’ individual therapy. In this work we propose
machine learning applications for the automatic MRD assessment in AML. Recent approaches focus on child-
hood Acute Lymphoblastic Leukaemia (ALL), more common in this population. We perform experiments
regarding the performance of state-of-the-art algorithms and provide a novel GMM formulation to estimate
leukaemic cell populations by learning background (non-cancer) populations only. Additionally, combination
of backgrounds of different leukaemia types are evaluated regarding their ability to predict MRD in AML. The
results suggest that background populations and combinations of these are suitable to assess MRD in AML.

1 INTRODUCTION

Acute Myeloid Leukaemia (AML) is the most
common leukaemia type in adults, which incidence
increases with age (Juliusson et al., 2009) and ac-
counts for 20 percent of leukaemias in children
(Creutzig et al., 2013b). The peaks of the AML preva-
lence in the United States lie in childhood between
the age of 0 and 1 year at 18.4 per million, children
ages 5 to 9 years 4.3 per million and at 7.7 per mil-
lion for ages between 10 to 14 years (Puumala et al.,
2013). Children at ages younger than 15 years at the
time point of diagnosis have a five year survival rate
of approximately 70 percent, dependent on the AML
subtype (Creutzig et al., 2013b). It affects the blood
generation caused by genetic lesions of myeloid pro-
genitor cells and leads to a decrease of the number of
mature blood cells and an increase of the number of
malignant progenitor cells (Puumala et al., 2013).

1.1 MRD assessment in AML

For determining the clinical outcome and for the strat-
ification according to risk for relapse, clinicians ob-
serve genetic features (Rubnitz and Inaba, 2012) to
retrieve the Minimal Residual Disease (MRD). MRD
is a prognostic value, which is used as an indicator
for treatment response and to quantify the remaining
leukaemic cells (blasts) at defined therapeutic time
points (Brüggemann et al., 2010). It has been identi-
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fied as a powerful predictor for treatment outcome and
thus is used as guiding diagnostic tool for planning
the intensity of treatment of an individual patient. It
encodes the proportion of leukaemic blasts among
the amount of normal cells observed. Figure 1 illus-
trates schematically the relations of MRD to different
leukaemic cell stadia during treatment: Leukaemia,
Remission, Relapse and Cure. The treatment of AML
is divided into three phases (Löwenberg et al., 2003),
(Rubnitz and Inaba, 2012), (Creutzig et al., 2013a):

• Induction therapy (day 1 - 33): Remission induc-
tion targets a Complete Remission (CR). CR is
achieved if less than 5% of blasts are in cellular
marrow, no blast in the circulation, no presence of
extramedullary leukaemia and a regeneration of
platelets and granulocytes, resulting in increased
counts.

• Consolidation (day 33 - 78): The second phase
aims at the removal of MRD after patients have
recovered from the previous phase in a rest period
(Löwenberg et al., 2003).

• Intensification: The third phase focuses on the
treatment after remission, consisting of e.g. pro-
longated chemotherapy (1-2 years) or Stem Cell
Transplantation (SCT). Two types of SCT exist
(Löwenberg et al., 2003). In case of AML, autol-
ogous SCT is rarely recommended, but allogeneic
Hematopoietic SCT (HSCT) is a reasonable op-
tion, for resistant or high risk cases in first remis-
sion. However, HSCT is strongly recommended
for most children with AML after relapse (Rub-
nitz and Inaba, 2012).

One cause of morbidity and mortality in AML be-
side the disease itself are complications induced by
infections, haemorrhage or side effects caused by the
highly haematotoxic and immunosuppressive therapy
(Creutzig et al., 2013b). Thus, additionally prophy-
lactic therapies are considered to reduce the incidence
of bacterial or fungal infection as well as support-
ive therapy (Rubnitz and Inaba, 2012). Treatment is
guided by treatment protocols, evaluated by perform-
ing international clinical trials over several years, to
ensure quality and safety (Creutzig et al., 2013a).

1.2 Flow Cytometry

Flow CytoMetry (FCM) enables a reliable MRD as-
sessment, in a more cost- and time effective way than
polymerase chain reaction (Gaipa et al., 2012) by de-
tecting leukaemia specific immunophenotypes (Basso
et al., 2009; Dworzak et al., 2002). For this technique
it is required to draw a blood or bone marrow sample
of a patient in a first step and subsequently, mark cel-

lular antigens in a staining step with a combination
of specific fluorescence-labelled antibodies. Depen-
dent on the antigen expression of a single cell, differ-
ent fluorescence signal patterns are detectable using
FCM. Its biophysical technology is based on lasers of
different wavelenghts, which employment enables the
measurement of physical (granularity, size) and bio-
logical characteristics of every single cell in a fluid
stream and establishes the difference between normal
blood, bone marrow or leukaemic cells (Rota et al.,
2016). The challenges assessing MRD using FCM lie
especially in the late phases of induction and consol-
idation therapy, where it is particularly important to
detect small leukaemic cell populations, which com-
pose about 0.1% of all observed cells, to be able to
adapt therapy if a risk of relapse is determined. Addi-
tional challenges in FCM lie in the limited number of
cells in the test tube and in the influencing factors for
MRD assessment, as treatment- or age-related vari-
ances of the regeneration status of bone marrow pre-
cursors (Gaipa et al., 2012).

1.2.1 Manual Gating

Current FCM based MRD assessment is performed
manually, where operators draw polygons (gates)
around relevant cell populations in two-dimensional
graphical representations (dot plots) (cf. Figure 2) of
multi-dimensional FCM data. The scale of each gate’s
axis is of logarithmic scale and one dimension corre-
sponds to a FCM measured feature. In Figure 2 every
dot (event) represents a measured blood cell. In di-
agnostic laboratories a hierarchical gating procedure
is manually executed to detect MRD. The identified
events of interest of a gating step serve as input of the

Figure 2: Illustration of a sample obtained by a flow cy-
tometer and the manual drawn viable gate (polygon) com-
posed by the features Side SCatter (SSC-A) and Forward
SCatter (FSC-A). Leukaemic cells are illustrated in red, vi-
able cells in gray, and non viable in black.



subsequent gate in the hierarchy. In a first step the
gate is defined to identify nucleated cells in a sample
(all cells of a patient’s FCM measurement). For this
gate the granularity measure Side SCatter-Area (SSC-
A) and the size measure Front SCatter-Width (FSC-
W) are observed. By observing the Side SCatter-Area
(SSC-A) and the CD 45 feature (fluorescence marker)
the relevant cells (leukocytes) are filtered. The next
step (CD34+ or progenitor gate) excludes cells that
are more mature and thus, CD 34 negative. For de-
tecting leukaemic cells subsequently, CD 117 posi-
tive and CD 33 positive cells are observed to define a
blast gate. The manual gating procedure introduced
strongly relies on the operator’s skills and expertise,
is highly subjective and time-consuming.

1.3 Contribution

Recent automated machine learning approaches
applied on childhood leukaemia datasets focus on
modelling leukaemic and non-leukaemic cells for
Acute Lymphoblastic Leukaemia (ALL) (Licandro
et al., 2016), (Naim et al., 2014), (Zare et al.,
2010),(Aghaeepour et al., 2013), (Bashashati and
Brinkman, 2009), (Reiter et al., 2016) and have as
main goal the automatic assignment of a biologically
meaningful population label to every observed cell.
Instead of using a 2D feature representation, the
multidimensional space is included at once in the
automatic gating procedure. In contrast to AML,
ALL is caused by genetic lesions of lymphoid blood-
progenitor cells differentiating to T-cells (T-ALL)
or B-cells (B-ALL), which consequently leads to
the proliferation of abernant (leukaemic) cells. The
peaks of ALL prevalence are higher compared to
AML and lie between the age of 2 and 5 years for
B-ALL and at the age of 10 years for T-ALL’s (Pui
et al., 2008), (Inaba et al., 2013).
The contribution of the work proposed is three fold:
First we want to demonstrate the applicability of
state of the art machine learning algorithms on flow
cytometry childhood AML data. Second we pro-
pose a novel background formulation for Gaussian
Mixture Model based classification to assess MRD
distributions in AML of small size. Finally, we
combine background (non-cancer cells) of ALL and
AML samples and evaluate if background outlier
distributions can identify leukaemic cells more
efficiently compared to simple backgrounds.
We hypothesize that blasts form outlier populations
when background populations are observed in the
multi-dimensional feature space and that a combina-
tion of background cells of different leukaemia types
can be used to enable the enhancement of non blast

representations and robust modelling of background
distributions for blast identification.

This paper gives an overview of methodologies
and the dataset used in Section 2. The evaluation
results are presented in Section 3 and the conclusion
of this work and possibilities for future work are
summarized in Section 4.

2 METHODOLOGY

This section introduces the formulation of Back-
ground Gaussian Mixture Model classification for
leukaemic cell detection and summarizes the experi-
mental setup of the additional machine learning ap-
proaches (Random Forest and Support Vector Ma-
chine) applied for automatic cell classification. For
every approach the MRD assessment performance is
evaluated by computing the ratio between predicted
leukaemic cells Nblasts and normal cells Nnormal−cells
as expressed in Equation 1.

MRD =
Nblasts

Nnormal−cells
(1)

Thus, for every approach the solving of a binary clas-
sification problem (blast, non-blast) for every mea-
sured cell in a sample and the estimation of cell counts
for a class, are required to assess the MRD. In contrast
to manual gating, the machine learning techniques
evaluated within this work, observe the multidimen-
sional feature space. The 13 features measured in
our case correspond to the expression of ten differ-
ent types of antibodies on the cell surface and three
physical FCM measures (cf. Section 3.1 for details
regarding the datasets used). Dependent on the con-
dition of the patient, approximately 105 − 106 cells
are measured per subject. Additionally, manual an-
notations of blast and non blast cells are provided by
medical experts.

2.1 Background Gaussian Mixture
Model

As the first approach a Gaussian Mixture Model
(GMM) based formulation is used to cluster and au-
tomatically classify cells into leukaemic and normal
cells. GMMs are widely used, and known to be
flexible in the analysis of FCM data and are less
computational demanding compared to kernel model
estimation based approaches (Naim et al., 2014),
(Bishop, 2006). This generative approach is able to
fit point cloud distributions, while keeping the model



based description and using a restricted amount of pa-
rameters. We decided to model the distribution of
non-blast populations (background) only, since more
background data without blasts are available. In an
initial step a GMM model for non-blasts is learned
by using an adapted Expectation Maximization (EM)
algorithm and 2 Gaussian distributions. The trained
GMM is used to detect and furthermore analyse cells
lying outside the learned probability density function.
A cell is classified as non-blast if the log probabil-
ity is greater than 0 and as outlier if it is smaller. In a
subsequent step the outliers are modelled using an ad-
ditional GMM with 1 component. A cell in the outlier
population is classified as blast if the log probability
is greater than 3 and as non-blast if it is smaller. The
number of Gaussian distributions and the log proba-
bility were estimated based on the results of prelim-
inary experiments, where different parametrisations
were tested. In Figure 3 on the left side the distri-
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Figure 3: Visualisation of the distribution of non blast and
blast blood cells population of the dataset Diagnose (left).
On the right the difference between the background of the
dataset Diagnose (blue) and ALL k0 (green) are visualised
and their relations to the blast population (red line) in the
dataset Diagnose.

.

bution of background cells (blue) of 13 samples of di-
agnosed AML cases are visualised, where blasts are
visualised in red. On the right the same background
(blue) is shown in relation to the background (green)
extracted from 30 subjects diagnosed with ALL in the
remission state where no blasts are present. First it is
observable that the different background distributions
have an overlying appearance in the feature space and
second blast populations lie in regions of less density
of the background’s distribution.

2.2 Random Forest Classifier

As the second approach we evaluated the ensemble
classifier Random Forest (RF) (Breiman, 2001). Its
formulation is based on decision trees, where a ran-
dom training subset of the FCM data is defined for

each tree. For finding a maximum separation between
leukaemic and non leukaemic cells, every node in the
decision tree performs thresholding on the measured
features. By searching over a random subset of anti-
body features a new node in the decision tree is con-
structed (Langs et al., 2011) taking into account the
decisions of the higher tree levels. In comparison to
the GMM approach the RF is trained in a supervised
way using the manual annotation labels of every cell.
In the test phase one label for every cell of a new in-
put sample (1 blast, 0 non-blast) is computed based on
the RF trained. Details regarding the parametrisation
of the RF classifier are given in Section 3.2.

2.3 Support Vector Machine

The Support Vector Machine (SVM) approach is used
as a baseline to provide a comparison between its
classification and those performed by RF and GMM.
In the experiment proposed we use a RBF kernel
based formulation of SVM. Sample classification is
performed based on events, without including infor-
mation about the neighboured events or the different
populations observed. Also the SVM is trained in a
supervised way. In the test phase one label for ev-
ery cell of a new input sample (1 blast, 0 non-blast)
is computed based on the SVM trained. Details re-
garding the parametrisation of the SVM classifier are
given in Section 3.2.

3 RESULTS

In this section first the dataset and the preprocess-
ing steps are introduced and second a description of
the evaluation setup and results are presented.

3.1 Acute Leukaemia Datasets

The sample preparation and manual MRD assessment
are performed at the national diagnostic reference
center for paediatric AML according to the current in-
ternational standard operating procedure for 10 color
FCM-MRD detection. For each cell, thirteen param-
eters are obtained by the FCM measurement, consist-
ing of three optical (FSC-A, FSC-W, SSC-A) and ten
fluorescence based parameters which are tuned ac-
cording to the leukaemia type. One feature repre-
sents a dimension in the multidimensional data space.
Due to the partial overlapping of fluorescence spectra
of different fluorochromes used, spillover compensa-
tion is applied to obtain statistical independence of
the data by using a correction matrix. As last prepro-
cessing step normalization of the parameter values is



performed to obtain a range between 0 and 1. The
dataset used in this work was generated in collabora-
tion with experienced clinicians from the Children’s
Cancer Research Institute in Vienna. All participants’
guardians (parents) and patients were informed about
the aim of the study and gave their written, informed
consent prior to inclusion.

3.1.1 Dataset AML Diagnose

The dataset consists of FCM measurements of 13
AML patients whose therapy was guided according
to the AML BFM 2004 treatment protocol (Creutzig
et al., 2013b)1. The fluorescence based parameters
used are CD15, CD7CD19, CD34, CD117, CD33,
CD13, CD11b, CD14, HLA-DR, CD45.

3.1.2 Dataset ALLk0 Background

The dataset contains 24 FCM measurements of 30
ALL patients in the remission phase using the same
fluorescence based parameters as the AML Diagnose
dataset, where no blasts are present. The therapy was
guided according to the AIEOP-BFM 2009 trial2.

3.2 Evaluation Setup

According to the small amount of available anno-
tated data we perform Leave One Out Cross Vali-
dation for every approach evaluated. The proposed
GMM approach is trained using the background an-
notated cells only, while RF and SVM are trained on
blast and non blast populations. The pipeline is im-
plemented using the scikit-learn package for Python
(Pedregosa et al., 2011). The SVM uses the following
parametrisation: C=1.0, cachesize=200, degree=3,
gamma=’auto’, kernel=’rbf’, tol=0.001. For the Ran-
dom Forest classifier 1000 estimators and follow-
ing additional parameters are used: criterion=’gini’,
minimal samples split=2, min samples leaf=1, min
weight fraction leaf=0.0, min impurity split=1e-07,
bootstrap=True. For the GMM approach we use 2
Gaussian components for modelling non blasts and
one component to model outliers (cf. Section for de-
tails 2.1), covariance type=’full’, n iter=10000 and n

1AML BFM 2004 is a conducted randomized clinical
trial for children and adolescents with AML between age 0-
18 years with 722 patients https://www.kinderkrebsinfo.de/
health professionals/clinical trials/
closed trials/aml bfm 2004/index eng.html [accessed
2017-10-29]

2AIEOP-BFM 2009 is a conducted randomized clin-
ical trial for ALL between age 1-18 years in 10 coun-
tries in- and outside Europe, with approximately 1000 pa-
tients observed per year (Dworzak, 2013)) http:/www.bfm-
international.org/ [accessed 2017-10-29]

init=1. The parametrisation of every approach was
defined based on the best performance achieved in
preliminary experiments. Additionally, precision, re-
call and f-score are computed as quantitative score to
compare approaches and labeling results of different
datasets (Powers, 2011).

3.3 MRD Assessment of Paediatric
Acute Myeloid Leukaemia

In a first step we analyse the performance of state-of-
the-art algorithms regarding their classification accu-
racy of blast populations of childhood AML Diagnose
data. Only the background of Diagnose cases in this
dataset is used for training. Table 1 summarizes the
evaluation results in the first three rows (RF, SVM
and GMM). SVM shows the best performance. In

Table 1: MRD assessment performance of childhood AML

Method Precision Recall f-score
RF 0.76219 0.46249 0.57567

SVM 0.61986 0.58044 0.59951
GMM 0.44836 0.26391 0.33226
RFBgd 0.74169 0.39596 0.51629

SVMBgd 0.68014 0.53149 0.59669
GMMBgd 0.43861 0.26099 0.32725

a second step we analyse the performance of state-of-
the-art algorithms regarding their classification accu-
racy of blast populations of childhood AML Diagnose
data, but with a combined background. Therefore non
blast cells from the dataset ALLk0 and AML Diag-
nose are merged and used for training. Table 1 sum-
marizes the evaluation results in row 4 to 6 (RFBgd,
SVMBgd and GMMBgd). In comparison to the sim-
ple background evaluation a decrease of performance
of RF and GMM is observable and an increase of the
SVM precision, when using the combination of back-
grounds. In Figure 4 the MRD assessment accuracy
of the evaluated algorithms for simple and combined
background are visualised. A point corresponds to a
sample for which the true and predicted MRD is plot-
ted. Samples lying outside the accuracy threshold are
drawn red, samples inside are visualised blue. The
accuracy threshold was defined by clinicians. In case
of GMM the failed predictions of MRD lies closer to
the true MRD compared to RF and SVM failed cases,
which underestimated the MRD in a wider range. In
Figure 5 the classification results of the simple back-
ground (1st and 3rd row) and combined background
(2nd and 4th row) analysis are qualitatively visualised
for RF (1st column), SVM (2nd column) and GMM
(3rd column) for two subjects. The corresponding
manual annotations are shown in column 4. Addition-
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Figure 4: Visualisation of MRD assessment in AML using RF, SVM and Background GMM with simple background training
(first column) and combined background training (second column).

ally, the computed MRD values for every experiment
are provided.

4 CONCLUSIONS

In this work we demonstrate the applicability
of machine learning to automatically assess MRD
in childhood acute myeloid leukaemia. We eval-

uated three different approaches for AML routine
data, where best results were achieved using Ran-
dom Forests and Support Vector Machines. However
these approaches show a higher variance in MRD es-
timations compared to GMM which underestimates
MRD in a lower range. We provided a background
formulation for GMM and showed that learned distri-
butions of non cancer blood cells can be used to iden-
tify blast populations in AML data. Additionally, we
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Figure 5: Visualisation of qualitative results and quantitative MRD estimation of two subjects by Random Forest (RF), Support
Vector Machine (SVM) and Gaussian Mixture Model (GMM) using a simple and combined Background (Bgd) trainingset.
The annotation results (True) are shown in column 4. Blasts are visualised in red and non-blasts in black.

showed that combinations of backgrounds of differ-
ent leukaemia types lead to similar performance of the
supervised and unsupervised approaches evaluated in
detecting blasts in AML data. We demonstrated that
MRD can be estimated on basis of non-blast obser-
vations only, which is a huge benefit in the case of
rare diseases, where only a limited number of data
is available. The limit of our work lies in the small
dataset available according to the rareness of the dis-
ease, thus for future work we aim to use data from dif-
ferent countries, machines and background samples.
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