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Abstract— Minutiae extraction is an important step for
robust fingerprint identification. However, existing minutia
extraction algorithms rely on time consuming and fragile image
enhancement steps in order to work robustly. We propose a
new approach, combining enhancement and extraction into a
Convolutional Neural Network (CNN). This network is trained
from scratch using synthetic fingerprints. To bridge the gap
between synthetic and real fingerprints, refinements are used.
Here, an approach based on Generative Adversarial Networks
(GANs) is used to generate fingerprints suited for training
such a network and improving its matching score on real
fingerprints.

I. INTRODUCTION

Because of their uniqueness and their temporal stabil-
ity [10], fingerprint minutiae are a reliable way to determine
the identity of an individual. Minutiae points are irregularities
in ridge patterns, described using coordinates and orienta-
tion [17]. Over 150 different irregularities in fingerprints
have been identified [18]. While the amount of minutiae
on a single fingerprint varies from finger to finger, there
are approximately one hundred of such points comprising
a regular fingerprint [17]. It was reported that only 10 - 15
minutiae are required to reliably identify an individual [17].

Currently fingerprint matchers like BOZORTH [25] work
using minutiae landmarks. Extraction of minutiae is a hard
problem though, which heavily relies on good quality fin-
gerprint images [10]. To combat this, image enhancement
algorithms are used [4]. Still, reliable minutiae extraction on
arbitrary fingerprint images is an open problem as existing
feature extractors largely rely on image quality (focus, reso-
lution, skin condition, etc.) [23].

With the rise of deep learning in similar fields [7], [14],
[19] and the availability of synthetic fingerprint generators
[2], [5], it looks promising to use such methods for minu-
tiae extraction. This paper contributes a new network for
minutiae extraction following the idea to solve an equivalent
segmentation problem. In this work the synthetic fingerprint
generator Anguli [2] is used because of its availability.
Anguli generates the training data needed as is shown in
Fig. 1a. Because of the difference to real data as visualized
in Fig. 1(d-f), augmentations are used (Fig. 1b) as described
in Section IV. Here we contribute a novel technique to refine
fingerprints based on the GANs [8] paradigm. An example
output can be seen in Fig. 1c. Regularization is used to
force the refinement network to retain the annotation data
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(a) Anguli generated
fingeprint.

(b) Augmented finger-
print.

(c) Refined fingerprint
using our GAN based
approach.

(d) Finger taken from
FVC2000 DB1.

(e) Finger taken from
FVC2000 DB3.

(f) Finger taken from
UareU dataset.

Fig. 1. Illustration of the fingerprint data used in this work. (a-c are
synthetic fingerprints, while d-f are real fingerprints.)

while outputting a refined representation of the simulated
fingerprint.

The rest of the paper is organized as follows. Section II
reviews related work. In Section III and IV the minutiae
extraction algorithm and the refinement method are described
in detail. In Section V the results obtained with our method
are presented. Finally in Section VI we draw our conclusions.

II. RELATED WORK

Minutiae detection for a sufficiently enhanced image is
done by binarization of the grayscale image [10]. Currently
fingerprint minutiae extractors use image enhancement rou-
tines to achieve the desired quality [10], [4], [25], [24].

Recently there has been a similar approach to the minutiae
extraction problem using a pre-trained Convolutional Neural
Network, in a forensic setting [23]. However the CNN
in [23] is used as a pre-processing step to find large regions
containing a minutiae point. Then logistic regression and
region pooling are used to extract the actual minutia position.

In our approach the minutia extraction problem is rede-
fined as a binary segmentation task, which the CNN solves
directly. With our method there is no need for any time
consuming pre- or post-processing. Additionally, synthetic
fingerprint generators are used to train the network from
scratch and make it suitable for the minutiae extraction
problem.
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Fig. 2. The whole processing pipeline used for training the minutiae extraction network.

The U-shaped network architecture applied here is used for
medical segmentation applications [19], [7]. Training deep
neural networks is also the focus of [9], where residual
connections are used to allow training of very deep neural
networks. Research into making residual connection better
is reported in [12], [27], [7].

The GAN framework is first introduced in [8]. Improve-
ments to the stability of adversarial training are proposed in
[20], [3]. Based on the results in GANs a refinement network
is introduced in [21] for the gaze direction of eye images.
In our work a similar approach is used to refine fingerprints.

III. MINUTIAE EXTRACTION USING CNN

The ground truth minutiae list is turned into a binary
image by creating an image with the same shape as the
corresponding fingerprint and setting every pixel to zero.
Then every point in a minutiae region is set to one. A minutia
region is defined as a 7× 7 pixel square encapsulating the
minutia landmark as its centroid. Our deep neural network
is used to find a mapping from the input fingerprint to this
binary image. This procedure turns the task into a binary
segmentation problem.

A. Training Pipeline

The synthetic fingerprint generator Anguli [2] is used to
generate a training set. As can be seen in Fig. 2 Verifinger
is used to extract the ground truth of the original ridge
pattern. For the purpose of this algorithm it is assumed that
the minutiae extractor works perfectly on the ridge pattern.
Therefore the estimated bifurcations and terminations of the
ridge image in Fig. 2 are input to the learning stage as well
as ground truth for evaluation. The deviation of the minutiae
map and the network output is calculated using dice loss
(1), where α is a smoothing factor. Dice loss is reported to
produce almost binary outputs [7].

loss =− 2ypredytrue +α
∑ypred +∑ytrue +α

(1)

B. Network Architecture

The base architecture of the models used in this work
can be seen in Fig. 3 and builds on the U-Shaped Network
pioneered in [19]. The key differences are:

1) Strided convolution instead of pooling to learn down-
sampling filters.

2) 224 × 224 crop to preserve the aspect ratio of the
fingerprints.

3) Layer blocks on intermediate levels of the U-Shaped
Network instead of pure convolutions.

4) Batch Normalization [11] before every convolution.
5) Dropout with a probability of 0.5 before the final

Convolution Layer.
6) Upsampling is done by repeating the pixel in a 2×2

window. Then the upsampling feature maps are con-
catenated with the output feature maps of the layer
block on the same level in the downsampling path.
Finally batch normalization, a Regularized Linear Unit
(ReLU) activation function and a 3×3 convolution are
applied to all the feature maps, before they are passed
on to the next layer block.

To preserve information flow, the amount of filters is
doubled, when the size of the input data is reduced, as
observed in [22]. The layer blocks on specific levels vary
in the number of filters used. A model is build with only
Wide Residual Blocks [27] (WRN), one with only Densely
Connected Blocks [12] (DenseNet) and one with only Bot-
tleneck Residual Blocks [7] (ResUnet). In total, each model
used in this work has approximately 8 million parameters.

C. Extracting a Minutiae List

The output of the neural network is a binary minutia
regions map. For biometric authentication, a list of minutia
points with quality and orientation is needed. For the final
position of the minutiae the connected components of the
binary map are used. The centroid of each component
represents one minutia position. The area a of the connected
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Fig. 3. U-Shaped network architecture used for minutiae extraction.

(a) (b)

Fig. 4. Estimation of the orientation field for a sample fingerprint taken
from the FVC2000 DB 1.

components is used to determine the quality of the minutiae
between 0−100 using quality = min(a∗2,100).

The orientation of the minutiae is extracted using an
orientation field as described in [10]. The orientation is
estimated for every 16×16 region as visualized in Fig. 4b.

IV. FINGERPRINT REFINEMENT

The synthetic fingerprint generator Anguli [2] is used
to generate random ridge patterns (Fig. 5a). Then multiple
variations of every ridge pattern are generated by using
different noise models as can be seen in Fig. 5(b,c). Each
variation is called an impression of that particular ridge
pattern. Because Anguli does not output the minutiae in-
formation, a commercial minutiae extractor, Verifinger [24],
is used to extract the minutiae data out of the ridge pattern.
For the purpose of this paper it is assumed that Verifinger
works perfectly on the binary ridge pattern. Those minutiae
landmarks are then used for all the impressions (Fig. 5(a-c)).

A. Augmentation on Synthetic Fingerprints

By comparing Fig. 1(d-f) with Fig. 5(a-c) the differences
between real and synthetic fingerprints are easily spotted. To
bridge this gap the following augmentations are used:

1) Non linear distortions: To model the contact region of
a fingerprint, random non-linear distortions are used.

(a) (b) (c)

Fig. 5. Anguli [2] generated ridge pattern with two different impressions
and the minutiae extracted using Verifinger [24] .

This also introduces changes in local ridge frequency
to synthetic fingerprints as can be seen in Fig. 6d. The
distorted ridge pattern is used by Anguli to generate
new impressions.

2) Morphological operations: Grayscale Dilation and
Erosion are used to model wet and dry fingerprint
images [5]. An example of this can be seen in Fig.
6c.

3) Random rotation, translation and shearing: Fin-
gerprint images are randomly translated, rotated and
sheared to gain invariance to linear transformations.
An example of this can be seen in Fig. 6a.

4) Random Blurs: The images are randomly blurred
with a Gaussian kernel, where the variance varies to
simulate noisy fingerprints as can be seen in Fig. 6b.

5) Random Mirroring: Fingerprint images are randomly
mirrored either horizontally or vertically with a 0.5
probability for each direction.

6) Refinement Network: A Refinement Neural Network,
based on GANs is used to refine images to look
more like real world fingerprints. The input size to the
network is 224×224. Therefore synthetic fingerprints
are resized by a random factor between zero and
the difference in image dimension, while keeping the
aspect ratio. Then a random 224 × 224 crop of the
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(a) Linear Transform
Augmentation

(b) Gaussian Augmen-
tation

(c) Morphological
Augmentation

(d) Distorted Ground
Truth Ridge Pattern

(e) Refinement Net-
work Input

(f) Refinement
Network Output with
minutiae regions.

Fig. 6. Illustration of the refined data.

resized image is used as input to the network. An
example input and output image can be seen in Fig.
6e and Fig. 6f.

B. Refinement Network

The Refinement Network used in this work is based on the
GAN paradigm, where a dual optimization problem is solved.
A refiner and a discriminator network are simultaneously
trained against each other. The refiner network tries to fool
the discriminator by applying refinements to a synthetic
fingerprint, while the discriminator is used to discriminate
between fake and real data. The purpose of such a network
is to find a Nash Equilibrium [20] where both networks are
optimal.

The only application of a refinement network to our
knowledge is in [21]. In our work the approach therein is
extended by using noise on the input data to improve the
stability of training such a network [3].

One key observation is that using the input image itself for
regularization is limiting the amount of possible refinements
for fingerprints. Here we propose to use the Hessian of the
image instead of the image itself for regularization. The
Hessian represents the actual ridge pattern of the fingerprint
independent of the pixel intensity values. Mean Squared
Error is used to penalize deviation from the Hessian, while
the refiner network still needs to fool the discriminator
network.

The refiner network uses the same architecture as the
minutiae extraction network (Fig. 3), only smaller in the
number of layer blocks and filters. Wide residual blocks [27]

are used for every layer block starting with 32 filters and
doubled on its way down and halved on their way up.
Fingerprints like in Fig. 6f are produced by this method.
Here, the problem observed by current synthetic fingerprint
refiners of modeling noise is addressed by using such a
network [5].

V. EXPERIMENTS

This section showcases the results obtained with our
method. All our models were programmed using the python
framework Keras [6] and trained on a Nvidia Geforce Titan
X. For training, the Adam [13] optimizer is used with an
initial learning rate of 0.001. The learning rate is cut in half,
if the validation error has not decreased for three consecutive
epochs. For other minutiae extraction algorithms, an Intel
Xeon - W3550 CPU was used.

A. Experimental Setup

For training 28.000 fingerprints with five impressions per
fingerprint were generated using Anguli. In total 140.000
fingerprints were used for training, which included a vali-
dation set of 10.000 fingerprints. The different impressions
can be seen in Fig. 1. Out of the impressions three contain
medium noise and the other two use little and heavy noise
respectively.

Non linear distortions are used on 3.000 of those fin-
gerprints and on all of their impressions. All the other
augmentations, as described in Section IV are applied on
the fly.

An annotated real dataset of 300 fingerprints constructed
from 220 samples of the sd04 [26] and the 80 images of the
fvc2000 DB4 B [15] dataset are used additionally to increase
the effectiveness of the classifier. The real dataset used for
the refinement network is the UareU [1] dataset.

B. Deep Learning Experiments

In Fig. 9 the difference in performance for the various
layer blocks defined in Section III can be seen. In contrast
to the findings in [12] using densely connected blocks did not
work as well for the minutiae detection problem. Bottleneck
residual blocks performed similarly to wide residual blocks,
which is similar to the findings in the original paper [27].

C. Experiments on FVC2000 databases

Here, the performance of our method is compared to other
minutiae extraction algorithms on the FVC2000 [15] dataset
consisting of real world fingerprints. To match the minutiae
against each other, the minutiae matcher BOZORTH [25]
was used. The results of this experiment can be seen in Fig.
7 and Fig. 8, where GAR and FAR denote the Genuine
Acceptance Rate and False Acceptance Rate accordingly.
Using those metrics the Equal Error Rate (EER) can be
calculated by finding the rate where (2) holds.

GAR = 1−FAR (2)

The extracted EER of the evaluated minutiae extractors
is shown in Table I. Our algorithm performs better than
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Fig. 7. Equal Error Rate Comparison on FVC2000 [15] DB 1 using synthetic, augmentated or refined data.
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Fig. 8. Equal Error Rate Comparison on FVC2000 [15] DB 3 using synthetic, augmentated or refined data.

Fig. 9. Model comparision between Dense Blocks, Wide Residual Blocks
and Bottleneck Residual Blocks.

MINDTCT on real datasets. Also we report clear perfor-
mance improvements by using a refinement network. Addi-
tionally it is also the fastest method, when run on a GPU.

D. Sample Results for Refinement Network
The only quality metric to our knowledge for GANs is

the inception score [20], which is not applicable for our use
case. Therefore, this section shows the visual result of the
refinement network. In Fig. 10 we can see a comparison of
using self regularized MSE versus the Hessian regularized
version of the network. In the Hessian regularized examples
the ridge pattern is better preserved and less artifacts are
introduced into the refined fingerprint.

E. Sample Results for Various Fingers
An illustration on which minutiae are found using different

training data is given in Fig. 11. Here, by training solely on

TABLE I
EQUAL ERROR RATE AND ENROLLMENT SPEED FOR FVC2000 [15]

DATABASES

Algorithm DB 1 DB 3 Time in sec.
Synth. Unet FCNN 21.80% 32.75% 0.12 on gpu
Augm. Unet FCNN 7.01% 16.63% 0.12 on gpu

Ref. Unet FCNN 5.99% 9.42% 0.12 on gpu
MINDTCT [25] 6.63% 12.11% 0.14 on cpu
Verifinger [24] 3.28% 6.31% 1.08 on cpu

(a) Self regularized
GAN Output

(b) Hessian regular-
ized GAN Output.

(c) Hessian regular-
ized GAN Output.

Fig. 10. Sample refiner network output images for self regularized and
Hessian regularized training based on the GAN approach.

synthetic fingerprints the minutiae map is clearly wrong as
shown in Fig. 11. The network trained on augmented data
outputs a subset of the correct minutiae. In contrast, the
network trained on GAN data outputs a reasonable minutiae
map for this example.

An example of a clear mismatch between two images of
the same fingerprint can be seen in Fig. 12. Even though
the matching score is 0%, overlapping minutiae are found.
However, the orientation does not match because of the noise
in the fingerprint.
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(a) FCNN trained with
synthetic data

(b) FCNN trained
with augmented data

(c) FCNN trained on
augmented + GAN
data.

Fig. 11. Comparison of the output of the same network trained only on
synthetic, on augmented and on refined data.

Fig. 12. 0% match of two impressions of the same finger taken from FVC
2002 [16] database with minutiae extracted using the FCNN algorithm.

VI. CONCLUSION

In this work the possibility of reformulating the fingerprint
minutiae extraction problem as a binary segmentation task is
shown. Deep learning is used to address this problem. Even
with synthetic data as a substitute to annotated real data, the
algorithm is able to detect reasonable minutiae with better
results than MINDTCT on the FVC2000 dataset without
fine tuning of any parameters. Additionally, the performance
gain of using our refinement approach was clearly illustrated
and advances in training GANs are likely to bring better
performance for this minutiae extraction algorithm. A first
step is made by using the Hessian instead of the image itself
for regularization. However, this performance gain illustrates
the dependence on good training data.

Currently, the angle of the minutiae points are calculated
using an orientation field. In a future network, we want to
learn the orientation of the minutiae by using the orientation
field of the ground truth ridge pattern. We believe that better
than state-of-the-art performance can be reached using deep
learning given sufficiently diverse training data.
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