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Abstract

We present FUS3D, a fast and lightweight system for
real-time 3D object detection and tracking on edge devices.
Our approach seamlessly integrates stages for 3D object
detection and multi-object-tracking into a single, end-to-
end trainable model. FUS3D is specially tuned for indoor
3D human behavior analysis, with target applications in
Ambient Assisted Living (AAL) or surveillance. The system
is optimized for inference on the edge, thus enabling sensor-
near processing of potentially sensitive data. In addition,
our system relies exclusively on the less privacy-intrusive
3D depth imaging modality, thus further highlighting the
potential of our method for application in sensitive areas.
FUS3D achieves best results when utilized in a joint detec-
tion and tracking configuration. Nevertheless, the proposed
detection stage can function as a fast standalone object de-
tection model if required. We have evaluated FUS3D ex-
tensively on the MIPT dataset and demonstrated its supe-
rior performance over comparable existing state-of-the-art
methods in terms of 3D object detection, multi-object track-
ing, and, most importantly, runtime.

1. Introduction

We present a Fast Unified System for 3D Object Detec-
tion and Tracking, abbreviated as FUS3D Object Detection
and Tracking. The proposed approach performs both 3D
object detection and multi-object-tracking in a joint frame-
work that solely relies on 3D depth data. Our work is the
first to demonstrate that such a system can be sufficiently
optimized to achieved real time inference speeds on edge
devices such as the Nvidia Jetson Nano singleboard com-
puter. Despite the tight integration our system is flexible in
its use. If required, our object detection stage can be used as
a standalone model, thus allowing for even faster runtime at
the cost of a small drop in detection accuracy.

The FUS3D system is best suited to small scale indoor
environments and a static camera setting. Typical examples
of such settings are human monitoring systems in the do-

mains of ambient assisted living (AAL) and surveillance,
which can be particularly well served with a combination
of 3D depth sensors and edge-based model inference due to
the intrinsic characteristics of the respective technologies.
Depth sensors can operate continuously and largely inde-
pendently of lighting condition, as they do not require an ex-
ternal source of illumination. The absence of color intensity
information also renders the invasion of people’s privacy a
less prominent issue, and is further reduced when poten-
tially sensitive data can be analyzed sensor-near. FUS3D is
decidedly application-oriented, and we believe it can bring
immediate benefits to human-centered support and monitor-
ing systems in AAL and related fields.

Our work is evaluated on the MIPT [12] dataset which
consists of sequences of depth data focused on human
indoor activity. ~ We outperform comparable previous
state-of-the-art methods in terms of object detection perfor-
mance, tracking metrics, and, most importantly, runtime.

The main contributions of our paper are:

» FUS3D is more than 10 times faster than state-of-the-
art 3D object detection methods while also incorpo-
rating a transformer-based tracking stage. FUS3D is
the first method to demonstrate a unification of 3D ob-
ject detection and multi-object-tracking on severely re-
source constrained hardware. Model code is publicly
available. !

* We present several approaches to improve 3D de-
tection performance with little to no computational
overhead, including an auxiliary orientation estimation
loss, use of global context for tracking, and a novel
dense target assignment (DTA) scheme.

* A seamlessly integrated transformer-based tracking
stage that outperforms existing trackers and allows for
end-to-end training along with a simplified approach
to track association and acquisition.

Section 2 gives an overview over related work in the ar-
eas of joint detection-and-tracking and transformer-based

lhttps://qithub.com/theitzin/FUS3D



systems in vision tasks. We continue in Section 3 with a de-
tailed description of the proposed pipeline. The method is
evaluated in Section 4 by giving ablation studies to validate
design choices and comparisons with the current state-of-
the art. Finally we concluded in Section 5 with a discussion
of limitations and reflection on the presented work.

2. Related Work

For our review of related work we categorize existing
approaches into four groups. We begin with notable work
operating under the tracking-by-detection paradigm and fol-
low up with the category of joint-detection-and-tracking.
Then we focus on transformer architectures integrated in
vision tasks for purposes other than tracking, and last is ex-
isting work that integrates transformers for the explicit pur-
pose of object tracking over time. The latter includes both
methods intended for use on 2D as well as 3D data.

Tracking-by-detection Tracking methods operating un-
der the tracking-by-detection paradigm feature separate
tracking and detection mechanisms, with the latter yield-
ing a set of detections at each time step. A given track-
ing algorithm then creates associations between these sets
to form object trajectories over time. A prominent ap-
proach in this category is SORT [5], which uses Kalman
filters [40] to model bounding box attributes. New de-
tections are optimally associated with existing tracks us-
ing the Hungarian algorithm [20] and the Mahalanobis dis-
tance as a matching cost function. In its extended Deep-
SORT [41] variant it introduces deep learning feature simi-
larity as an additional factor in the association cost calcula-
tion. This principle of association-by-appearance is found
in different variations [45, 43, 17] throughout tracking lit-
erature. For applications featuring frequent occlusions and
crowded scenes however, appearance-based methods may
struggle to produce sufficiently differentiating feature vec-
tors. Other motion based approaches try to palliate the
object-to-track association problem through modeling of
object trajectories. The principles behind these methods
range from constant velocity assumptions [ |, 5] to the social
force model [28, 44, 22] and optical flow estimation [16].

Joint-detection-and-tracking In contrast to previous
methods, the joint-detection-and-tracking approach aims to
combine both the detection and the tracking task into a sin-
gle system. Methods in this category operate under the as-
sumption that the classical tracking-by-detection paradigm
can and should be extended by a reverse detection-by-
tracking principle. They use this assumption to perform
cross-frame track regression [11] or utilize track-assisted
detection proposals [2, 52, 47]. Other methods achieve
combined detection and tracking through simultaneous pre-
diction of objects and their appearance embedding from a
common backbone [39, 46].

Use of transformers in vision tasks With the emergence
of the transformer architecture [37] the deep learning toolkit
was extended by a powerful set-to-set translation mecha-
nism. Aware of the potential of such a general tool, the au-
thors of DETR [6] were among the first to successfully ap-
ply transformers in the computer vision domain. They pro-
pose an end-to-end 2D object detection approach that builds
on top of a CNN backbone, allowing them to eliminate the
need for handcrafted spatial anchors and non-maximum-
suppression. Ubiquitous utilizations of the attention mech-
anism to the tasks of image classification [9], object detec-
tion [6, 53] and segmentation [49, 23] among many oth-
ers have since demonstrated its versatility and applicability
throughout all areas of computer vision.

Transformer-based tracking In line with the naming
convention of other tracker categories, transformer based
trackers have been grouped under the term tracking-by-
attention — a term coined by the authors of the Track-
Former [27]. The intended use-case of the TrackFormer
architecture is simultaneous 2D object detection and track-
ing based on RGB data. It uses the attention mechanism
to jointly reason about the initialization, termination, and
spatio-temporal propagation of tracks, and in this regard
shares similarities with our proposed approach. Both the
TrackFormer and TransTrack [32] develop the notion of ob-
Jject queries and track queries which are also used in our
approach. Object queries are learned tokens that are used as
queries for the detection of objects that newly appear in the
current frame, whereas track queries are features passed on
from the previous time steps. Each track query represents an
object that has already existed at the previous time step. In
contrast to both TrackFormer and TransTrack our approach
leverages the light-weight Perceiver [14] architecture, thus
requiring no encoder and only a single decoder stage for
joint arbitration of both object and track queries. Efforts
towards the unification of 2D single-object-tracking (SOT)
and multi-object-tracking (MOT) on top of a joint detec-
tion/tracking architecture have resulted in the UniTrack [38]
and UTT [26] architectures. This branch of development,
however, is largely unrelated to the subject of this paper.
Finally, some of the mentioned concepts have been ap-
plied to tasks in the 3D data domain. LTTR [7], PTTR [51]
and PTT-Net [15] all demonstrates an approach for 3D
single-object-tracking in large scale outdoor environments
captured as LiDAR pointclouds. Both LTTR and PTTR
are not concerned with runtime optimization. They uti-
lize a Siamese-like [4] tracking pipeline featuring either a
3D sparse CNN or PointNet [30]-based backbone followed
by a tokenization step and feature fusion using an attention
mechanism. While PTT-Net is optimized for runtime, it de-
cidedly differs from our approach in terms of: 1. target ap-
plications, 2. data formats (LiDAR vs depth maps), 3. real
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Figure 1. The basic structure of the FUS3D detection and tracking pipeline: 1. Input frames, preprocessing and background model, 2.
2D CNN backbone, restructuring of features to a 3D representation and outputs for preliminary single-frame-based 3D bounding boxes,
estimation of the camera pose and a global context summary, 3. Tokenization of features, assembly of new object queries and existing track
queries for processing by a Perceiver model and 4. Projection and filtering of output bounding boxes.

time inference on desktop hardware vs edge devices and 4.
single-object-tracking vs multi-object-tracking.

To the best of our knowledge, no previous work has ex-
tended the transformer-based tracking paradigm to 3D ob-
ject detection and multi-object-tracking in depth maps with
the intention of real-time inference on edge devices.

3. Methodology

We now present the individual components of our track-
ing pipeline. Next to initial preprocessing we present a two-
stage learning-based approach dedicated to 3D object de-
tection and multi-object-tracking respectively. A simplified
overview of the key pipeline components is given in Fig-
ure 1. More in-depth illustrations and detailed descriptions
are given in the respective sections.

The input data representation expected by our system are
depth maps. In order to maximize inference speed, both
preprocessing and early feature extraction are performed in
2D image space. If required, our method permits the direct
incorporation of other image-based modalities such as RGB
or thermal images by simply stacking the individual images
at the input.

Our approach for object detection is similar to the
baseline system presented by the authors of the MIPT
dataset [ 1 2], which was designed for similar use-cases. For
easy reference we label their system as Syirpr. Both Syirpr
and FUS3D use a background model as proposed by Wren
et al. [42] to enable extraction of basic temporal informa-
tion at the pixel level. It exploits the targeted static-sensor
setting and gives a significant boost to the systems’ perfor-
mance at negligible computational cost.

3.1. Object Detection

Our approach to 3D object detection can be categorized
as a single stage detector. Predictions are made with re-
spect to a predefined grid of possible object centers, where
the grid is obtained from subdivision of the sensors field of
view in image-space into a set of cells. While the grid is
uniform when viewed in image space, cells appear irregu-
larly shaped in world space, as illustrated in Figure 2 (left).
The main goal of early feature extraction in the object de-
tection stage (detailed illustration see Figure 3) is the ex-
traction of one-dimensional feature vectors ¢ € R¢ for each
cell. Given a cell grid of height h, width w and depth d,
the desired shape of the full feature tensor is (h, w, d, ¢). To
ensure fast inference, the first step in feature extraction is a
2D CNN backbone. This backbone is configured to produce
an output tensor of shape (h, w, dc), which is further passed
to a 2D-to-3D conversion module to achieve the desired 4D
shape. We achieve this conversion step with a reshape op-
eration, followed by a 3D convolutional residual block. By
associating cell neighborhoods in all three dimensions, the
addition of the 3D residual block enables the model to better
learn the ordering of cells in the depth dimension. Cell fea-
ture vectors are subsequently projected down to detections
d € R0F"<: that express potential bounding boxes for a
detection problem with n.;, classes. The bounding box rep-
resentation consists of box-center location loc € R3, box
dimensions dim € R3, facing direction as a normalized
orientation vector in the ground plane dir € R2, a confi-
dence score conf € R, an indication of the centerness of a
cell within the bounding box (only relevant for dense target
assignment — see below) center € R and a class probability
distribution cls € R™<s. The manner of cell assignment to
ground truth objects is critical and leads us to the develop-
ment of a custom target assignment scheme.



Figure 2. Target assignment strategy overview. Cells viewed in world space have irregular shape (grid shown in black on the left) whereas
their size is uniform in image space (shown in white on the right). Cells along the depth axis occlude each other. Assignment strategies
from right to left: dense target assignment (DTA), broadcasted target assignment (BTA) and center-based assignment.

2D Features

Context
context
Fex
@E[{mm G
Context — -
Extrinsic Matrix

[]ere
» 2D - 3D Camera Pose
*
Detection
3D Features
*
@ e

>

ﬁ 1D Feature Vector

Input
Stream

Backbone

Figure 3. Detailed overview of individual components in the 3D
object detection stage and tensor shapes. Arrows to the right show
objects forwarded to the tracking stage.

Target assignment In the naive approach, only the cell
closest to the center of a ground truth box would have an as-
signed prediction target (Figure 2 second from the left). As-
signed, or positive, cells are optimized to match the ground
truth bounding box parameters loc, dim, dir and cls, and
have the confidence target conf = 1, while other, nega-
tive, cells are only optimized to predict a confidence value
of conf = 0. In the case of the location property we do
not directly predict the ground truth location but instead the
offset of the cell center to the ground truth location. The
training loss is computed as a weighted sum over mean
squared error for loc and dim, negative cosine similarity
for dir, cross-entropy loss for cls and binary cross-entropy
for conf (see supplementary material for a more detailed
description). In practice it becomes apparent that the se-
vere class imbalance between positive and negative cells at
a typical ratio of 10% : 1 or higher is difficult to optimize. A
possible workaround for this problem is to assign multiple
cells per ground truth target, as proposed in the 2D case by
the FCOS detector [36] and in simplified form by Syipr
in the form of broadcasted target assignment (BTA) (Fig-

ure 2 second from right). With FUS3D we propose what
we consider to be a logical extension of this concept and
regard the set of cells contained anywhere within a ground
truth bounding box to be positive (Figure 2 rightmost) and
refer to this approach as dense target assignment (DTA). To
be more precise, for each ground truth bounding box b we
define the linear transformation 7 : R? — R? into a local
box coordinate system which is aligned with the orientation
of the box such that 7, (bjo.) = 0 and ||Tb(-)||Oo = 1 for
any point on the boundary 0b of the respective box. Given
the set of cell centers C and a ground truth bounding box b
the expression

Cim (reCilmie—bul <1} M)

defines the set of cells which are assigned b as an optimiza-
tion target.

Since objects in 3D objects cannot overlap significantly,
the problem of overlapping bounding boxes as described in
FCOS is highly unlikely and its resolution a non-issue. Us-
ing DTA, the prediction of cell confidence is thus not un-
like a form of coarse 3D segmentation. If FUS3D is in-
tended to be used merely as an object detection network,
then no further network components are required. In this
case, sensor intrinsics and its pose description are used to
transform predicted image-space locations to world-space
coordinates. Further postprocessing using non-maximum-
suppression yields a set of bounding box predictions.

Centerness Following FCOS [36], we introduce an ad-
ditional centerness bounding box attribute that is zero at
the bounding box center and monotonically increases to one
at its boundary. Compelling the network to learn not only
whether cells are within a bounding box, but also how close
they are to the center, leads to a tangible improvement in
detection performance at negligible additional processing
cost. The centerness definition originally given by the au-
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Figure 4. Detailed overview of individual components in the track-
ing stage and tensor shapes. Objects originating from the detec-
tion stage are visualized as arrows from the left, while tracks from
previous time steps are introduced from the top. Updated track
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FUS3D are output to the right.
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thors of FCOS was intended for 2D object detection and is
therefore extended to the 3D case.

Orientation estimation The proposed FUS3D system
performs object detection in image space. In order to ob-
tain predictions in world space a transformation and knowl-
edge of the sensors pose is required. While, for the pur-
pose of all evaluations, we assume that the sensor pose is
known, we find during experimentation that the introduc-
tion of a auxiliary camera pose estimation task along with
an accompanying network branch is beneficial to detection
performance. The branch takes the 3D feature tensor as
input (see Figure 3), applies global average pooling to all
spatial dimensions and uses the resulting one-dimensional
(image-space-based) global context g € R* to predict both
an orientation estimate orientation € R? corresponding
to the world-space “up” direction as well as a scalar of f set
indicating the height difference between sensor and ground
level.

Global context The global context is identical to the in-
termediate one-dimensional feature vector g obtained for
orientation estimation. It is passed to the tracking stage as
supplementary information.

3.2. Tracking

The object detection stage uses cells as units for pro-
cessing. Each cell represents a region of 3D space and is
described by a one-dimensional feature vector. Thus, each
cell has both semantic meaning and a location associated
with it, and it is natural to transfer them directly to the track-
ing stage where, after some preprocessing, they take on the
role of object tokens.

Token generation As an initial step in object token gen-
eration, we apply a confidence threshold that uses the confi-
dence value predicted in the object detection stage. This
filters out cells that are assumed to correspond to empty
space, thereby greatly reducing the number of cells that are
included in further processing. The earlier proposed dense
target assignment scheme has the opposite effect. It in-
creases the number of positive cells and ensures that a com-
prehensive description of the processed scene is passed on
to the tracking phase. Using the center-only target assign-
ment scheme, bounding boxes would be largely expressed
by individual cells, reducing the role of the tracking stage to
mere object propagation. After extensive experimentation
we find that for the generation of object tokens, best results
are achieved by combining both cell features ¢ and detec-
tions d. We concatenate them at the cell level and apply
a multilayer perceptron (MLP) [19] to obtain object tokens
t € RY, where typically ¢ > c (see block Token Genera-
tion in Figure 4). The object tokens are further augmented
using fixed sine/cosine based encodings as originally pro-
posed by Vaswani et al. [37]. Coordinates associated with
cells are not scalar but three-dimensional, so we concate-
nate multiply positional encodings computed for the indi-
vidual coordinate entries. Both cell centers and locations
predicted in the object detection stage require knowledge of
sensor extrinsics to compute and are viable choices to use
for the positional encodings. We find that predicted loca-
tions perform slightly better. The set of object tokens repre-
sents a pool of knowledge about an individual frame that we
want to distill into a much smaller set of track tokens. We
use the Perceiver [ 14] architecture to realize this distillation
step. While TransTrack uses a two-decoder setup, we sim-
plify this approach to a single Perceiver module that jointly
performs both object detection and object propagation.

Object and track queries As proposed by both
TransTrack [32] and the TrackFormer [27] we use the no-
tion of object queries and track queries, which represent
two variants of latent tokens. Track queries are features
passed from previous time steps (input Track Queries in
Figure 4). Each such token represents an object that has
already existed at the previous time step and is passed on
to the current time step. Combined with the background
model applied during preprocessing, our approach achieves
both early and late fusion of features over time, thereby al-
lowing it to form temporal associations quickly and effec-
tively. Object queries, on the other hand, are used for detec-
tion of objects that newly appear in the current frame. They
are learned and context dependent. We obtain them from a
token-wise MLP that takes both an object query index and
the global scene context g, passed from the object detection
stage, as input (see block Object Queries in Figure 4). Our
evaluations show that the inclusion of the global context in



Table 1. Comparison against state-of-the-art models in single-class
object detection. Best method intended for edge devices is marked
in bold (bottom section), overall best is underlined. FPS measured
on Nvidia TITAN X [TX] and Jetson Nano [Jet], mAP and mAHS
numbers given at @ 0.25 IoU.

Configuration mAP mAHS FPS [TX] FPS [Jet]
VoteNet [29] 64.4 50.8 6.3 0.8
PointPillars [21] 55.8 452 6.0 0.7
H3DNet [48] 657 532 4.2 0.5
Group-Free 3D [24] 67.3 55.8 3.9 0.3
Smipr [12] (Large) 639 544 10.3 1.2
Swvrpr [12] 437 37.2 71.5 11.3
Ours (no Tracker) 44.6 424 72.8 114

this step yields tangible improvements in the acquisition of
new object tracks.

Track propagation and prediction Track predictions are
obtained by again applying a token-wise MLP to the set of
latent tokens (see output Track Predictions in Figure 4). We
predict the same set of bounding box parameters and use
the same loss function as in the object detection stage, with
the exception of the centerness attribute. The association
strategy between tracks of previous time steps and current
predictions differs between training and inference phases.

During training we match predicted with ground truth
tracks in a two-step process: 1. Matching of newly appeared
ground truth tracks with object queries and 2. Matching of
ground truth tracks that already existed in the previous time
step with track queries. To realize the first step, each object
query is associated with an anchor box. Anchor boxes are a
set of bounding boxes that were obtained through k-Means
clustering on the training set and represent the most com-
monly found objects in the dataset. They are matched to
the bounding boxes of new ground truth tracks using the
Hungarian Algorithm [20] and a matching cost heuristic
based on Euclidean distance and the Distance-IoU loss [50].
Matching with existing tracks is achieved implicitly by en-
forcing that the track query appears at the same latent token
index as on the previous time step. Assigned queries are
optimized to predict bounding boxes with confidence one,
and zero otherwise.

In the inference case updates are conducted by impos-
ing add and remove thresholds 7,44, Tremove € [0,1] on
the confidence of predicted bounding boxes. Object queries
with confidence higher than 7,44 are promoted to a track
query, provided that they do not have large IoU overlap with
existing tracks. Track queries with confidence lower than
Tremove are dropped. The resulting new set of track queries
is passed on to the next time step.

Table 2. Ablation study of components in the object detection
stage. Multi-class setting (pose classification into ”Standing”,
”Sitting”, ”Lying” included). FPS measured on an Nvidia Jetson
Nano, mAP and mAHS number given at @ 0.25 IoU.

Configuration mAP mAHS FPS

No BG-Model 2091 1946 115
No 2D — 3D Block 40.74 3498 127
Target Assignment: Center 34.14 30.39 114
Target Assignment: BTA 39.13 3433 114
No Centerness 39.87 3396 114
No Orientation Estimation ~ 40.53  34.32 114

4240 3590 114
4320 3924 64

Ours (no Tracker)
Ours (with Tracker)

4. Experiments

We perform our evaluations on the MIPT [12] dataset.
It consists of 85k individual frames split across 20 indoor
sequences. The content is focused on human activity and
captured by a static depth sensor using structured light tech-
nology. Trajectories of recorded individuals are annotated
fully in 3D with oriented bounding boxes as well as a per-
frame and per-track pose categorization into the classes
”Standing”, ”’Sitting” or “Lying”. To the best of our knowl-
edge there currently exists no other public dataset featur-
ing similar characteristics in terms of 1. sequential depth
data (not LiDAR), 2. 3D trajectory annotation, 3. envi-
ronment scales on the order of indoor scenes, 4. a static
sensor setting and 5. dataset size. The MIPT dataset fur-
ther provides sensor intrinsics and extrinsics for each se-
quence. These ground truth parameters are used for all of
our evaluations. The CNN backbone employed for feature
extraction uses the MobileNetV2 [3 1] architecture. Despite
extensive testing we found it to perform better than newer
MobileNetv3 [13], MnasNet [33] or EfficientNets [34, 35]
architectures. Our interpretation of this effect is that run-
time and accuracy improvements presented by such back-
bones are largely achieved with the RGB modality in mind.

Object detection comparison against the state-of-the-art
We start off with a comparison of our proposed object de-
tection against the state-of-the-art and follow the evalua-
tion protocol given in the MIPT paper. For fair comparison
with existing methods, the experiment is performed with-
out use of any temporal information, thus neither the pro-
posed background model nor the tracking stage are used.
Performance numbers are given by frame-per-second (FPS)
numbers on fixed hardware, the standard mean average pre-
cision (mAP) [10] metric as well as mean average head-
ing similarity (mAHS) [18] which is an extension of mAP
weighing down a true positive detection by its heading sim-
ilarity to the ground truth. Both mAP and mAHS number



Table 3. Ablation study of components in the tracking stage and comparison with the DeepSORT tracker. Using HOTA, CLEARMOT and
Mostly-Tracked/Partly-Tracked/Mostly-Lost metrics as well as mAP and mAHS @ 0.25 IoU and FPS measured on an Nvidia Jetson Nano.

Configuration / Method HOTA  DetA AssA° MOTA MOTP MT PT ML mAP mAHS FPS
DeepSORT 327% 53.4% 202% 604% 753% 5 16 1 4240 3590 -

Ours (no global context) 353% 53.6% 234% 543% 754% 7 15 0 4212 38.06 6.4
Ours (no anchor boxes) 342% 46.5% 24.5% 43.8% < 69.4% 6 14 2 38.82  36.11 6.4
Ours (only cell features) 36.0% 53.0% 254% 539% 76.8% 7 15 0 4031 3851 6.6
Ours (only detection features) 35.8% 52.8% 2277% 55.0%  75.0% 7 13 2 41.78  38.80 6.5
Ours (no overlap check) 311% 404% 24.0% 15.0% 78.3% 7 15 0 37.90 33.60 6.5
Ours 36.5% 535% 251% 58.0% 78.4% 7 15 0 4320 39.24 6.4

are given at an IoU threshold of 0.25. Furthermore metrics
are computed for a single "Human” class, no pose classifi-
cation takes place. Performance numbers given in Table 1
are split between methods intended for use on edge devices
(bottom) and general use (top). Our approach can outper-
form the baseline Syp model in the bottom category both
in terms of detection accuracy and runtime. Especially no-
table is the small difference between mAP and mAHS with
6.5 percentage point on Sypr compared to 2.4 percent-
age points for our method, indicating that it is significantly
better at estimation of object orientations.

Object detection ablation study Next we validate the de-
sign choices of our object detection stage. The evaluation
metrics are identical to the comparison against the state-
of-the-art with the exception of FPS numbers. They are
now given on an Nvidia Jetson Nano singleboard computer,
which is our primary target device. In contrast to the pre-
vious experiment we now consider the multi-class setting
and give performance numbers averaged over the three pose
classes ”Standing”, ”’Sitting” and ”Lying”. The base config-
uration used in the ablation study is the full object detection
stage with postprocessing in the form of non-maximum-
suppression. We verify the efficacy of each proposed addi-
tional component and finally include an additional test con-
figuration including the proposed tracking stage. As shown
in Table 2, the removal of most components leads to a 2 to 3
percentage point drop in terms of mAP and mAHS. Outliers
are the naive center-based target assignment strategy, giving
a drop of 8 points and most significantly-but not unexpect-
edly, the removal of the background model which roughly
halves the mAP score. The removal of components has for
the most part no significant impact on model runtime, with
the exception of the 2D — 3D Block which increases the
framerate by 11%, at the cost of a drop in detection perfor-
mance. Additional inclusion of the FUS3D tracking stage
shows an increase in both mAP and mAHS of 0.8 and 3.3
percentage points but also reduces the framerate by 44%
which may or may not be desirable in applications without
a tracking requirement. The more pronounced increase in
mAHS compared to mAP suggests that the additional tem-

poral associates allow the transformer stage to better judge
object orientations.

Tracking ablation study and baseline comparison We
continue with an evaluation of the proposed FUS3D track-
ing stage. Since no comparable joint detection and tracking
systems currently exists, we elect to instead compare the
full FUS3D system with a pipeline consisting of the FUS3D
detection stage and the established DeepSORT [4 1] tracker.
Additionally we verify the presented design choices with an
ablation study on the tracking stage. Next to the previously
used mAP and mAHS object detection metrics, we choose
a set of tracking metrics in accordance with the MOT20
benchmark [8], including HOTA [25], CLEAR MOT met-
rics [3]. For completeness we also include FPS numbers in
the ablation study. However, this metric is not included for
the baseline DeepSORT tracker, since no sensible compari-
son between classical and GPU-accelerated trackers can be
made. As shown in Table 3, our approach shows superior
metrics on all metrics except on multi-object-tracking accu-
racy (MOTA), where our proposed configuration is in sec-
ond place by a small margin. Our model tends to produce
increase localization precision as indicated by the higher
MOTP metric and the shifted IoU distribution in Figure
5 top-left. Our tracking stage is capable of suppressing
false positive detection proposals produced by the detec-
tion stage, however conversely we see a slight increase in
false negatives and ultimately lower MOTA where the track-
ing stage overly aggressively prunes detections it deems in-
correct. Higher association accuracy (AssA) of the “only
cell features” is a direct consequence of the tracking stages
higher reliance on temporal context when no bounding box
attributes by the detection stage are available. Overall the
ablation study demonstrates the positive impact of each of
the components and strategies involved in the FUS3D track-
ing stage. Across the set of configuration evaluated in the
ablation study there is no significant variation in runtime.

Advantages of a transformer-based second stage We
compare object detection characteristics of the standalone
FUS3D detection stage combined with non-maximum-
suppression postprocessing and the full FUS3D pipeline.
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Figure 5. Visualization of object detection characteristics: IoU dis-
tribution (top left), deviation from ground truth heading direction
(top right), IoU as a function of box visibility (bottom left) and
IoU as a function of box distance (bottom right).

For the purpose of this experiment we write NMS to refer
to the first configuration.

We begin with a visualization of IoU distributions of all
true positive bounding boxes (Figure 5 top-left). Here the
FUS3D IoU distribution has noticeably higher mean com-
pared to the NMS IoU distribution. Both approach zero for
IoU rates over 80%.

Second, we analyze the distributions of heading similar-
ity deviations between predicted and ground truth bounding
boxes. A deviation of zero indicates a perfect heading an-
gle while a deviation of m means that the bounding box is
pointed in opposite direction. As can be seen in the upper
right quadrant of Figure 5, the distributions are bimodal,
showing that both of the tested configurations share a com-
mon error mode where the front and back of pictured in-
dividuals are confused. This effect is not surprising when
working solely with 3D depth data.

Third, we plot the average IoU of true positive bound-
ing boxes as a function over their visibility. We define
visibility € [0, 1] as visibility := 1 — occlusion, where
the occlusion rate of a bounding box is calculated using a
heuristic that measures the fraction of the number of pixels
in a projected 2D image space bounding box compared to
the number of points in the corresponding pointcloud that
lie withing the 3D bounding box.

Finally, we visualize the average IoU of true positives as
a function of their distance to the sensor. For higher dis-
tances sensor noise increases and cell resolution (as viewed
in world space) diminishes. In consequence we can observe
a decreasing trend.

Table 4. Comparison of the full FUS3D system inference speed
on Jetson Nano (Device: Nano) and Jetson Orin Nano (Device:
Orin), as well as effects of lower precision datatypes on runtime
and performance metrics.

Datatype Device mAP mAHS MOTA FPS

float32 Nano 4320 39.24 58.0 6.4
float32 Orin 4320 39.24 58.0 16.4
float16 Orin 42.34  38.53 56.6 23.6
int8 Orin 13.02 9.82 1243  36.6

Overall the FUSED configuration yields superior results
compared to the NMS configuration in all four cases.

Lower precision datatypes We present additional eval-
uations of our system’s performance when utilizing lower
precision datatypes (see Table 4). In place of the Jetson
Nano target device, the presented evaluations are conducted
using the more recent Jetson Orin Nano platform, intro-
duced in March 2023. The decision to adopt this platform
is based on two primary considerations. Firstly, the Jet-
son Nano’s lack of support for the int8 datatype renders it
unsuitable for the purpose. Secondly, although the float16
datatype is supported, deploying half precision models with
small batch sizes on this device results in significant CPU
overheads, a phenomenon that renders it impractical for
practical implementation.

Using float16 precision inference, we observe a notable
enhancement in inference speed accompanied by a slight
reduction in detection and tracking performance. However,
attempting to further reduce the model to int8 precision
without quantization aware training leads to a severe degra-
dation in accuracy, rendering the model unusable. Runtime
evaluations using the TensorRT framework, reveal compa-
rable speed results to a model fully traced and optimized for
inference using PyTorch’s built-in functionality.

In general, comparing the Jetson Nano platform to the
newer Jetson Orin Nano platform, we note an 150% in-
crease in inference speed when incorporating the tracking
stage, and a speedup by roughly 200% when excluding the
tracking stage.

Backbone evaluation In Table 5, we give an overview of
CNN backbones tailored for mobile inference, along with
their corresponding runtime and performance metrics when
used in our detection stage. The final version of the FUS3D
system uses the MobileNet v2 [31] architecture. Despite
the availablility of more modern backbones such as Mo-
bileNetv3 [13], MnasNet [33] or EfficientNets [34, 35] we
find it to give the best compromise between runtime and
performance on our target devices. For the FUS3D system
we observe higher detection accuracy than Mobilenetv3 and
MnasNet, while displaying 65% faster inference speed than
EfficientNet-BO.



Table 5. Comparison of light-weight CNN backbones when used
in the FUS3D detection stage in terms of runtime and performance
metrics.

Backbone mAP mAHS FPS

Mobilenet v2 (Ours) [31] 44.6 42.4 114
Mobilenet v3 large [13] 40.3 38.8 12.6
Mobilenet v3 small [13] 38.6 37.5 15.0
MNasNet [33] 40.6 38.9 12.3
EfficientNet-BO [34, 35] 46.9 45.5 6.9

Comparison with two-stage approaches Finally, in Ta-
ble 6, we provide a comparison between the tracking perfor-
mance of our FUS3D system compared to alternative two-
stage approaches. To maintain consistency with models al-
ready presented in our paper, we combine the VoteNet [29]
and H3DNet [48] object detection models with the baseline
DeepSORT tracker, resulting in the creation of two-stage
systems. Notably, these systems are not specifically de-
signed for fast inference times. We observe a 25% increase
in tracking accuracy at the cost of a roughly 90% decrease in
runtime. The frames per second (FPS) figures solely reflect
the runtime of the detection model, ensuring a comparable
basis for evaluation, as the FUS3D tracker operates on the
GPU, while the DeepSORT tracker is executed on the CPU.

5. Conclusion

Discussion of limitations The FUS3D system is tailored
to a specific set of circumstances and applications. Among
the most predominant requirements is the use of a static
depth sensor to capture a given scene. This enables the use
of a background model, in some cases almost doubling de-
tection performance in terms of mAP (Table 2) with neg-
ligible computational cost. Also related to the application
setting is the given environment size. As discussed in Sec-
tion 3.1, the subdivision of the sensor’s field of view into
cells is essential to both the object detection and tracking
stages of our approach due to the cell-to-token transforma-
tion procedure. If the environment size L is uniformly in-
creased while keeping cell volume at a constant scale, the
number of cells required will grow at a rate of O(L?) (or
O(L?) if we disregard the height dimension), which is the
main reason why our method is inapplicable to datasets and
applications related to the task of autonomous driving. Last,
our method in its presented form does not utilize a multi-
scale approach to obtain cells of different scales. With the
exception of an increase in model size and higher runtime
there is no inert reason preventing us from doing so. How-
ever, such approaches tend to improve performance in set-
tings with objects of varied sizes. This is not the case in
the presented work, which focuses predominantly on hu-
man detection and tracking — a setting featuring objects that

Table 6. Evaluation of tracking performance and runtime of alter-
native two-stage systems compared to FUS3D. FPS numbers only
reflect backbone inference speed.

Configuration HOTA MOTA FPS
Ours 36.5% 58.0% 114
Mobilenet v2/DeepSORT  32.7% 60.4% 11.4
VoteNet/DeepSORT 451% 747% 1.3
H3DNet/DeepSORT 443% 73.0% 0.9

are always of roughly equal size. In more general cases it
may be desirable, or even necessary, to extend our approach
in the suggested manner.

Reflection We have presented a new approach for simul-
taneous 3D object detection and multi-object-tracking in 3D
depth data. The FUS3D system unifies both tasks into a
single monolithic, end-to-end trainable neural network. It
was developed with fast inference time as a primary de-
sign goal, and our evaluations have shown that inference
speeds of 6 — 11 frames per second can be achieved on
the Nvidia Jetson Nano single-board computer. Our system
has been extensively evaluated on the MIPT dataset which
is intended for indoor 3D human detection and tracking.
We have demonstrated that the FUS3D detection stage can
act as a viable standalone object detection model, and have
shown that our system can outperform all previous methods
intended for inference on the edge. Detailed ablation studies
have proven that all proposed components contribute posi-
tively to the overall performance of the system, both in the
case of the detection and the tracking stage. Further studies
of IoU and heading similarity distributions, as well as IoU
as a function of bounding box visibility and distance in the
context of object detection demonstrated the clear benefit of
a trainable tracking stage.

Based on the frequently demonstrated ability of trans-
formers to scale well with massive datasets, we believe that
our approach has not yet reached its full potential. There-
fore, for future work, we propose the development of larger
and more diverse public databases that feature labeling for
both 3D object detection and multi-object-tracking. Fur-
thermore, since our method enables end-to-end training,
we propose to investigate downstream tasks built on top of
FUS3D such as human action or interaction recognition.
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