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Abstract—One step in the automatic spine analysis and verte-
brae abnormality detection, is the segmentation of vertebrae in
either CT or MRI images. Three methods that perform vertebra
segmentation together with additional tasks such as localization
and identification are examined in this paper. The first method
uses instance segmentation that segments vertebrae individually
in an iterative approach. The second method builds on the
first and extends the fully convolutional network to a two-stage
framework. In the first step, bounding box predictions provide
a priori knowledge about the anatomy part depicted the second
step. The third method performs adversarial learning with a
generator and a descriptor in a multi-task framework to make use
of the correlation between the individual tasks. The methods are
compared with respect to their different approaches and the input
data prerequisites. The architecture types and learning strategies
as well as their results are discussed. Finally, the strengths and
weaknesses are highlighted.

Index Terms—Vertebra, segmentation, localization, identifica-
tion, convolutional networks, adversarial learning

I. INTRODUCTION

The localization and segmentation of individual vertebrae in
either Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI) scans are a central step in the computer-
assisted analysis of the spine [8], [19]. It is used to automat-
ically detect vertebrae abnormalities [2] or fractures [19]. In
clinical workflows, chest or abdomen images are automatically
examined for spine diseases, even if the scans are not acquired
for this purpose [4]. A challenge in the vertebrae analysis is
the variance in the anatomy of the spine and the pathological
variants [4]. For example, around 10% of the population have
one vertebra less or in addition [16]. Combined with the
similarity in appearance, it is difficult to detect the accurate
number of vertebrae and subsequently identify and segment
each vertebra correctly [20]. Different field of views result in
varying region of interests and lead to only partially visible
vertebrae [10]. In addition, both modalities, MRI and CT
scans, introduce challenges such as varying intensities, varying
resolutions, uneven grayscales and imaging noise [11], [20].
Examples for intensity variations (a-c), pathological variants
(d-1), uneven grayscales (j-1) and size variants (m-o0) are shown
in Figure 1.

Starting in 2017, deep learning approaches were introduced
to handle the tasks of localization, identification and segmen-
tation of vertebrae [1], [3], [5], [9], [12], [17]. Three repre-
sentative approaches for whole spine images are discussed and

Fig. 1. Challenges depicted in a lumbar spine MRI sagittal slice: intensity
variations (a-c), pathological variants (d-e), uneven grayscale (j- 1), area and
resolution variations (m-o), (taken from [20]).

compared in this paper. Lessmann et al. [10] describe an itera-
tive instance segmentation framework that outputs the next not
segmented vertebra, the anatomical label and a classification
of partial or full visibility. This work is extended by Masuzawa
et al. [11] to a two- stage framework that applies an adapted
version of the instance framework to cervical, thoracic and
lumbar regions. Zhang et al. [20] use an adversarial learning
approach to train a generator and descriptor to learn global
vertebra relationships.The paper is organized as follows: Sec-
tion 2 describes the methods which are compared in Section
3 with respect to 1) the application and their prerequisites on
the input data, 2) network architectures and training strategies
and 3) the datasets used and the corresponding results. Finally,
strengths and weaknesses are highlighted and a conclusion is
drawn in Section 4.

II. METHODS

The first method is an iterative instance segmentation frame-
work by Lessmann et al. [10] that was used as second stage
in the framework by Masuzawa et al. [11]. The third method
by Zhang et al. [20] uses an adversarial approach. The latter
two have been published in 2020 and perform segmentation,
localization and identification in one framework.



Fig. 2. Schematic network architecture of segmentation network with image
patch (I) and instance memory (M) as inputs and segmentation mask (S),
visibility classification (S) and anatomical label regression (L) as output (taken
from [10]).

A. Instance Segmentation

Lessmann et al. [10] introduce an iterative in- stance seg-
mentation that detects and segments the next not yet segmented
vertebrae in an itera- tive manner. The segmentation network
is a Fully Convolutional Network (FCN) inspired by the
U-Net architecture [13] with an encoder and decoder path
connected by skip connections. The architecture is shown in
Figure 2. In order to provide the information about already
segmented vertebrae of previous iterations to the network,
binary labels for each voxel are used as instance memory
and fed to the network as auxiliary channel. The iterative
approach is realized by a window sliding over the image with
the center of the window being adapted after each iteration
based on the vertebra parts detected. Two additional branches
are attached to the en-coder of the segmentation network. One
branch compresses the features further to a single scalar with a
sigmoid output layer. This probability value encodes whether
the vertebra is partially or fully visible. Incomplete vertebrae
are only added to the instance memory but not to the output
mask. The other branch is dedicated to predict anatomical
labels as a regression output. The labels C1 to LS are encoded
by 1 to 24, 0 is used if the patch does not contain a vertebra.
The final vertebrae sequence of labels is determined by taking
all regression results into account and calculating the sequence
with the highest likelihood.

B. Two-stage Framework

Masuzawa et al. [11] develop a two-stage frame- work
that outputs segmentation, localization and identification. The
framework architecture is dis-played in Figure 3. The network
in Stage 1, called Semantic Segmentation Net, is based on a
3D FCN [14] The aim is to detect bounding boxes for cervical,
thoracic and lumbar vertebrae via segmentation. This region
information is used as auxiliary information for the second
stage. The Iterative Instance Segmentation Net in Stage 2
is based on the iterative segmentation by Lessmann et al.
[10]. The segmentation network with instance memory as
additional input but without the additional sub-networks is

taken to segment the next vertebra not already segmented.
Their anatomical labels are counted beginning at the boundary
between two subdivisions. In addition, the segmentation result
is used to compute the vertebra centroids for localization. The
Multi-task Relational Learning Network (MRLN) by Zhang
et al. [20] consists of a generator and a discriminator in
an adversarial training setup. The framework is visualized in
Figure 4. The generator, called Co-Seg-Loc network, produces
segmentation mask and localization regression outputs and is
inspired by the Spine-GAN by Han et al. [6]. The encoder
path uses dilated convolutions to increase the field of view.
The Long Short-Term Memory (LSTM) between encoder and
decoder learns sequential structures and relationships by mem-
orizing global context from local neighborhoods. The decoder
consists of two branches, one for segmentation and the other
for localization. In order to learn correlating information, two
co-attention modules for Localization-Guided Segmentation
Attention (LGSA) and for Segmentation-Guided Localization
Attention (SGLA) connect the two branches. The inputs of the
discriminator are the ground truth and Co-Seg-Loc network
outputs processed to XOR labels that combine the positional
relationship of segmentation and localization.

III. DISCUSSION

The following sections compare the papers based on their
application and the consequent input preconditions (Section
3.1), the architectures and training strategies used (Section 3.2)
and their results and datasets (Section 3.3). The findings are
summarized in Table I.

A. Application and Prerequisite

The common task of all three papers is the vertebra segmen-
tation in whole spine images. Lessmann et al. [10] develop
their application for CT and MRI scans. Additional outputs
are a probability value for the complete visibility of individual
vertebra instances and a regression value for the anatomical
label. The completeness classification provides the possibility
of excluding incomplete vertebra from further processing in
automatic spine analysis. Masuzawa et al. [11] and Zhang et
al. [20] solve the multi-task of segmentation, identification and
localization with different approaches for CT scans and MRIs,
respectively. The vertebra localization is not included in the
framework by Lessmann et al., but can be performed as post-
processing step similar to the work by Masuzawa et al.

All three papers claim to be able to deal with different
anatomy parts and image qualities. There-fore, no specific
input conditions need to be met for the two-stage framework
and the MRLN, expect the correct image modality. Lessmann
et al. state that their network might not work for cervical
vertebrae and scans with implants close to the spine due to
the missing training dataset representation.

B. Network Architectures and Training Strategies

Masuzawa et al. [11] build on the work by Lessmann et
al. [10] but extend the framework by a preceding network
to predict bounding boxes for thoracic, cervical and lumbar



Fig. 3. Two-stage framework with semantic segmentation net and iterative instance segmentation net for vertebra segmentation and localization (taken from

[11].

Fig. 4. MLRN architecture with Co-Seg-Loc network as generator for
semantic segmentation and localization regression and a discriminator (taken
from [20].

regions. Comparing the two iterative instance segmentation
networks shows differences in the architecture details. As
shown in Figure 5, Masuzawa et al. use 5 layers in the encoder
path with filter sizes of 8, 16, 32, 64 and 128 channels, whereas
Lessmann et al. use 4 layers with 84 channels from input
to decoder connection. The localization step is performed in
two ways by Masuzawa et al. and Zhang et al. [20]. Where
Masuzawa et al. compute the localization results as post-
processing step based on the segmentation result, Zhang et
al. predict the localization as regression in a second decoder
branch of the Co-Seg-Loc network. The identification step

performed by all three frameworks is also handled differently.
Zhang et al. do not specify how they compute the identifi-
cations, Masuzawa et al. use the segmentation result and a-
priori knowledge of anatomy region in a post-processing step
and Lessmann et al. predict the anatomical label as regression
output.

Different training strategies and loss functions are applied
based on the learning tasks. The enumeration is an overview
of specified details:

e Lessmann et al. [10] trained their network on a Nvidia
Titan X GPU with 12 GB memory for 4-5 days.
Their implementation is using the PyTorch framework.
They trained two modality-specific networks with a
separate CT and MR trainings set. A loss term taking
classification, anatomical labeling and segmentation
error into account is optimized via Adam with constant
learning rate of 0.001 and momentum of 0.99. Data
augmentation, such as elastic deformations, Gaussian
noise, Gaussian smoothing and cropping is used
randomly during training.

e Masuzawa et al. [11] are not providing any in-
formation on their software or hardware specifications.
However, they use data aug-mentation, especially affine
transformations and Gaussian noise during training. The
Adam optimizer with a learning rate of 0.001 is used.
In the first stage, a boot- strapped cross entropy loss
function is used and in the second stage, the Dice loss
is optimized.

e Zhang et al. [20] run their Tensorflow based imple-
mentation on a Nvidia Titan X GPU. The segmentation
network is trained with a multi-task loss and RMSProp



TABLE I
OVERVIEW OF THE COMPARISON OF THE WORK BY LESSMANN ET AL. [10], MASUZAWA ET AL. [11] AND ZHANG ET AL. [20] WITH RESPECT TO
APPLICATION AND INPUT PREREQUISITES, NETWORK ARCHITECTURE AND TRAINING STRATEGIES AND DATASETS.

Criteria Lessmann et al. Masuzawa et al. Zhang et al.

Application Segmentation + Identification + | Segmentation + Localization + | Segmentation + Localization +
pp Visibility classification Identification Identification

Prerequisite no cervical, implants none none

iterative instance segmentation net-

Network architecture
work + branches
Number of networks 1

Learning tasks segm. + identif. + class.

Postprocessing tasks loc. (possible)

Related work U-Net [13]

Optimizer (learning rate) Adam (0.001)

Framework Tensorflow

two-stage framework with two seg-
mentation networks

Co-Loc-Segm network (generator)
and discriminator

2 2

loc. + identif. identif.

loc. + identif. identif.

FCN [14] & iterative instance seg- Spine-GAN [6]

mentation network [10]
Adam (0.001) RMSProp solver & Adam
- PyTorch

60 CT & 23 MR scans

yes for CT & no for MR (three-fold
cross validation)

Training set

Independent test set

1035 CT scans 407 subjects

yes (317 CT scans) no (five-fold cross validation)

solver, whereas the discriminator uses a cross-entropy
loss optimized via Adam.

Fig. 5. Comparison of two network architectures: Iterative instance segmen-
tation part of Lessmann et al. (taken from [10], top) and Stage 2 in Masuzawa
et al. (taken from [11], bottom).

C. Dataset and Results

Lessmann et al. [10] use 5 different datasets: 15 dedicated
thoracolumbar spine CT [18], 15 lumbar spine CT scans [7],
a low-dose chest CT with 55 scans [15], 10 lumbar spine
CT scans and 23 lumbar spine MR dataset. The split of
the training and validation set is performed based on the
modality-specific training runs. 3 of the 4 CT datasets were
split to training and validation part. The 4th CT dataset
was only used for validation. Since the MR dataset only
consists of 23 images, three-fold cross validation was used
for validation. The Dice co-efficient and the mean Absolute
Symmetric Surface Distance (ASSD) are used as error metrics

for segmentation. The identification accuracy is defined by the
linearly weighted kappa coefficient and the correct labelled
vertebrae in percentage. Classification accuracy and average
number of false negative and false positives per scan are used
for the completeness classification evaluation. Masuzawa et al.
[11]use a dataset with 1035 3D CT images for training and
independent to that, two datasets with 15 and 302 CT scans
[18, 2] for validation. For the segmentation evaluation, ASSD,
Hausdorff Distance (HD) and Dice score are used. Euclidean
distance and identification rates are evaluation metrics for
localization and identification.

Zhang et al. [20] use a dataset of 407 subjects and five-
fold cross validation test to evaluate the performance of their
approach. The Dice coefficient, the Area Under the ROC
Curve (AUC), the localization and identification error are
the evaluation metrics. All results are in the same range.
Visual results of each method are provided in Figure 6. Since
different datasets and error metrics are used to evaluate the
performances, the values cannot be compared directly. Table
IT provides an overview of selected results with Dice score
for segmentation, the mean localization error and identification
accuracy.

TABLE I
OVERVIEW OF THE SEGMENTATION RESULTS (DICE SCORE IN %),
THE MEAN LOCALIZATION ERROR IN MM AND
THE MEAN IDENTIFICATION ACCURACY IN %.

Ref. Dice Score Localization 1d. accuracy
CT MRI Error CT MRI
[101 [ 94.9% 94.4% - 93% 100%
[11] | 96.6% - 8.3mm 84 % -
[20] - 95.4 % 2.6 mm - 93.5 %




IV. CONCLUSION

Three approaches to solve the multi-task of vertebrae seg-
mentation, localization and identification were described and
compared. The common solved task is vertebrae segmentation
in whole spine images of either CT or MRI scans.

An instance segmentation network, segmenting the next
not already processed vertebra in an iterative manner, was
extended with two recognition branches to predict vertebrae
identification and completeness visibility. The strength of this
method is that three tasks are performed with a single network
that can be trained end-to-end. Since it was tested for CT
and MRI, the architecture works for both modalities with-
out further adaptations. Additionally, the predicted visibility
classification is helpful for further analysis. The anatomical
labels are based on regression predictions. Therefore, training
data annotations are necessary and wrong processing of the
vertebrae sequence leads to incorrect anatomical labeling of
the image.

In a two-stage framework, the a-priori knowledge about the
anatomical region depicted is provided by bounding boxes
from an earlier segmentation stage. Thus, assigning anatomical
labels and computing the vertebrae centroids is performed
via post-processing of the segmentation masks. This is a
drawback, since a wrong segmentation mask leads to incorrect
localization and identification as well. The two-stage approach
has the advantage of having a first stage providing a more
detailed knowledge about the anatomy region for the second
stage. However, this also means that two networks need to be
trained.

In comparison to that, the MRLN uses an adversarial
approach and learns segmentation and localization simulta-
neously. The framework uses the relationship between the
familiar tasks not only for training but also to perform post-
processing and correction steps based on the correlated out-
puts. Although the reported errors are in the same range, a
direct comparison of the results is not recommended since
different datasets and modalities are used by the authors.
Therefore, it would be interesting to see how modified versions
of the applications perform on the other modality for the latter
two frameworks, or on each other’s datasets.
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